2019

B. Sc.

1st Semester Examination

ELECTRONICS (Honours)

Paper: GE 1-P

(Practical)

Electronics Circuit and PCB Designing Lab

Full Marks: 20

Time: 3 Hours

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Answer one question selecting it by a lucky draw.

(Electronic Circuits and PCB Dsigning Lab)

Answer any one question selectin by a Lucky draw.

- 1. Verify Thevenin's theorem by using a resistive Wheatstone bridge network.
 - (a) Theory and working formula

3

	(b)	Circuit diagram	11/2	
	(c)	Circuit implementation .	1½	
	(d)	Data for load voltage (VI) and Load current	. 5	
	(e)	Determination of V_{Th} and R_{Th} from I_L - $\mbox{\rm graph}$	V _L 3	
	(f)	Accuracy	1	
2.		ify Superposition theorem (Taking at least tage sources)	two	
	(a)	Theory	2	
	(b)	Circuit diagram	2	a
	(c)	Circuit implementation	2	
	(d)	Data for verification	7	
	(e)	Accuracy	1	
	(f)	Discussion	1	
3.		ify Maximum Power transfer theorem by ustive Wheatstone bridge network.	sing	
	(a)	Theory and working formula	2	
	(b)	Circuit diagram	11/2	,

(d) Data for load voltage (VL) and Load current

(c) Circuit impementation

2/21-300

11/2

(l_L) .	
(e) Verification of Maximum power transfer theorem	(6
from $R_L - P$ curve 4	
(f) Accuracy 1	(1
. Study the regulation characteristics of a Half Wave rectifier without any filter and with a shunt capacitor filter for a given input. Determine the ripple factor (ν) and percentage regulation in each case.	re fi
(a) Working formula and schematic circuit diagram.	(8
, 2	
(b) Circuit implementation 1	(1
(c) Data for voltage regulation and wave form to be studied in CRO and measurement of ripple factor. 6+1+1	- (0
(d) Voltage regulation curves. 3	(
(e) Percentage voltage regulation for a specified current.	(
[Turn Over]	

5.	Study the regulation characteristics of a centre tapped
	full wave rectifier without any filter and with a shunt
	capacitor filter for a given input. Determine the ripple
	factor (v) and percentage regulation in each case.

(a) Working formula and schematic circuit diagram.

(b) Circuit implementation 1

(c) Data for voltage regulation and wave form to be studied in CRO and measurement of ripple factor.

6+1+1

(d) Voltage regulation curves 3

- (e) Percentage voltage regulation for a specified current.
- Study the load regulation characteristics of the Zener diode.
 - (a) Theory and circuit diagram and circuit implementation. 2+1
 - (b) Calculation of limiting resistance R_S
 - (c) Data for regulation curve $V_S = 1.6V_Z$, where V_S is the supply voltage and V_Z is the Zener breakdown voltage.

- (d) Drawing of load regulation curve
- (e) Percentage regulation at specified load current 1
- (f) Accuracy and disenssion

1

2

3

- 7. Draw the static output characteristics of a transistor in common emitter configuration for three different base currents and to determine r_i , r_0 and β_{ac} in the given region.
 - (a) Theory and circuit diagram and circuit implementation.

2 + 1

4

- (b) Circuit diagram and implementation.
- (c) Data for output characteristics curves 6
- (d) Drawing of curves and calculation of r_i , r_0 and β_{ac}
- 8. Design a CE amplifier with a given transistor [h_{FE} and (I_B)_{max} are to be supplied] for a particular mid-band voltage gain (say A_V = 50) and record the data for frequency response for a fixed input voltage and hence find the band with of the amplifier.

(Calculations for the component are to be done)

3 Theory and circuit diagram. (b) Calculations for the components. Implementation of the circuit. (c)

5

(d) Data for frequency response curve (e) Drawing of frequency response curve 2

Distribution of Marks

15 marks Experiment 02 marks L.N.B 03 marks Viva-voce

20 marks Total