2018

CBCS

1st Semester

CHEMISTRY

PAPER-C1T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Oraganic Chemistry-I

Group-A

1. Answer any five questions:

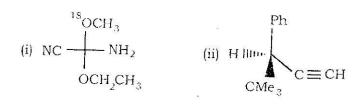
 5×2

(a) Compare with proper justification the stabilities of isobutene, Z-2-butene and E-2-butene.

(b) Arrange with explanation, the following compounds in order of increasing dipole moments:

$$CH_3CH_2Cl$$
, $HC = C - Cl$, $CH_2 = CHCl$

- (c) Depict the symmetry elements of the following molecules in terms of σ and Cn.
 - (i) cis 1, 2-dimethyl cyclopropane
 - (ii) Trans-1, 2-dichloroethene
- (d) Give an orbital representation of singlet and triplet carbene
- (e) Write the fishcher projection formula of meso-tartaric acid and represent it in Newman and Sawhorse projection formulae.
- (f) Write the canonical forms of diazomethane $(CH_2^- N^+ \equiv N) \quad \text{and select the most contributing}$ structure.


- (g) Calculate the double bond equivalents of (i) C_3H_7N and (ii) $C_7H_6O_2$
- (i) Draw the Fischar projection formula of L-2-hydroxy propanoic acid and assign R/S configuration to the chiral carbon atom.

Group-B

Answer any four questions:

 4×5

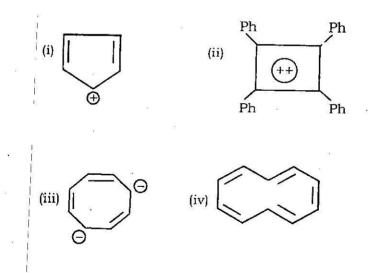
2. (a) Assign R/S confligation of the following compounds and also show the priority order of the groups: 3

(iii)
$$CH_2 = HC$$

$$= CH(OCH_3)_2$$

$$= CH(CH_3)_2$$

(b) Outline the chemical method of resolution of racemic acid.


3. Designate the indicated centres (*) of the following compounds as stereogenic / non-stereogenic and chirotopic / achirotopic. Give reasons

(iii)
$$\begin{array}{c|c} & CO_2H \\ H & & OH \\ H & & OH \\ \hline & CO_2H \end{array}$$

- 4. (a) What is meant by the terms 'Optical purity' (OP) and 'Enantiomeric excess' (ee)?
 - (b) Calculate the ee and the specific rotation of a mixture ₹ containing 10g of (+) 2 butanol and 6 g of (-) -2-butanol. The specific rotation of enantiometrically pure (+) 2-butanol is +13.5°.

- 5. Draw all the π molecular orbitals of (E)-1, 3-butadiene. Arrange them in order of increasing energy level, designating the HOMO and LUMO in the ground state.
- 6. Which of the following compounds are aromatic, non-aromatic and antiaromatic?

Justifiy your answer

7. (a) Arrange—the following carbocations in order of increasing stability and explain the order 3

(b) Classify each of the following species as electrophile and nucleophile and give your reasoning.
2

 $(CH_3)_3 C^{\oplus}$, CCl_2 , NH_3 , Cl^{\oplus} .

Group-C

- 8. Answer any one question :
 - (a) How many stereoisomers are possible for the following compounds. Are all of them optically active?
 - (i) CH₃CH(Br) CH(Br) CH(Br) CH₃
 - (ii) $CH_3CH = CH CH$ (OH) CH = CH CH_3

Give Fischer projection formulae of all the stereoisomers.

- (b) Write down the (2E, 4E)-hepta -2, 4-diene in the s-cis and s-trans conformations.
- (c) The ketone (+) CH₃CH₂COCH(OH)CH₃ racemises on treatement with alkali, whereas the isomeric ketone
 (+) CH₃ CO CH₂ CH(OH) CH₃ does not, Explain.

- 9. (a) Draw orbital picture of cerbene in sp²-singlet, sp² triplet and sp-triplet states.
 - (b) Which of the indicated bonds in each pair of compounds is shorter and why?
 - (i) $CH_3CH_2 C = CH_2$ and $CH_3CH_2 C = C H$ H
 - (ii) $CH_3CH_2NH_-H$ and $(CH_3)_2C = N_-H$

(iii)
$$CH_3 - C - H$$
 and $H - CH_2OH$

(c) Arrange the following compounds in order of increasing boiling point and explain the order. 4

(iii)
$$CH_3CH_2CH_2 - CH_2CH_2 - CH_3$$

(iv)
$$CH_3 - C - CH_2CH_3$$

 CH_3

(v)
$$CH_3CH_2CH_2CH_2 - CH_2OH$$