List of Figures

Figure No	Legends	Page No
4.1.	Schematic graphic of study design of present research work.	29
4.2.	Schematic diagram of study design of present research work.	30
5.1.	Represents the pattern of UV-visible spectroscopy absorbance of CCPS	34
	and As ^{III} + CCPS association. (a) Indicates the UV-visible spectrogram	
	absorbance of CCPS and (b) Indicates As ^{III} + CCPS association.	
5.2.	Represents the Fourier transforms infrared spectrum (FTIR) of CCPS	35
	and $As^{III} + CCPS$. (a) Indicates the FTIR spectrum of CCPS and (b)	
	Indicates the FTIR spectrum of As ^{III} + CCPS association.	
5.3.	Represents the X-ray diffraction spectroscopy patterns of CCPS and As ^{III}	35
	+ CCPS association. (a) Indicates the XRD pattern of CCPS, and (b)	
	Indicates the XRD pattern of As ^{III} + CCPS.	
5.4.	Represents the NMR spectrum patterns of CCPS and As ^{III} + CCPS	35
	association (a) Indicates the 'H NMR pattern of CCPS and (b) Indicates	
	¹ H NMR pattern of As ^{III} + CCPS association.	
5.5.	Represent the electron microscopic study of CCPS and As ^{III} + CCPS	36
	association. (A) Indicates the scanning electron microscopy (SEM) of	
	CCPS, (B) Indicates SEM of As ^{III} + CCPS association, (C) Indicates the	
	transmission electron microscopy (TEM) of As ^{III} + CCPS association and	
	(D) Indicates the Diffraction image of As ^{III} + CCPS association.	
6.1.	(A & B) represents the hepatic SOD and catalase expression on a native	44
	gel. Lane division: Lane 1 indicates the control group; Lane 2 as 0.2 ppm	

	of As ^{III} ; Lane 3 as 0.4 ppm of As ^{III} ; Lane 4 as 0.6 ppm of As ^{III} ; Lane 5 as	
	0.8 ppm of As ^{III} ; Lane 6 as CCPS; Lane 7 as Cur; Lane 8 as As ^{III} + CCPS	
	and Lane 9 as $As^{III} + Cur$.	
6.2.	Protective effects of curcumin and CCPS on SOD and catalase level in	46
	liver tissue slices against arsenic exposed rats in duration dependent	
	fashion. Data represent mean \pm SE, N = 6. Presented values here are	
	expressed by one-way ANOVA with Dunnett's Post Hoc t-test *, **, ***	
	indicates p<0.05, p<0.01, p<0.001 versus control group with vehicle,	
	whereas #, ##, ### indicate p<0.05, p<0.01 and p<0.001 versus As^{III}	
	treatment.	
6.3.	(A-H) indicates the SOD, catalase and Px expression in liver tissue on	47
	polyacrylamide gel. Lane division: Lane 1 indicates control group with	
	vehicle; Lane 2 as As ^{III} ; Lane 3 as H ₂ O ₂ ; Lane 4 as As ^{III} + H ₂ O ₂ ; Lane 5 as	
	As ^{III} + H_2O_2 + Cur; Lane 6 as As ^{III} + H_2O_2 + CCPS; Lane 7, 8 as As ^{III} +	
	H_2O_2 + Cur + CCPS. Fig 2 denotes (D-H) the liver catalase and peroxidase	
	expression on polyacrylamide gel. Lane division is following manner:	
	Lane 1 is control group; Lane 2 as As ^{III} ; Lane 3 as H ₂ O ₂ ; Lane 4 as As ^{III} +	
	H_2O_2 ; Lane 5 as As ^{III} + H_2O_2 + Cur; Lane 6 as As ^{III} + H_2O_2 + CCPS; Lane	
	7-9 as $As^{III} + H_2O_2 + Cur + CCPS$.	
6.4	(A & B) denotes the activity of liver LDH. Lane division shown in	48
	following manner: Lane 1 is control group with vehicle; Lane 2 as As ^{III} ;	
	Lane 3 as $As^{III} + H_2O_2$; Lane 4 as $As^{III} + CCPS$; Lane 5 as $As^{III} + Cur$;	
	Lane 6 as $As^{III} + H_2O_2 + CCPS$; Lane 7 as $As^{III} + H_2O_2 + Cur$; Lane 8 as	
	$As^{III} + H_2O_2 + Cur + CCPS.$	

