2019

B.Sc. (Hons)

4th Semester Examination

ELECTRONICS

Paper - C9T

(Digital Electronics and Verilog/VHDL)

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

2×5=10

(i) Convert the following Hexadecimal number to Octal number

(641A)₁₆

(ii) Simplify the following:

$$AB + \overline{AC} + \overline{ABC} (AB + C)$$

(iii) What is fan in and fan out?

[Turn Over]

- (iv) Why Multiplexer is called 'Universal Logic Module'?
- (v) Write down two advantages of CMOS logic families.
- (vi) How X-OR gate used as an inverter?
- (vii) Compare between combinational and sequential circuits.
- (viii) What are the different 'types' used in VHDL?
- 2. Answer any *four* questions : $4 \times 5 = 20$
- (i) Define the following terms related to digital ICs.
 - (a) Noise margin
 - (b) Propagation delay PLH, PHL 2
 - (c) Set up time 1
 - (d) Hold time. 1

 i) Implement the function $F(A, B, C) = \sum m(1, 3, 3)$
 - (ii) Implement the function F(A, B, C) = Σm(1, 3, 5, 6) using decoder. What are the difference between demultiplexer and decoder.

 (16×4) to (32×4) .

(iii) What do you mean by 32K × 16 memory cell?

(iv) What is race around condition? How it can be

How can you expand the memory capacity from

1+4

ji V	overcome?		
(v)	NA	nat is Totem-pole arrangement ND gate? Briefly describe it uit diagram.	
(vi)		efly discuss about synthesis tool ches of VHDL.	s and Test 5
Answer any <i>one</i> question: $1 \times 10 = 10$			1×10=10
(i)	(a)	Implement the following function MUX only $f(A, B, C, D) = \Sigma(0, 9, 12, 14)$	8 15. 6
	(b)	Define register.	2
	(c)	What do you mean by structural i	modelling? 4
(ii)	(a)	Design a synchronous MOD 10	counter.

2019

B.Sc. (Hons)

4th Semester Examination

ELECTRONICS

Paper - C8T

(Operational Amplifiers and Applications)

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

 $2 \times 5 = 10$

- (i) What is OPAMP?
- (ii) Explain the term input offset voltage in connection with an OP-AMP.
- (iii) Draw the equivalent circuit of an OP-AMP.
- (iv) What is gain-bandwidth product of an OPAMP?

[Turn Over]

- (v) Why does the voltage gain of OPAMP decrease at high frequencies?
- (vi) What is CMRR?
- (vii) What is slew rate of an OP-AMP?
- (viii) Write down the advantage of SMPS over ordinary power supply.
- 2. Answer any four questions:

 $4 \times 5 = 20$

- (i) Explain how an OPAMP can be used as an adder and a comparator. 2½+2½
- (ii) State the characteristics of an ideal OP-AMP.

5

- (iii) Draw a unity gain buffer and determine its input and output resistances. 2+1½+1½
- (iv) Draw the ideal voltage transfer characteristics of an OP-AMP and also explain the same. 2+3

(v) For an inverting OP-AMP circuit (fig. below) determine input current and output voltage for an input-voltage of 2V.

(vi) Draw the circuit of voltage to current converter using OP-AMP and explain its operation. 2+3

3. Answer any one question:

 $1 \times 10 = 10$

- (i) (a) Explain the working principle of a Schmitt Trigger using an OP-AMP.
 - (b) Draw the circuit diagram of an active lowpass 1st order Butterworth filter and describe its principle of operation.

5+(2+3)

(ii) (a) What is phase locked loop?

- (b) Draw the block diagram of a phase locked loop (PLL) and explain its principle of operation.
- (c) Discuss how a PLL circuit can be used as a frequency multiplier. 2+4+4