

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

M.Sc. Examinations 2020 Semester IV

Subject: APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

Paper: MTM 401

(Functional Analysis)

(Theory)

Full Marks: 40

Time: 2hrs.

Candidates are required to give their answers in their own words as far as practicable.

Answer any one of the following:

1. (a) Let X be an infinite dimensional normed space and Y be a non-zero normed space. Construct an operator $T: X \to Y$ which is linear but not bounded.

(b) Let $T_1 \in B(V_1, V_2), T_2 \in B(V_2, V_3)$ where V_1, V_2, V_3 are normed spaces. Prove that $T_2T_1 \in B(V_1, V_3)$ and $||T_2T_1|| \le ||T_2|| ||T_1||$.

(a) Let V, W be normed spaces and F: V → W be linear. Show that F is continuous if and only if for every Cauchy sequence {x_n} in V the sequence {F(x_n)} is Cauchy in W.

(b) Let X = C[a, b] with the norm given by $||x||_1 = \int_a^b |x(t)| dt$, $x \in X$. If k(.,.) is a continuous function on $[a, b] \times [a, b]$ and $F(x)(s) = \int_a^b k(s, t)x(t)dt$, $x \in X, s \in [a, b]$, then show that $F \in B(X)$ and $||F|| = \sup\{\int_a^b |k(s, t)| ds : t \in [a, b]\}$.

3. (a) Let X be a linear space over \mathbb{C} and f be a complex linear functional over X. Then Re(f) is a real linear functional on X, regarded as a linear space over \mathbb{R} . Show that

(i) Ref determines as follows: $f(x) = Re f(x) - i Ref(ix) x \in X$.

(ii) If |||| is a norm on X, then || Re(f) || = || f ||.

(b) Let X = C[0,1] with the supremum norm. Consider the sequence $x_n(t) = \frac{t^n}{n^4}$, $t \in [0,1]$. Check whether the series $\sum_{n=1}^{\infty} x_n$ is summable in X.

4. (a) Let X and Y be Banach spaces and A ∈ BL(X, Y). Show that there is a constant c > 0 such that || Ax ||≥ c || x || for all x ∈ X if and only if Ker(A) = {0} and Ran(A) is closed in X.

(b) Give an example to show that the completeness of the domain is an essential requirement in the Uniform Boundedness Principle.

(a) If A* is the adjoint of the operator A: H → H then show that || A ||=|| A* ||, where H is a Hilbert space.

(b) Let *H* be a Hilbert space and $E \subset H$. Prove that $\overline{span(E)} = E^{\perp \perp}$.

6. (a) Suppose X = C¹[0,1], i.e. the set of all functions f: [0,1] → C such that f' exists and is continuous. Let Y = C[0,1] and let X and Y be equipped with supremum norm. Define A: X → Y by Af = f'. Show that the graph of A is closed.

(b) Let $X = C^1[0, 1]$ equipped with the norm $||x|| = ||x||_{\infty} + ||x'||_{\infty}$ and Y = C[0, 1] equipped with the supremum norm. Check whether the linear operator $F: X \to Y$ defined by F(x) = x is continuous. Is *F* an open map?

7. (a) Let Y be a normed space and Y_0 be a dense subspace of Y. Suppose Z is a Banach space and $T \in BL(Y_0, Z)$. Prove that there exist a unique $\tilde{T} \in BL(Y, Z)$ such that $\tilde{T}|Y_0 = T$.

(b) If X is a normed space, M is a closed subspace of X, $x_0 \in X \setminus M$ and $d = dist(x_0, M)$, show that there is an $f \in X^*$ such that $f(x_0) = 1$, f(x) = 0 for all $x \in M$ and $||f|| = d^{-1}$.

8. (a) Let X and Y be Banach spaces and F: X → Y be linear. Let {g_s} ⊂ Y* such that for every nonzero y in Y, there is some s with g_s(y) ≠ 0. Prove that F is continuous if and only if g_s ∘ F is continuous for every s.

(b) Suppose $\{T_n: n = 1, 2, ...\} \subset BL(X, Y)$ is a sequence of bounded operators, where X is a Banach space and Y is anormed space, and suppose that the sequence $\{T_n x\}_{n=1}^{\infty}$ is a convergent sequence in Y, for each $x \in X$. Show that the equation $Tx = \lim_{n \to \infty} T_n x$ defines a bounded operator $T \in BL(X, Y)$.

9. (a) Let X and Y be inner product spaces. Then a linear map $F: X \to Y$ satisfies $\langle F(x), F(y) \rangle = \langle x, y \rangle$ for all $x, y \in X$ if and only if it satisfies ||F(x)|| = ||x|| for all $x \in X$, where the norms on X and Y are induced by the respective inner products.

(b) Let $P \in BL(H)$ be a nonzero projection on a Hilbert space H and ||P|| = 1. Then show that P is an orthogonal projection.

10. (a) Let $T_n \in BL(X, Y)$, $(n \ge 1)$ where X and Y are normed spaces. If $\{T_n x\}$ converges weakly in Y for every $x \in X$, then there exist unique $T \in BL(X, Y)$ such that $T_n \to T$ weakly.

(b) Let H, K be Hilbert spaces and $T_n (n \ge 1), T \in BL(H, K)$. Show that $T_n \to T$ strongly does not necessarily imply that $T_n^* \to T^*$ strongly. Here * denotes the adjoint of the corresponding operator.

11. (a) Let *H* be a (complex) Hilbert space, $T \in BL(H)$ and $\langle Tx, x \rangle = 0$ for all $x \in H$. Then show that T = 0. Also, give an example to show that this result is not true for real Hilbert space.

(b) Show that $Ran(T) = Ran(T^*)$ if $T \in BL(H)$ is normal and H is a Hilbert space.

12. (a) Let {u_α} be an orthonormal set in an inner product space X and x ∈ X. Show that the set G_x = {u_α: < x, u_α >≠ 0} is countable.

(b) Let X be an inner product space and $E \subseteq X$ be closed under scalar multiplication. Show that $x \perp E$ if and only if $dist(x, E) = ||x||, x \in X$.