6.5.	The effects of curcumin and CCPS or combination on DNA fragmentation	48
	against arsenic and H_2O_2 induced changes in hepatic slices. Lane division;	
	Lane 1 indicates the control group with vehicle; Lane 2 as As ^{III} ; Lane 3	
	as H_2O_2 ; Lane 4 as $As^{III} + H_2O_2$; Lane 5 as $As^{III} + Cur$; Lane 6 as $As^{III} +$	
	CCPS; Lane 7 as $As^{III} + H_2O_2 + Cur$; Lane 8 as $As^{III} + H_2O_2 + CCPS$.	
6.6.	(A & B) The effects of CCPS and curcumin in liver cells on the single cell	49
	assay against arsenic and H_2O_2 induced changes in duration dependent	
	fashion. Lane allotment; Lane A is control group with vehicle; Lane B as	
	As ^{III} ; Lane C as H ₂ O ₂ ; Lane D as As ^{III} + H ₂ O ₂ ; Lane E as As ^{III} + Cur; Lane	
	F as As ^{III} + CCPS; Lane G as As ^{III} + H_2O_2 + Cur; and Lane H as As ^{III} +	
	$Cur + CCPS + H_2O_2$.	
6.7.	Schematic diagram denotes the hypothetical mechanism action of	55
	curcumin and CCPS against arsenic/H2O2 induced liver toxicity. Black	
	colour (+), (-) sign and black line represents the stimulatory and as well	
	as inhibitory effect of arsenic/ H_2O_2 respectively. Red colour (+), (-) sign	
	and red line indicates the stimulatory and inhibitory effect of curcumin	
	and CCPS respectively.	
7.1.	Effect of three doses of Cur on the pattern of estrous cycle against arsenic	61
	mediated different groups. Data represent mean \pm SE, N = 6, Presented	
	values here are expressed using one-way ANOVA with Dunnett's post	
	Hoc t-test * indicate p<0.05 versus the control with vehicle group,	
	whereas # and ## indicate p<0.05 and p<0.01 versus As^{III} treatment.	
7.2.	The spectrophotometry (A & B) data showing the effects of three doses	63
	of curcumin on uterine endogenous antioxidants (SOD & catalase) levels.	
	Electrozymogram (C & D) images also showing the uterine endogenous	

enzymatic antioxidant expression. E & F data shows the band density (%) of SOD and catalase expression respectively. Data represent mean \pm SE, N = 6, Presented values here are expressed using one-way ANOVA with Dunnett's post Hoc t-test *, *** indicate p<0.05, p<0.001 versus vehicle with control, whereas #, ### indicate p<0.05, p<0.001versus As^{III} treatment.

- 7.3. A & B denotes the effects of different doses of curcumin on ovarian key regulatory steroidogenic enzyme activities in arsenic treated animals. C, D & E data shows that the effects of different doses of curcumin on gonadotropin and estradiol hormones in arsenicated rats. All data represent mean \pm SE, N = 6, Presented values here are expressed using one-way ANOVA with Dunnett's post Hoc t-test *, *** indicate p<0.05, p<0.001 versus vehicle with control, whereas # indicate p<0.05 versus As^{III} treatment.
- 7.4. Schematic diagram showing the hypothetical mechanism action of curcumin against arsenic-induced uterine toxicity. Red colour (+), (-) sign and black line expresses the stimulatory and as well as the inhibitory effect of arsenic respectively. Black colour (+), (-) sign and green line also expresses the stimulatory and inhibitory effects of curcumin respectively.
 8.1. Effects of three doses of CCPS on the pattern of estrous cycle against arsenic ingested groups. The all data here represent mean ± SE, N = 6. Presented values here are expressed using one-way ANOVA with Dunnett's post Hoc t-test * indicate p<0.05 versus control with vehicle, whereas #, ## and ### indicate p<0.05, p<0.01 and p<0.001 versus As^{III} treatment.

