Total Pages-11 B.Sc.-CBCS/IS/ELECT/GE1P/ 17 (Pr.)

2017

ELECTRONICS

(Electronic Circuits and PCB Designing Lab)

[Gen. Elective]

(CBCS)

(Practical)

PAPER - GEIP

Full Marks: 20

Time: 2 hours

The figures in the right-hand margin indicate marks

Answer any one question, selecting it by a lucky draw

- 1. Verify Thevenin's theorem by using a resistive Wheatstone bridge network:
 - (a) Theory and schematic circuit diagram. 2+1
 - (b) Circuit implementation.
 - (c) Data for load voltage (V_L) and load current (I_L) . 5
 - (d) Draw I_L - V_L graph.
 - (e) Determine V_{TH} and R_{TH} from I_L - V_L graph. $1\frac{1}{2} + 1\frac{1}{2}$
 - (f) Accuracy.
- Verify Superposition theorem (using at least two sources).
 - (a) Theory and schematic circuit diagram. 2+1
 - (b) Circuit implementation.
 - (c) Data for verification. 3+3+3
 - (d) Accuracy and discussion. 1+1

1

3.	Verify Maximum power transfer theorem by using resistive Wheatstone bridge network:		
	(a) Theory and schematic circuit diagram.	2 -	

- (b) Circuit implementation.
- (c) Data for load voltage (V_L) and load current (I_L) . 5
 (d) Verification of Maximum Power Transfer
- theorem from R_L -P graph. (e) Calculate the value of R_L at which P is
- maximum.

 (f) Accuracy.
- 4. Construct full wave rectifier and study load regulation with and without shunt capacitance filter:
 - (a) Working formula and circuit diagram. 2 + 1
 - (b) Circuit implementation.

 (c) Data for load voltage (V.) load current (I
 - (c) Data for load voltage (V_L) load current (I_L) characteristics. 3+3
 - (d) Draw the graphs. $2\frac{1}{2} + 2\frac{1}{2}$

3

5. Construct half wave rectifier and study load regulation with and without shunt capacitance filter:

- (a) Working formula and circuit diagram. 2 + 1
- (b) Circuit implementation.
- (c) Data for I_L - V_L characteristics. 3 + 3
- $2\frac{1}{2} + 2\frac{1}{2}$ (d) Draw the graphs.

Study the load regulation of a Zener diode

- (a) Theory and circuit diagram.
- (b) Calculation of limiting resistance. 5
- (c) Data for V_L - I_L characteristics.
- (e) Calculate the percentages of regulation for two different I_{i} . 2 + 2

(d) Draw the graph.

2 + 1

7.	To draw the static characteristics curves of a transistor in CE configuration for three different lane currents:		
ļ	(a) Theory and circuit diagram.	2 + 1	
E	(b) Circuit implementation.	1	
ĵ ĵ	(c) Data for output characteristics.	6	
1	(d) Draw the graph.	3	
į.	(e) Calculate the h_{μ} .	2	
8.	Study the CE amplifier with a given tran	sistor:	
1	(a) Theory and circuit diagram.	2+1	
I	(b) Circuit implementation.	l	
	(c) Data for linear characteristics.	2	
[.]	(d) Data for frequency response.	4	
i	(e) Draw the curve for linear characteris	stics. 2	
I E	(f) Draw the curve for frequency respor	ise and $2+1$	

- 9. Study of 9 volt, 100 mA power supply with Zener regulation:
 - (a) Theory and circuit diagram.

2+

- (b) Circuit implementation.
 - (c) Data for V_L - I_L characteristics.
- (d) Draw the graph for load regulation.
- (e) Calculate the load regulation with two specified load current. 2+