Total Pages-9 B.Sc.-CBCS/IS/ELECT/H/C1P/17 (Pr.)

2017

ELECTRONICS

(Basic Circuit Theory and Network Analysis)

[Honours]

(CBCS)

(Practical)

PAPER - C1P

Full Marks: 20

Time: 2 hours

The figures in the right-hand margin indicate marks

Answer any one question, selecting it by a lucky draw

- 1. Verify Thevenin's theorem by using a resistive Wheatstone bridge network:
 - (a) Working formula and schematic circuit diagram.
 - (b) Circuit implementation.

3

Ĺ		
2.	Verify Norton's theorem by using a resistive Wheatstone bridge network:	
1 1	(a) Working formula and schematic circuit diagram.	3
i.	(b) Circuit implementation.	2
1	(c) Data for load voltage (V_L) and load current (I_L) .	4
i i i	(d) Draw I_L - V_L graph and determine I_N and R_N from the graph.	4
ı	(e) Discussion and Accuracy.	2
i.		
3.	Verify Maximum power transfer theorem by using a resistive Wheatstone bridge network:	
	(a) Working formula and schematic circuit diagram.	3
	(b) Circuit implementation.	2
	(c) Data for load voltage (V_L) and load current (I_L) .	4
	(d) Verification of Maximum Power Transfer theorem from R_L -Pcurve.	2
	(e) Discussion and Accuracy.	2

4.	Design a first order low pass RC filter of cut-off frequency 3 kHz and study its frequency response.	
	(a) Theory.	3
	(b) Circuit diagram and implementation.	2
	(c) Record Data for gain vs. frequency.	4
	(d) Draw the gain vs. frequency curve and verify the cut-off frequency.	2
	(e) Discussion and accuracy.	4
5.	Design a first order high pass RC filter of cut-off frequency 1 kHz and study its frequency response.	
	(a) Theory.	
	(b) Circuit diagram and implementation.	
	(c) Record Data for gain vs. frequency.	4
	(d) Draw the gain vs. frequency curve and verify the cut-off frequency.	
	(e) Discussion and accuracy.	,

(c)	Data for load voltage (V_L) and load current (I_L) .	
(d)	Draw I_L - V_L graph and determine V_{TH} and R_{TH} from the graph.	
(e)	Discussion and Accuracy.	

III		
6.	To draw the resonance curve of series LCR circuit and to find the Q -factor:	
	(a) Theory.	3
	(b) Circuit diagram and implementation.	2
	(c) Record data for resonance curve (two values of R).	4
	(d) Draw I-f curve and calculate Q value.	4
	(e) Discussion and accuracy.	2
	·	
7.	To study the resonance curve of series LCR	
	circuit and to find the Q-factor from the ratio	
	of $\frac{V_e}{V_i}$ at resonance:	
	(a) Theory.	3
	(b) Circuit diagram and implementation.	2
	(c) Record data for resonance curve (two values of C).	4
	(d) Draw I-f curve and calculate O value.	3

(e) Compare Q value from resonance curve and V_2

 $\frac{V_e}{V_i}$ at resonance.

(f) Discussion and accuracy.

Distribution of Marks

Experiment : 15 marks

Laboratory Note Book: 02 marks

Viva-voce : 03 marks
Total : 20 marks

B.Sc.-CBCS/IS/ELECT/H/C1P/17 (Pr.)