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ABSTRACT 
Chen 2008, proposed a method for handling fuzzy risk analysis problems based on 
measures of similarity between interval-valued fuzzy numbers. In this paper, we proposed 
a method based on measures of similarity between generalized fuzzy numbers. In this 
method, the horizontal center-of-gravity, the perimeter, the height and the area of the two 
fuzzy numbers are considered and also the proposed approach is very simple and easy to 
apply in the real life problems. 
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1. Introduction 
The similarity measure of fuzzy numbers is very important in many research fields such as 
pattern recognition and risk analysis in fuzzy environment [5, 8]. Some methods have been 
presented to calculate the degree of similarity between fuzzy numbers Chen [1-4, 6]. Also, 
[7,9] proposed method with modified similarity measure of generalized fuzzy numbers. 
Rezvani [10] proposed a new similarity measure of generalized fuzzy numbers based on 
left and right apex angles. Moreover Rezvani [11-15] proposed ranking approach based on 
values and ambiguities of the membership degree and the non- membership degree for 
trapezoidal intuitionistic fuzzy number. 
Chen 2008 proposed a method for handling fuzzy risk analysis problems based on measures 
of similarity between interval-valued fuzzy numbers. This paper proposed a method based 
on measures of similarity between generalized fuzzy numbers. In this method, the 
horizontal center-of-gravity, the perimeter, the height and the area of the two fuzzy numbers 
are considered and also the proposed approach is very simple and easy to apply in the real 
life problems. Applications of different operators are discussed in [16-20]. 
 
2. Preliminaries 
Generally, a generalized fuzzy number A is described as any fuzzy subset of the real line 
R, whose membership function µA satisfies the following conditions, 
(i) µA is a continuous mapping from R to the closed interval [0,1], 

(ii) µA(x) = 0, -∞ < u ≤ a, 
(iii) µA(x) = L(x) is strictly increasing on [a, b], 
(iv) µA(x) = w, b ≤ x ≤ c, 
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(v) µA(x) = R(x) is strictly decreasing on [c, d], 
(vi) µA(x) = 0, d ≤ x <∞ 
where 0 < w ≤ 1 and a, b, c, and d are real numbers. We call this type of generalized fuzzy 
number a trapezoidal fuzzy number, and it is denoted bye A = (a, b, c, d; w). 

 
When w = 1, this type of generalized fuzzy number is called normal fuzzy number and 

is represented by A = (a, b, c, d). 
The membership function : R → [0, 1] is defined as follows: 

               (1) 
 

where a ≤ b ≤ c ≤ d and w ∈ [0, 1]. 
 
2.1. Arithmetic operations 
In this section, addition and subtraction between two trapezoidal fuzzy numbers, defined 
on universal set of real numbers R. Let � =  (��,  	�,  
�,  ��;  
�)  and B = (��,  	�,  
�,  ��;  
�)be two trapezoidal fuzzy number, then 
 
i) A ⊕ B = (a1 + a2, b1 + b2, c1 + c2, d1 + d2; min {w1, w2}), 
 
ii) A B = (a1 - d2, b1 - c2, c1 - b2, d1 - a2; min {w1, w2}), 
 
iii) A B = (a1/d2, b1/c2, c1/b2, d1/a2; min {w1, w2}), 
 
iv) A⊗ B = (a1 × a2, b1 × b2, c1 × c2, d1 × d2; min {w1, w2}). 
 
3. Approach 
In this section some important results, that are useful for the proposed approach, are proved. 
Jiang Wen 2011 proposed the concept of the method to calculate the degree of similarity 
between generalized fuzzy numbers. In this method, the horizontal center-of-gravity, the 
perimeter, the height and the area of the two fuzzy numbers are considered. 
 
Suppose that A1 = (a1, b1, c1, d1; w1) and A2 = (a2, b2, c2, d2; w2) be the generalized 
trapezoidal fuzzy numbers, where 0 ≤ a1 ≤ b1 ≤ c1 ≤ d1 ≤ 1 and 0 ≤ a2 ≤ b2 ≤ c2 ≤ d2 ≤ 1. 
Then the degree of similarity S(A1, A2) between the generalized trapezoidal fuzzy numbers 
A1 and A2 is calculated as follows: 

 
(2) 

 
where x∗��  is the horizontal center-of-gravity of the generalized trapezoidal fuzzy 
numbers A1 is calculated as follows: 
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x∗�� = �∗��(�����)�(�����)������∗�� ����                                          (3) 

 !(��) is the perimeters of two generalized trapezoidal fuzzy numbers which are calculated 
as follows: !(��) = "(�� − 	�)� + 
%� � + "(
� − ��)� + 
%� � + (
� − 	�) + (�� − ��)    (5) �(��)is the areas of two generalized trapezoidal fuzzy numbers which are calculated as 
follows: 

 �(��) = �� 
%�(
� − 	� + �� − ��)                       (6) 

 
The larger the value of S (A1, A2), the more the similarity measure between two 

generalized trapezoidal fuzzy numbers A1 and A2. 
 