64

69

74

8.2.	The spectrophotometry (A & B) data showing the effects of three doses	76
	of CCPS on uterine endogenous enzymes antioxidant (SOD & catalase)	
	activities. Electrozymogram (C & D) images showing the effects of	
	different doses of CCPS on uterine endogenous enzymes antioxidant	
	expression. E & F data shows the band density (%) of SOD and catalase	
	respectively. Here, data represent mean \pm SE, N = 6, Presented values	
	here are expressed using one-way ANOVA with Dunnett's post Hoc t-test	
	*, *** indicates p<0.05, p<0.001 versus the control with vehicle, whereas	
	#, ##, ### indicates, p<0.05, p<0.01, p<0.001versus As ^{III} treatment.	
8.3.	A & B denotes the effects of three doses of CCPS on ovarian key	77
	regulatory steroidogenic enzyme activity. C, D & E data shows that	
	effects on gonadotrophin and estradiol hormones. Data are represent mean	
	\pm SE, N = 6, Presented values here are expressed using one-way ANOVA	
	with Dunnett's post Hoc t-test *, **, *** indicate p<0.05, p<0.01, p<0.001	
	versus the vehicle with control, whereas ##, ### indicate p<0.01, p<0.001	
	versus As ^{III} .	
8.4.	Schematic figure showing the hypothetical mechanism of action of CCPS	81
	against arsenic induced uterine toxicity. Red colour (+) and (-) sign	
	expresses stimulatory and inhibitory effect of arsenic respectively. Black	
	colour (+) and (-) sign expresses the stimulatory and also the inhibitory	
	effect of CCPS respectively.	
9.1.	Protective effects of curcumin and CCPS on the pattern of estrous cycle	88
	against arsenic ingested different group of rats. Bar diagram represent	
	mean \pm SE, N = 6. Presented values here are expressed using one-way	
	ANOVA with Dunnett's post Hoc t-test * indicate p<0.05 versus the	

control with vehicle, whereas # and ## indicate p<0.05, p<0.01 versus As^{III} treatment.

- 9.2. Protective effects of curcumin and CCPS on MDA and CD in uterine tissue against the arsenic challenged rats. Bar diagram represent mean ± SE, N = 6. Presented values here are expressed using one-way ANOVA with Dunnett's post Hoc t-test **,*** indicate p<0.01 and p<0.001 versus the control with vehicle, whereas # and ### indicate p<0.05, and p<0.001 versus As^{III} treatment.
- 9.3. (A, B & C) Spectrophotometric analysis showed the protective effects of curcumin and CCPS on uterine endogenous antioxidant enzymes activities ingested different group against arsenic of rats. Electrozymogram showed the protective effects of curcumin and CCPS on uterine expression of antioxidant enzymes. Table showing: (D) Band density (%) of SOD, catalase and PX respectively. Bar diagram represent mean \pm SE, N = 6. Presented values here are expressed using one-way ANOVA with Dunnett's post Hoc t-test *, *** indicate p<0.05 and p<0.001 versus the control with vehicle, whereas # and ### indicate p<0.05 and p<0.001 versus As^{III} treatment.
- 9.4. (A) Spectrophotometric measurement showed the protective effects of curcumin and CCPS on uterine tissue necrosis level (LDH) against arsenic ingested different group of rats. (B) Electrozymogram showed that the protective effects of curcumin and CCPS on uterine tissue necrosis activity (LDH). Figure showing: (C) Band density (%) of serum LDH status. Data represent mean ± SE, N = 6. Presented values here are expressed using one-way ANOVA with Dunnett's post Hoc t-test *,**,

