2018

CBCS

3rd Semester

CHEMISTRY

PAPER--C5T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Physical Chemistry-II

Group-A

Answer any one questions:

1. (a) Evaluate the commutator, $[\hat{x}, \hat{p}_x]$.

(b) Define ionic mobility and ion conductance with proper unit. Derive the relation between them. 1+1+3

(Turn Over)

3

(c)	Define	Hermitian	operator.
(-)	Demic	netminan	operator

2

- 2. (a) Discuss how viscosity of liquid varries with temperature?
 - (b) The transport number of Na⁺ in NaCl is 0.385. The equivalent conductance of infinite dilution of NaCl is 126.5 S.cm².equiv⁻¹. Calculate the distance traversed in one hour by Na+, when NaCl solution is electrolysed between two electron of 1 cm apart. The potential difference is 30 volts.
 - (c) If ψ_1 and ψ_2 are non degenerate eigen functions of a Hermitian operator, then show that they are orthogonal.

Group-B

Answer	any	four	questions	:
--------	-----	------	-----------	---

4×5

3. (a) Derive Gibbs—Duhem equation.

3

- (b) Show that entropy change of mixing of two ideal gases is maximum for 50-50 mixing.
- 4. (a) Derive thermodynamically partition coefficient when a solute exists as monomer is one phase and exists as dimmer completely in another phase.
 - (b) Viscosity coefficient of a liquid decreases by 2% per degree celsius rise in temperature. Show that if

viscosity coefficient is measured at 25°C and 75°C, then the ratio of viscosity coefficient will be (1:e).

3

- 5. (a) How can you justify La Chatelier's principle thermodynamically.
 - (b) At 2000 k, for the reaction $N_2 + O_2 \rightleftharpoons 2NO \ \Delta G^\circ = 22000 2.5T$. Calculate K_p at this temperature?
- 6. (a) Define stationary state in quantum mechanics. 2
 - (b) Determine with reasons, whether each of following function are acceptable or not over the indicated interval.

(i)
$$\sin^{-1} x(-1,1)$$
 (ii) $\frac{1}{x}(0,\infty)$ 1½×2

- 7. (a) Derive an expression for energy of a particle confined in a box of length 'a'.
 - (b) If ψ is an eigen function of two operators α and β then they must commute.
- 8. (a) In a moving boundary experiment 0.01 mole per litre LiCl, the boundary in a tube having cross sectional area 0.125 cm², moves through 7.3 cm in 1490 second when 1.8×10⁻³ amp. current is used calculate t₊.

(b) Write Kohlrausch's law of independent migration of ions for Na₂SO₄ with respect to equivalent ion conductance.

Group-C

Answer	any	five	question	:
--------	-----	------	----------	---

 5×2

- 9. (a) Define Linear operator in quantum mechanics with example.
 - (b) What is the expression of transport no. of Na⁺ for a solution containing NaCl and KCl.
 - (c) Write Poiseuille's equation for viscosity of liquid and mention when it is valid.
 - (d) Write the expression of fugacity w.r.t. 2nd virial coefficient for a real gas.
 - (e) How can you determine λ° graphically for weak electrolyte?
 - (f) How equilibrium constant depends on temperature and pressure.
 - (g) For the reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3$ K_P at 300 K is 50. Find ΔG° from K_c at 300 K.
 - (h) Calculate ΔS_{mix} when 2 mole N_2 and 3 mole H_2 are mixed at 25° C and 1 atm pressure.