2019

B.Sc.

2nd Semester Examination CHEMISTRY (Honours)

Paper - C3T

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any five questions.

 $5 \times 2 = 10$

Time: 2 Hours

- (a) Outline the shapes of the d-orbitals indicating signs of wave functions.
 - (b) Explain anomalous configuration of Cr and Cu.
 - (c) Give example of one disproportionation and one comproportionation reaction.
 - (d) What indicator would you use for the following titration (a) NaOH vs CH₃COOH (b) Na₂CO₃ vs HCl.

[Turn Over]

- (e) Find pH of a 0.01 (M) CH_3COOH solution (PKa = 4.74).
- (f) Oxidation of Co(II) to Co(III) usually happen in air why.
- (g) Why always second ionization energy is greater than first ionization energy?
- (h) Atomic volume of alkali metal is larger than other elements of a period — Explain.
- (i) Give the name of two redox indicator.
- (j) Electron affixity of gold in very high Explain.

Group - B

Answer any four questions.

4×5

 (a) State Pauli Exclusion Principle. Calculate the wave length of the first transition in Layman and Paschan series in the atomic spectra of hydrogen.

$$(R = 1.097373 \times 10^7 \text{ m}^{-1})$$

2 + 3

(b) Explain why CI^- is oxidised by MnO_4^- at low pH (<1.5) but not in neutral medium.

$$E^{o}_{MnO_4^-/Mn^{2+}} = 1.51 V$$
 and $E^{o}_{Cl_2/2Cl^-} = 1.36 V$

What is Zimmermann-Reinhardt solution? Where it is used and why? 2½+1+1½

- (c) State Pauling's rule regarding strength of oxyacids and hence explain the first PKa values of H_3PO_2 , H_3PO_3 and HOCl. 2+3
- (d) After Ca, electron enter to the 4s orbital before going to the 3d orbitals. But when a transition metal ionises, the 4s electrons are removed first why?
- (e) What do you mean by ionic radius? Calculate the radii of K^+ and Cl^- ions using Pauling's methods $[d_{KCl}(Crystal) = 3.14 \text{ Å}].$ 2+3
- (f) What is inert pair effect? How does T1 form iodide only in +1 oxidation state? The drop of ionization energy in N to O is larger than that for P to S Explain.

Group - C

Answer any one questions.

1×10

- 3. (i) What is the significance of quantum numbers?
 - (ii) State Pauli Exclusion principle.
 - (iii) Draw distribution curves for radial wave function of 1S, 2S and 3S orbital. 3+2+5

[Turn Over]

5

- 4. (i) Calculate the E values at the point when
 - (a) addition of 90 mL KMnO₄
 - (b) 50 mL KMnO₄ and
 - (c) 101 mL $KMnO_4$ solution is added in a titration of 100 mL of 0.1(N) Fe^{2+} by 0.1(N) $KMnO_4$ solution.
 - (ii) From the following EMF diagram, calculate the values of

$$E^{\circ}_{FeO_4^{2-}/Fe^{2+}}$$
 and $E^{\circ}_{Fe^{2+}/Fe^{+}}$

$$FeO_4^{2-} \xrightarrow{2.20V} Fe^{3+} \xrightarrow{0.76V} Fe^{2+} \xrightarrow{?} Fe$$

$$1.08 V \qquad \uparrow$$

$$5+5$$