90

89

91

	*** indicate p<0.05, p<0.01and p<0.001 versus the control with vehicle,	
	whereas ##, ### indicate p<0.01and p<0.001 versus As ^{III} treatment.	
9.5.	(A & B) Protective effects of curcumin and CCPS on uterine DNA	92
	damages against arsenic ingested different group of rats. Uterine DNA	
	was evaluated by image J software. Figure B is showing the effect of	
	curcumin and CCPS on DNA comet in uterine cells. Lane distribution;	
	Lane B_1 indicate control with vehicle; Lane B_2 as As^{III} ; Lane B_3 as Cur; Lane	
	B_4 as As ^{III} + Cur; Lane B_5 as CCPS; Lane B_6 as As ^{III} + CCPS; Lane B_7 as	
	$As^{III} + Cur + CCPS.$	
9.6.	(A, B and C) Protective effects of curcumin and CCPS on serum vitamins	93
	and Hcy levels against arsenic ingested rats. Data represent mean \pm SE, N	
	= 6. Presented values here are expressed using one-way ANOVA with	
	Dunnett's post Hoc t-test *, **, *** indicates p<0.05, p<0.01 and p<0.001	
	versus the control with vehicle, whereas #, ## and ### indicate p<0.05,	
	p<0.01, p<0.001 versus As ^{III} treatment.	
9.7.	(A & B) Protective effects of curcumin and CCPS on ovarian	94
	steroidogenesis and gonadotrophins against arsenic ingested different	
	group of rats. Data represent mean \pm SE, N = 6. Presented values here are	
	expressed using one-way ANOVA with Dunnett's post Hoc t-test *, **,	
	*** indicate p<0.05, p<0.01 and p<0.001 versus the control with vehicle,	
	whereas #, ##, ### indicate p<0.05, p<0.01 and p<0.001 versus As^{III}	
	treatment.	
9.8.	(A, B, C & D) Protective effects of curcumin and CCPS on pro-	95
	inflammatory markers against arsenic challenged group. All data	
	represent mean \pm SE, N = 6. Presented values here are expressed using	
1		

	one-way ANOVA with Dunnett's post Hoc t-test *, **, *** indicate	
	p<0.05, p<0.01and p<0.001 versus the control with vehicle, whereas #,	
	## ### indicate p<0.05, p<0.01 and p<0.001 versus As ^{III} treatment.	
9.9A and 9B.	Represent the protective effects of curcumin and CCPS in uterine and	96
	ovarian cell morphology against arsenic ingested different group of rats.	
	Fig. 9A shows the uterine cell morphology. Here PM, MM EM denotes	
	Perimetrium, Myometrium and Endometrium of the uterine layers and SG	
	denotes the secretary glands. Arsenic treatment rats degenerates these	
	layers but CCPS treatment rat recovered the three uterine layers. Fig. 9B	
	shows the ovarian cell morphology. Here, AF denotes the atretic follicle.	
	Numbers of atretic follicles here increased in arsenicated group.	
9.10.	Schematic scheme represent the hypothetical mechanism of curcumin and	103
	CCPS alone or combination action against arsenic caused uterine toxicity.	
	Black colour (+), (-) sign and green line indicate stimulatory and	
	inhibitory effects of arsenic respectively. Black colour (+), (-) sign and	
	black line indicates stimulatory and inhibitory effects of curcumin and	
	CCPS respectively.	
10.1.	Represents the curative effects of CCPS on estrous cycle patterns. Scale	110
	bar in the cytological assessment is represented at 50 mm.	
10.2A.	Represents the curative effect of CCPS in arsenicated rats on liver	111
	markers. These data were expressed as means \pm SE, N=6 using one way	
	ANOVA in association with Dunnett's post Hoc t-test. Significant	
	variations of data were expressed at *p<0.05, and ***p<0.001 control	
	group with vehicle and at #p<0.05, and ###p<0.001 with the arsenic	
	challenged group.	