3. A similarity measure between generalized fuzzy numbers 
In this section, we propose a similarity measure to calculate the degree of similarity 
between generalized fuzzy numbers. Suppose that A1 = (a1, b1, c1, d1; w1) and A2 = (a2, b2, 
c2, d2; w2) be the generalized trapezoidal fuzzy numbers. where 0 ≤ a1 ≤ b1 ≤ c1 ≤ d1 ≤ 1 
and0 ≤ a2 ≤ b2 ≤ c2 ≤ d2 ≤ 1. 
 
Step 1: 
 x∗�� and x∗�& are the horizontal center-of-gravity of the generalized trapezoidal fuzzy 
numbers A1 and A2 is calculated as follows: 
 

x∗�� = �∗��(�����)�(�����)������∗�� ����                          (7) 

y∗�� = ( ����)�*+�,�*-��� 
.                 if                 a�? d�  and 0 < w�� = 1����                                if                 a� = d�  and 0 < w�� = 1                  

(8) 
and 

 x∗�& = �∗�&(����&)�(�&��&)���&��∗�& ���&                 (9) 

y∗�& = ( ��&�)&*+&,&*-&�� .                 if                 a�? d�  and 0 < w�& = 1��&�                                if                 a� = d�  and 0 < w�& = 1      (10) 

P(A1) and P(A2) are the perimeters of two generalized trapezoidal fuzzy numbers which are 
calculated as follows: 

 

!(��) = "(�� − 	�)� + 
%� � + "(
� − ��)� + 
%� � + (
� − 	�) + (�� − ��)       (11) 
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!(��) = "(�� − 	�)� + 
%& � + "(
� − ��)� + 
%& � + (
� − 	�) + (�� − ��)      (12) 

 
A(A1) and A(A2) are the areas of two generalized trapezoidal fuzzy numbers which are 
calculated as follows: �(��) = �� 
%�(
� − 	� + �� − ��)                               (13) �(��) = �� 
%&(
� − 	� + �� − ��)                               (14) 

 
Step 2: 
The degree of similarity S (A1, A2) between the generalized trapezoidal fuzzy numbers A1 
and A2 is calculated as follows: 

 
         (15) 

The larger the value of S (A1, A2), the more the similarity measure between two generalized 
trapezoidal fuzzy numbers A1 and A2.The proposed similarity measure between generalized 
fuzzy numbers has the following properties. 
 
Theorem 1. Two generalized fuzzy numbers A1 = (a1, b1, c1, d1; w1) andA2 = (a2, b2, c2, d2; 

w2) are identical if and only if S (A1, A2) = 1. 

 
Proof: If A1 and A2 are identical, then 

 
a1 = a2, b1 = b2, c1 = c2, d1 = d2; w1 = w2. 

 
We have 

x∗�� = y∗��(c� + b�) + (d� + a�) �w�� − y∗�� 2w��  

y∗�� =
⎩⎪⎨
⎪⎧w�� �c� − b�d� − a� + 2 6                 if                 a� ≠ d�  and 0 < w�� ≤ 1w��2                                          if                 a� = d�  and 0 < w�� ≤ 1  

x∗�& = y∗�&(c� + b�) + (d� + a�) �w�& − y∗�& 2w�&  

y∗�& =
⎩⎪⎨
⎪⎧w�& �c� − b�d� − a� + 2 6                 if                 a� ≠ d�  and 0 < w�& ≤ 1w�&2                                          if                 a� = d�  and 0 < w�& ≤ 1  

and !(��) = "(�� − 	�)� + 
%� � + "(
� − ��)� + 
%� � + (
� − 	�) + (�� − ��) 
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!(��) = "(�� − 	�)� + 
%& � + "(
� − ��)� + 
%& � + (
� − 	�) + (�� − ��) 
and 

 �(��) = 12 
%�(
� − 	� + �� − ��) 
�(��) = 12 
%&(
� − 	� + �� − ��) 

So 
S (A1, A2) = [1- | 0 |] × [1- | 0 |] × 1 = 1. 
 
