2018

CBCS

3rd Semester

MATHEMATICS

PAPER-C7T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

[Calculator is allowed in examination Hall]

Numerical Methods

UNIT-I

1. Answer any two questions:

1

 2×2

(a) If a number 0.05418 is approximated to 0.05411, find the number of significant digits for SUCh approximation.

(Turn Over)

- (b) Define the terms:
 - (i) Truncation error
 - (ii) Round of error
- (c) Let, $u = 4x^6 + 3x 9$. Find the percentage error in computing u at x = 1.1, if the error in x is 0.05.

UNIT-II

2. Answer any one question:

 1×2

- (a) Write down the equation $x^3 + 2x 10 = 0$ in the form $x = \varphi(x)$ such that the iterative scheme about x = 2 converges.
- (b) What do you mean by the term as iterative method has the rate of convergence $p(\ge 1)$?
- 3. Answer any one question:

 1×5

(a) Find the iterative formula for finding $\sqrt[K]{N}$, where N is a real number, using Newton-Raphson formula. Hence evaluate $\sqrt[3]{2}$ correct upto four significant figure. State the condition of convergence of this method.

(b) Describe the method of false position for finding a real root of an equation f(x) = 0 and obtain the corresponding interation formula. Discuss its advantages and disadvantages in comparison to Newton-Raphson Method.

UNIT-III

4. Answer any one question :

 1×2

- (a) State the conditions for convergence of Gauss-Scidel method for solving a system of linear equations. Are they necessary and sufficient?
- (b) Define ill-conditioned and well-conditioned system of Linear equation.
- 5. Answer any one question:

 1×5

(a) Consider a system of equations

$$x + y - z = 2$$

$$2x + 3y + 5z = -3$$

$$3x + 2y - 3z = 6$$

Solve the system of equations by LU decompositon method.

(b) Describe Gauss elimination method with pivoting for solution of a system of linear equation, what is the total number of operations required for this method?

UNIT-IV

6. Answer any one question :

 1×10

(a) (i) Prove that
$$f(x+Kh) = \sum_{i=0}^{K} (K_{C_i}) \Delta^i f(x)$$

(ii) Find the missing term of the following table :

x	0	1	2	3	4	5
f(x)	0		8	15		35

3

(iii) Obtain the Error in the Lagrange Interpolating Polynomia.

Also show that the maximum error in linear interpolation is given by $\frac{(x_o - x_1)^2}{8}M$ where $M = \max |f''(\xi)|, x_o \le \xi \le x_1$.

(b) What is the *n*th order forward differences of a polynomial of degree n? If n is very small prove that $\Delta^{n+1} f(x) = h^{n+1} f^{n+1}(x).$

Find the value of Sec 31.5° using the following table:

θ	31°	32°	33°	34°
(in degree)				100 0 8 3
tanθ	0.6008	0.6249	0.6494	0.6747

UNIT-V

7. Answer any one question :

 1×2

- (a) Show that Simpson's 1/3 rule is exact for integrating a polynomial of degree 3.
- (b) If f(x) is a quadratic polynomial, deduce that $\int_{1}^{3} f(x)dx \approx \frac{1}{12}[f(0) + 22f(2) + f(4)]$
- 8. Answer any one question :

 1×5

(a) Derive Simpson's one-third Rule from Newton cotes formula.

(b) Describe the method of least squares to fit a straight line y = ax + b.

In some determinations of the value v of carbon dioxide dissolved in a given volume of water at different temperature θ , the following pairs of values were obtained:

θ	0	5	10	15
υ	1.80	1.45	1.18	1.00

Obtain by the method of least square a relation of the form $v = a + b\theta$ which best fit to this ob-

UNIT-VI

9. Answer any one question:

1×5

(a) Describe Euler's method for solving first order differential equation with initial condition. Compute y(1.2) for the problem $\frac{dy}{dx} = 1 + xy$, y(1) = 1 by modified Euler's method taking h = 0.1.

(b) Find the values of y(0.1) and y(0.2) using Runge Kutta Method of 4th order taking h = 0.1. Given that $\frac{dy}{dx} = xy + y^2$, y(0) = 1.