Full Marks: 40

UG/3rd Sem/ELEC/(H)/T/19

2019

B.Sc.

3rd Semester Examination

ELECTRONICS (Honours)

Paper - C 7-T

[Electromagnetic]

58	
The question are of equal value for any group/half. The	ie
figures in the margin indicate full Marks. Candidates a	re
required to give their answers in their own words as for	ar
as parctiable. Illustrate the answers wherever necessar	y.

1.	Answer	any	five	questions	
----	--------	-----	------	-----------	--

5×2

Time: 2 Hours

- i) What are isotropic and anisotropic materials?
- ii) What are electromotive force and magnetomotive force?
- iii) What are phase velocity and group velocity of wave propagating in a medium?
- iv) Explain why a magnetic monopole can not exist in nature.

[Turn Over]

v)	Deduce Coloumb's law from the Gauss law o electrostatics.	f 2			
vi)	Derive Laplace's and Poisson's equations.	2			
vii)	What is motional EMF?	2			
/iii)	A rectangular wave guide have dimension of width				
	a = 5 cm and height $b = 2 cm$. Find cut of	ſ			
	frequency for deminimant TE mode of propagation.				

2

2. Answer any four questions:

 4×5

- i) A volume charge density inside a hollow sphere is p=10e^{-20r}C/m³. Find the total charge enclosed within the sphere. Also find the electric flux density on the surface of the sphere.

 2½+2½
- ii) A long conducting cylinder of radius 'a' is placed along the z-axis. The cylinder carries a current density T_o r ²⁄₂ A/m² for r < a. Find H inside and outside the conductor.
- iii) Deduce poynting theorem for the flow of electromagnetic energy in free space.
- iv) Deduce expressions for the energy density in electric field and magnetic field.

 21/2+21/2

- v) Deduce an expression for the equation of continuity and show that Maxwell's equation satisfies the equation of continuity.

 21/2+21/2
- vi) What are the losses involved in transmission of electromagnetic energy in a guiding structure. Find expression for "Loss tangent" (tan δ). 2+3
- 3. Answer any one question:

- 4

1×10

- (i) a) Write integral forms of Maxwell's equations.
- b) Deduce an expression for the "Skin depth" of an electromagnetic wave propagating in conducting medium.

 4+6
- (ii) a) Find expressions for cut-off frequency and phase velocity of wave propagating inside a rectangular wave guide in TE mode of propagation.
 - b) Why TEM mode can not exist inside a rectangular wave guide? 8+2