Overhand 
 
If S (A1, A2) = 1, we have of Eq (15) 
 S(A�, A�) = E1 − Fx∗�� − x∗�&FG × E1 − Fw�� − w�&FG

× minJP(A1), P(A2)L + minJA(A1), A(A2)LmaxJP(A1), P(A2)L + maxJA(A1), A(A2)L = 1 

It implies that 
 

a1 = a2, b1 = b2, c1 = c2, d1 = d2; w1 = w2. 
 

Therefore, A1 and A2 are identical. 
 
Theorem 2. S (A1, A2) = S (A2, A1) . 
Proof: 
 S(A�, A�) = E1 − Fx∗�� − x∗�&FG × E1 − Fw�� − w�&FG

× minJP(A1), P(A2)L + minJA(A1), A(A2)LmaxJP(A1), P(A2)L + maxJA(A1), A(A2)L = 1 

S(A�, A�) = E1 − Fx∗�& − x∗��FG × E1 − Fw�& − w��FG
× minJP(A2), P(A1)L + minJA(A2), A(A1)LmaxJP(A2), P(A1)L + maxJA(A2), A(A1)L = 1 

where 
 Fx∗�� − x∗�&F = Fx∗�& − x∗��F, Fw�� − w�&F = Fw�& − w��F, 

min(P(A1), P(A2)) = min(P(A2), P(A1)) , 
min(A(A1), A(A2)) = min(A(A2), A(A1)) , 
max(P(A1), P(A2)) = max(P(A2), P(A1)) , 
max(A(A1), A(A2)) = max(A(A2), A(A1)) , 

 
Therefore, we can see that S (A1, A2) = S (A2, A1) . 
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Theorem 3. If A1 and A2 are two real numbers, then S(A1, A2) = 1- |a1 - a2 | . 
Proof: If A1 and A2 are two real numbers, then we can see that 
 

A1 = (a1, b1, c1, d1; w1) = (a1, a1, a1, a1; 1) = a1 
 

and 
A2 = (a2, b2, c2, d2; w1) = (a2, a2, a2, a2; 1) = a2 

 
Based on formulas (8) and (10), we can see that 
 
If a1 = d1 and a2 = d2, so y∗�� = y∗�& = �� . 

So 

x∗�� = 12 (2a�) + (2a�) �1 − 12 2 = a� , 
x∗�& = 12 (2a�) + (2a�) �1 − 12 2 = a� , 

And 
 !(��) = M(a� − a�)� + 1 + M(a� − a�)� + 1 + (a� − a�) + (a� − a�) = 2 , !(��) = M(a� − a�)� + 1 + M(a� − a�)� + 1 + (a� − a�) + (a� − a�) = 2 , 

And 
 �(��) = 12 (�� − �� + �� − ��) = 0 , 

�(��) = 12 (�� − �� + �� − ��) = 0 , 
 
Based on formulas (15), we can see that S(A�, A�) = ⟦1 − |�� − ��|⟧ × ⟦1 − |1 − 1|⟧ × min(2,2) + min(0,0)max(2,2) + max(0,0) = 1 − |�� − ��|  . 
 
4. Results 
In this section, we use three examples to illustrate the process of calculating the degrees of 
similarity between generalized fuzzy numbers. 
 
Example 1. Assume that there are two generalized fuzzy numbers A1 and A2, where 

 
A1 = (0.1, 0.2, 0.3, 0.4; 0.5), 

 
A2 = (0.4, 0.5, 0.6, 0.7; 0.5). 