10.2B.	Represents the curative effect of CCPS in arsenicated rats on the lipid	112
	profiles. These deta were represented as means \pm SE, N=6 using one way	
	ANOVA in association with Dunnett's post Hoc t-test. Significant	
	variations of data were expressed at *p<0.05, **p<0.01 and ***p<0.001	
	control group with vehicle and at ##p<0.01, and ###p<0.001 with the	
	arsenic challenged group.	
10.3.	Represents the curative effects of CCPS on the uterine and ovarian	113
	oxidative stress markers against arsenic-treated rats by	
	spectrophotometric evaluation. These results were represented as mean \pm	
	SE, N=6 using one way ANOVA in association with Dunnett's post Hoc	

t-test. Significant variations of data were expressed at p<0.05, p<0.01 and p<0.001 when control group with vehicle and at p<0.05, #p<0.01 and ##p<0.001 with the arsenic challenged group.

114

115

10.4A Represents the curative effects of CCPS on the uterine and ovarian antioxidant enzymes activity against arsenic-treated rats when evaluated spectrophotometrically. These results were represented as means ± SE, N=6 using one way ANOVA in association with Dunnett's post Hoc t-test. Significant variations of data were expressed at the level of *p<0.05, **p<0.01 and ***p<0.001 when compared control with vehicle group and #p<0.05, and ###p<0.001 when compared with arsenic challenged group.
10.4B. CCPS showed a remedial effect on uterine and ovarian antioxidant enzymes (SOD, catalase and GPx) activities against arsenic treated rats. These results were represented as mean ± SE, N=6 using one way ANOVA in association with Dunnett's post Hoc t-test. Significant variations of data were expressed at the level of *p<0.05, and ***p<0.001

	when compared control group with vehicle whereas at $\#p<0.05$, and	
	###p<0.001 with arsenic challenged group.	
10.5.	Spectrophotometric analysis denoted that CCPS improved the LDH status	116
	(5A) in arsenic treated rats. Zymographic data also focused that CCPS	
	restored the serum LDH towards normalcy (5B). Data here represented as	
	mean ± SE, N=6 using one way ANOVA in association with Dunnett's	
	post Hoc t-test. Significant variations of data were expressed at the level	
	of *p<0.05 and ***p<0.001 compared control group with vehicle and at	
	###p<0.001 with the arsenic challenged group.	
10.6.	Represents the remedial effect of CCPS on circulating level of vitamins	117
	and Hcy in arsenic-treated rats. These results were represented as mean \pm	
	SE, N=6 using one way ANOVA in association with Dunnett's post Hoc	
	t-test. Significant variations of data were expressed at **p<0.01 and	
	***p<0.001 which compared the control with vehicle and at ###p<0.001	
	with arsenic challenged group.	
10.7.	Represents the corrective effects of CCPS on the hormonal level, ovarian	118
	steroidogenic key enzymatic activities, and the uterine Esr-1 in	
	arsenicated rats. These results were represented as mean \pm SE, N=6 using	
	one way ANOVA in association with Dunnett's post Hoc t-test.	
	Significant variations of data were expressed at *p<0.05, and ***p<0.001	
	level, compared the control with vehicle and at #p<0.05, ##p<0.01 and	
	###p<0.001 with arsenic challenged group.	
10.8.	Shows the therapeutic efficacy curative of CCPS on the status	119
	inflammatory markers against arsenication in rats. These results were	
	represented as mean \pm SE, N=6 using one way ANOVA in association	

