Total Pages-4

2018

CBCS

3rd Semester

CHEMISTRY

PAPER-C6T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Inorganic Chemistry-II

Answer any five questions:

2×5

- 1. (a) Arrange the following components with increasing order of dipole moment. NF₃, NH₃, NCl₃. Explain the order.
 - (b) Calculate the bond orders of CN^- and O_2^- .

- (c) Among NaCl and CuCl, which has higher melting point—and why?
- (d) Write down the limitations of radius-ratio rule with example.
- (e) How age of rocks can be determined?
- (f) CD₄ has slight lower boiling point than CH₄—Explain.
- (g) Why HgCl₂ is colourless but HgI₂ is deep red in colour?
- (h) What is the probable energy source of sun?
- 2. Answer any four questions: 4×5
 - (a) (i) How mass defect is related to binding energy?
 - (ii) Why packing fraction may be positive or negative where as mass defect cannot.
 - (iii) Calculate the average binding energy per nucleon in ${}_{1}^{3}H$ (mass = 3.016050 u) and ${}_{2}^{3}H$ (mass = 3.016030 u) $(1\frac{1}{2}+1\frac{1}{2}+2)$
 - (b) (i) KHF₂ can easily be formed where as KHCl₂ does not—Explain.
 - (ii) Predict the structures of NOCl and ICl₂
 - (iii) Calculate the lattice energy of $Mg(ClO_4)_2$ using Kapustinskii equation. Radii of Mg^{2+} and

ClO4 ions are 86 pm and 226 pm respectively.

 $K = 1.214 \times 10^5 \text{ kJ unit.}$

1+2+2

- (c) (i) Draw the M.O. diagram of NO
 - (ii) Why NO is more reactive than N₂?
 - (iii) Explain the ligating behaviour of NO. 2+2+1
- (d) (i) Although oxygen shows high second electron affinity value, MgO is well known. Explain.
 - (ii) Suggest reasonable crystal structure of CaF_2 and TiO_2 from the following radii (pm) $Ca^{2+}-126$, $F^{-1}-119$, $Ti^{4+}-74.5$, $O^{2-}=126$.
 - (iii) The melting point of AgCl is 445°C where as in case of KCl it is 776°C; Although the radii of K⁺ and Ag⁺ are almost same.

 1½+1½+2
- (e) (i) 1 gm of 226 Ra emits $11.6 \times 10^{17} \alpha$ particles per year. Calculate the value of the Avogadro number. $(t_{1/2} = 1590 \text{ year})$
 - (ii) With the help of MO theory calculate the bond order of NO.
 - (iii) What do you mean by δ -bond? 2+2+1
- (f) (i) Explain why Be shows electrical conductivity.
 - (ii) U-238 cannot be commonly used as nuclear fuel— Explain.
 - (iii) What do you mean by nuclear isomerism?

3. Answer any one question:

 1×10

- (a) (i) Calculate electron gain enthalpy (-EA) of chlorine from the following ΔH data (KJ mol⁻¹)-DCl₂ = 242, I_{Na} 494, ΔH_{Sub} (Na) = 109, ΔH_{f}^{o} (NaCl) = -414, $r_{Na^{+}} + r_{Cl^{-}} = 281$ pm in NaCl.
 - (ii) Explain the bonding of [Re₂Cl₈]²⁻ in the light of MO theory.
 - (iii) Among MgCO₃ and CaCO₃—which is thermally more stable and why?
 - (iv) What are the differences between ion-dipole interaction and induced dipole interaction?

 3+4+1+2
- (b) (i) Define Frenkel and Schottky defects in solid. Cite examples for each defects.
 - (ii) What do you mean by receptor-guest interaction?
 - (iii) What is artificial radioactivity? Given an example.
 - (iv) Write down the hazards of radiation and how this can be prevented?

 3+2+2+3