 
Step 1: 

	R
�STR �� ≠ �� ⟹ y∗�� = 0.5 �0.10.3 + 2 6 = 0.194 
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	R
�STR �� ≠ �� ⟹ y∗�& = 0.5 �0.10.3 + 2 6 = 0.194 

 
and x∗�� = 0.194(0.5) + (0.5)(0.5 − 0.194)2(0.5) = 0.25 , 

x∗�& = 0.194(1.1) + (1.1)(0.5 − 0.194)2(0.5) = 0.55 , 
and 
 !(��) = M(−0.1)� + (0.5)� + M(−0.1)� + (0.5)� + (0.1) + (0.3) = 1.42 , !(��) = M(−0.1)� + (0.5)� + M(−0.1)� + (0.5)� + (0.1) + (0.3) = 1.42 

 
And �(��) = 12 (0.5)(0.3 − 0.2 + 0.4 − 0.1) = 0.1 , 

�(��) = 12 (0.5)(0.6 − 0.5 + 0.7 − 0.4) = 0.1 

 
Step 2; The degree of similarity S (A1, A2) between the generalized trapezoidal fuzzy 
numbers A1 and A2 is calculated as follows: 
 S(A�, A�) = ⟦1 − |0.25 − 0.55|⟧ × ⟦1 − |0.5 − 0.5|⟧ × min(1.42,1.42) + min(0.1,0.1)max(1.42,1.42) + max(0.1,0.1)= 0.7  .  
 
Example 2. Assume that there are two generalized fuzzy numbers A1 andA2, where 

 
A1 = (0.1, 0.2, 0.3, 0.4; 1), 

 
A2 = (0.4, 0.5, 0.6, 0.7; 1). ∗Step 1 

	R
�STR �� ≠ �� ⟹ y∗�� = �0.10.3 + 2 6 = 0.39 

	R
�STR �� ≠ �� ⟹ y∗�& = �0.10.3 + 2 6 = 0.39 

 
And 

 x∗�� = 0.39(0.5) + (0.5)(1 − 0.39)2 = 0.25 , 
x∗�& = 0.39(1.1) + (1.1)(1 − 0.39)2 = 0.55 , 

And 
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 !(��) = M(−0.1)� + 1 + M(−0.1)� + 1 + (0.1) + (0.3) = 2.41 , !(��) = M(−0.1)� + 1 + M(−0.1)� + 1 + (0.1) + (0.3) = 2.41 
 

And 
 �(��) = 12 (0.3 − 0.2 + 0.4 − 0.1) = 0.2 , 

�(��) = 12 (0.6 − 0.5 + 0.7 − 0.4) = 0.2 

 
Step 2: The degree of similarity S (A1, A2) between the generalized trapezoidalfuzzy 
numbers A1 and A2 is calculated as follows: 
 S(A�, A�) = ⟦1 − |0.25 − 0.55|⟧ × ⟦1 − |1 − 1|⟧ × min(2.41,2.41) + min(0.2,0.2)max(2.41,2.41) + max(0.2,0.2)= 0.7  .  
 
Example 3. Assume that there are two generalized fuzzy numbers A1 andA2, where 

 
A1 = (0.1, 0.2, 0.3, 0.4; 1), 

 
A2 = (0.4, 0.5, 0.6, 0.7; 0.5). 

 
Step 1: 

	R
�STR �� ≠ �� ⟹ y∗�� = �0.10.3 + 2 6 = 0.39 

	R
�STR �� ≠ �� ⟹ y∗�& = (0.5) �0.10.3 + 2 6 = 0.194 

 
And 

 x∗�� = 0.39(0.5) + (0.5)(1 − 0.39)2 = 0.25 , 
x∗�& = 0.194(1.1) + (1.1)(1 − 0.194)2(0.5) = 0.55 , 

 
And 
 !(��) = M(−0.1)� + 1 + M(−0.1)� + 1 + (0.1) + (0.3) = 2.41 , !(��) = M(−0.1)� + (0.5)� + M(−0.1)� + (0.5)� + (0.1) + (0.3) = 1.42 

 
And 
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�(��) = 12 (0.3 − 0.2 + 0.4 − 0.1) = 0.2 , 
�(��) = 12 (0.5)(0.6 − 0.5 + 0.7 − 0.4) = 0.1 

 
Step 2: the degree of similarity S (A1, A2) between the generalized trapezoidal fuzzy 
numbers A1 and A2 is calculated as follows: 
 S(A�, A�) = ⟦1 − |0.25 − 0.55|⟧ × ⟦1 − |1 − 0.5|⟧ × min(2.41,1.42) + min(0.2,0.1)max(2.41,1.42) + max(0.2,0.1)= 0.7  .  
 
6. Conclusion 
In this paper, a method based on measures of similarity between generalized fuzzy numbers 
is proposed. In this method, the horizontal center-of-gravity, the perimeter, the height and 
the area of the two fuzzy numbers are considered and also the proposed approach is very 
simple and easy to apply in the real life problems. 
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