	with Dunnett's post Hoc t-test. Significant variations of data were	
	expressed at the level of ***p<0.001 compared the control with vehicle	
	and #p<0.05, ##p<0.01 and ###p<0.001 with arsenic challenged group.	
10.9.	The revival mode CCPS action successfully improved the apoptotic	120
	protein expression on arsenic- affected rats. These results were	
	represented as mean \pm SE, N=6 using one way ANOVA in association	
	with Dunnett's post Hoc t-test. Significant variations of data were	
	expressed at the level of *p<0.05, **p<0.01 and ***p<0.001 compared	
	the control with vehicle and at #p<0.05, ##p<0.01, and ###p<0.001 with	
	arsenic challenged group.	
10.10.	The curative mode of CCPS successfully recovered the gene expression	121
	in the arsenic- affected rats. These results were represented as mean \pm SE,	
	N=6 using one way ANOVA in association with Dunnett's post Hoc t-	
	test. Significant variations of data were expressed at the level of *p<0.05	
	and ***p<0.001 compared control group with vehicle and at #p<0.05,	
	##p<0.01, and ###p<0.001 with the arsenic challenged group.	
10.11.	Represents the therapeutic potential of CCPS on the sex organs histo	122
	morphology in arsenic-ingested rats. Uterine cell morphology revealed	
	the loss of uterine layers (PM- Perimetrium, MM- Myometrium and, EM-	
	Endometrium) along with the loss of secretary glands (SG). Dietary	
	CCPS played a crucial role in rejuvating the uterine layers along with the	
	secretory glands. In ovarian cell morphology showed that, the numbers of	
	atretic follicles were increased following arsenication. CCPS treatment	
	diminished the numbers of ovarian follicular artesia at a considerable	
	level.	

10.12.	CCPS successfully alleviates the arsenic affected female infertility status.	123
	CCPS also improved pregnancy outcome. These results were represented	
	as mean \pm SE, N=6 using one way ANOVA in association with Dunnett's	
	post Hoc t-test. Significant variations of data were expressed at the level	
	of *p<0.05 and ***p<0.001 compared control group with vehicle and at	
	#p<0.05 and ###p<0.001 with the arsenic challenged group.	
10.13.	Represents mechanism of actions of CCPS against arsenic mediated	130
	female repro-toxicity. Here, (+) sign indicate the stimulatory effect (-)	
	sign also indicate inhibitory effect.	
11.1.	Represents the solubility of curcumin and encapsulated chitosan	132
	nanoparticles (ECNPs).	
11.2.	Represents the FTIR spectrum of (a) curcumin, (b) chitosan, and (c)	133
	ECNPs.	
11.3.	Represents the size characterization of the ECNPs using TEM studies.	133
11.4.	Analysis of (a) curcumin, (b) chitosan and (c) ECNPs using the help of	134
	X-ray diffraction spectroscopic.	
12.1.	Effect of different doses of ECNPs on the pattern of estrous cycle against	142
	arsenicated mediated different group of rats. Data represent mean \pm SE,	
	N = 6. Presented values here are expressed using one way ANOVA in	
	association with Dunnett's post Hoc t-test. * indicates p<0.05 versus the	
	control with vehicle group, whereas # and ## indicate p<0.05 and p<0.01	
	versus As ^{III} treatment.	
12.2.	The spectrophotometric (A & B) data showing the effects of different	144
	doses of ECNPs on uterine endogenous antioxidant enzymes activities.	
	Electrozymogram (C & D) images showing the effects of different doses	

	of ECNPs on uterine endogenous antioxidant enzymes expression. E & F	
	shows the band density (%) of SOD and catalase respectively. Data	
	represent mean \pm SE, N = 6. Presented values here are expressed using	
	one way ANOVA in association with Dunnett's post Hoc t-test. *, ***	
	indicate p<0.05, p<0.001 versus the control with vehicle group, whereas	
	#, ##, ### indicate p<0.05, p<0.01 and p<0.001 versus As ^{III} treatment.	
12.3.	A & B denote the effects of different doses of ECNPs on ovarian key	145
	regulatory steroidogenic enzyme activities. C, D & E show the effects of	
	different doses of ECNPs on gonadotrophin and estradiol hormones. Data	
	represent mean \pm SE, N = 6. Presented values here are expressed using	
	one way ANOVA in association with Dunnett's post Hoc t-test. *, ***	
	indicates p<0.05, p<0.001 versus the control with vehicle group, whereas	
	#, ##, ### indicate p<0.05, p<0.01 and p<0.001 versus As^{III} treatment.	
12.4.	Schematic diagram showing the hypothetical mechanism action of	149
	curcumin against arsenic induced uterine toxicity. Black colour (+), (-)	
	sign showing stimulatory and inhibitory effect of arsenic respectively.	
	Red colour (+), (-) sign showing stimulatory and inhibitory effects of	
	ECNPs respectively.	