2018

CBCS

3rd Semester

COMPUTER SCIENCE

PAPER-C5T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Data Structures

1. Answer any five questions :

5×2

- (a) What do you mean by tail recursion? Give example.
- (b) What are the drawbacks of dynamic linked list over single linked list?

- (c) Define Best Case and Worst Case time complexity.
- (d) What is the limitation of binary search? What do you mean external sorting?
- (e) What is the purpose of stack in implementing a recursive procedure? Explain.
- (f) What is the need for usuing circular array to implement queues?
- (g) What an example explain the Huffman encoding scheme.
- (h) The inorder and preorder traversal of a tree are given below. Construct the tree.

Inorder: DBMINEAFCJGK

Preorder: ABDEIMNCFGJK

2. Answer any four questions:

4×5

(a) Consider a two dimensional array A of order [25 * 4].
The base address is 400, words per memory cell is 4. Find the address of A[12, 4] using row major and column major addressing.

- (b) Write an algorithm to insert a new element in given unsorted array at k-th position.
- (c) (i) Convert the following infix expression to its equivalent prefix expression using stack:

$$A + (B - C / D) - E / F + G - H.$$

- (ii) Define ADT (Abstract Data Type). 3+2
- (d) Write an algorithm to convert an infix expression to its equivalent postfix expression.
- (e) Write a non-recursive algorithm to traverse the tree element in INORDER traversal.
- (f) Give a function that uses a stack in order to reverse the elements of a circular queue which is stored in an array.
- 3. Answer any one question :

1×10

(a) (i) To prove that E = I + 2 * q, where q is the number of internal nodes, I denotes internal path length and E denotes the external path length.

- (ii) Why tree is called as a non-linear data structure?
- (iii) To construct a binary search tree using the following datas:

25, 57, 48, 37, 12, 92, 86, 33.

5+2+3

(b) Write an algorithm to sort an unsorted list using quick sort method.