1 1

2018

CBCS

3rd Semester

ELECTRONICS

PAPER-C5T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Semiconductor Devices

1. Answer any five questions :

5×2

(a) What do you understand by direct and indirect semiconductors?

(b) Calculate the diffusivity of electrons having mobility 0.38 m²v⁻¹s⁻¹ in Ge at 300K.

(c) How does a barrier field appear across a p-n junction?

			2	
	(d	Draw the output characteristics of a p-n-p transis	stor	
		in CE configuration.	2	
	(e)) Obtain a relation between current amplification		
		factors α and β for a transistor.	2	
05	(f)	Sketch the depletion region before and after pinch-		
		off of a JFET.	2	
	(g)	What is a CMOS?	2	*
	(h)	Draw the I-V characteristic of SCR.	2 ,	
2.	An	swer any four questions: 4x	5	
	(a)	Define the term 'effective mass of an electron Establish its mathematical expression. 2+	n'.	
			3	
	(b)	When is the Hall coefficient zero in a semiconductor	?	
		The electron and the hole mobilities in semiconductor are $0.8~\text{m}^2/\text{(V.s)}$ and $0.02~\text{m}^2/\text{(V.s)}$		1

respectively. The electron concentration in the semiconductor is 2.5×10^{18} m³, and the Hall coefficient is zero. Find the intrinsic carrier concentration.

- (c) Explain with a circuit diagram the use of a Zener diode as a reference diode.
- (d) Derive the relationship $I_C = \beta I_B + (1 + \beta)I_{CO}$, where the symbols have their usual significances. What is an Early effect?
- (e) Draw an electrical circuit showing an n-p-n transistor in CB configuration. An n-p-n transistor with α = 0.38 is operated in the CB configuration. If the emitter current is 3 mA and the reverse saturation current is I_{CO} = 10 μ A, what are the base current and collector current?
- (f) Draw and explain the nature of the typical commonsource drain characteristics of a JEET. 2+3

3. Answer any one question:

1×10

- (a) What is the Fermi level? Calculate the position of the Fermi level in an intrinsic semiconductor. 2+8
- (b) Sketch the structure of an n-channel depletion type MOSFET. Explain the operation and sketch the drain characteristics of the MOSFET. What type of gate voltage is necessary in a p-channel enhancement MOSFET to cause current flow?

 3+6+1