2018

CBCS

3rd Semester

ELECTRONICS

PAPER-C7T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Electromagnetic Theory

Answer all questions

1. Answer any five questions:

5×2

- (a) What are isotropic and anisotropic materials?
- (b) Show that electric field is conservative force field.

- (c) What is loss tangent?
- (d) What is motional EMF?
- (e) A rectangular waveguide have dimension of width a = 5 cm and height b = 2 cm. Find cut off frequency for dominant TE mode of propagation.
- (f) In a region \vec{E} and \vec{H} fields are given by $\vec{E} = 50(j\hat{x} + 2\hat{y} j\hat{z})e^{jwt}$ $\vec{H} = (-\hat{x} + j\hat{y} + \hat{z})e^{jwt}$ Find the average power flow density.

(g) What are the values of v_g and v_p at cut off frequency for propagation wave inside a rectangular waveguide.

2

- (h) Find the phase velocity of wave propagation through a dielectric medium of dielectric constant ∈_r = 9.2
- 2. Answer any four questions:

4×5

(a) Deduce Poissosis equation and Laplace equation.

Find an expression for electric field between two parallel plane conductor using Laplace's equation.

2+3

- (b) Write down four Maxwell's equations in differential form and convert them into integral form. 2+3
- (c) Deduce an expression for skin depth. What is surface resistance?
- (d) In a conducting medium the magnetic field is given by $\vec{H} = y^2z\hat{x} + 2(x + 1)yz\hat{y} - (x+1)z^2\hat{z}$ A/m

Find conduction current density at point (2, 0, -1). Also find current enclosed by the square loop y = 1, $0 \le x \le 1$, $0 \le z \le 1$

- (e) Deduce expression for cut off frequency (ω_e) propagation constant (β), group velocity (v_g) and phase velocity (u_p) for TE mode of wave propagation inside a rectangular waveguide.
- (f) (i) Why rectangular waveguide behaves like dispersive medium?

- (ii) Can TEM mode propagate through rectangular waveguide? Explain.
- (iii) Can TEM mode propagate through two parallel plane guided wave ? Explain.
- 3. Answer any one question :

 1×10

- (a) (i) State and prove Poynting theorem.
 - (ii) Find average power density (Pace) uniform plane wave whose Electric and Magnetic fields are given by

$$\vec{E} = E_0 e^{jwt} \hat{x}$$

$$\vec{H} = \frac{E_0}{\eta} e^{jwt} \hat{y}$$
(2+5)+3

- (b) (i) Find expression for propagation constant (y), phase velocity (v_p) and intrinsic impedance of the medium (η) for wave propagation through good dielectric and good conductor.
 - (ii) What is dissipation factor (D)? Distinguish good conductor and good dielectric in terms of dissipation factor. (4+4)+(1+1)