
Journal of Physical Sciences, Vol. 25, 2020, 21-30 
ISSN: 2350-0352 (print), www.vidyasagar.ac.in/publication/journal 
Published on 16 October 2020 
 

21 
 

Mixed Fractional CEV Model with Stochastic Volatility 
and the Pricing of European Options 

Yudong Sun1 and Xie Wanshan2 
1School of Business, Guizhou Minzu University, Guiyang GuiZhou, 550025 China  

Email: yudongsun@yeah.net 
2School of Data Science and Information Engineering, Guizhou Minzu University, 

Guiyang 550025, China 
Email: 1719140947@qq.com 

Received 28 April 2020; accepted 31 August 2020 

ABSTRACT 
In this work, we study the existence, uniqueness and continuity of solution to tock price 
equation of CEV model with stochastic volatility in fixed fractional Brown motion. 
Besides, we show a Monte Carlo simulation based on the discretization method to price 
the European option. 
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1. Introduction 
Empirical evidences have shown that the volatility of market is not constant and its 
behavior is stochastic [1,2]. Many scholars paid attentions to the stochastic volatility (SV, 
for short) models which mainly include two situations. On the one hand, some studies use 
the functions of some stochastic process to describe the volatility [3]. On the other hand, 
some scholars introduce an additional Brown motion to character the stochastic parts of 
financial models. In this paper, we focus on the second case.  

Hull and White in [4] introduced the SV models which were also developed by 
many scholars. Models in the category of ‘‘stochastic volatility’’ were first systematically 
studied by [5,6,7] with numerical methods. Specifically, Monte Carlo simulation was 
adopted by [5,6], while Wiggins proposed that the finite difference method be adopted in 
solving the corresponding PDEs for pricing financial derivatives, such as options[7]. 

The theoretical development of SV models was introduced in [8] where the authors 
studied the equation 

1

0 2

d ( ) ( )d ( ) ( )d ( ) ( )d ( )

d ( ) ( ( ))d ( ( ))d ( )

S t rS t t v t S t B t S t J t

v t v t t v t B t

σ
κ θ σ

 = + +


= − +
                               (1) 

whose stochastic parts added a Levy process { ( ), 0}J t t ≥ . Here r , σ ,κ ,θ ,σ and 0σ  

are constants,1( )B t and 2 ( )B t  are standard Brown motions with assumption that 

1( )B t , 2( )B t  and ( )J t  are mutually independent. The existence and uniqueness of a 
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strong solution to (1) were studied. Later, some pL  estimates were proved of (1) [9].  
Unfortunately, all the SV model mentioned above are characted by Brown motion in 

which the increments follow the independent norm distribute. Many scholars argue that 
the returns of risky assets have long-range dependence properties which are expressed by 
increment of financial models. Regardless of the dependence in financial modeling, using 
Brown motion to express the stochastic parts may have some serious disadvantages [10]. 

Recently, scholars have paid their attentions to fractional Brown motion, and used it 
to character the stochastic parts of risky assets models, because the increments of 
fractional Brown motion have the self-similarity and long-range dependence properties. 
We refer the reader to [11] for the motivation and references concerning the study of 
fractional Brown motion. 

In this paper, we use Mixed fractional Brown motion (mfbm) which is a linear 
combination of Brown motion and fractional Brown motion to driven the following stock 
price equation of CEV model 

1d ( ) ( )d ( ) ( ) d ( )HS t rS t t v t S t M tα= + ,                                        (2) 
where the variance process { ( ), 0}v t t ≥ driven by another mfbm satisfies 

2d ( ) ( ( ))d ( ( ))d ( )Hv t v t t v t M tβ σ= + ,                                         (3) 
2 2

1 2d ( ) d ( ) (d d )H H HM t M t t tρ λ⋅ = + .                                         (4) 

Here 1 ( )HM t  and 2 ( )HM t are two mfbm processes whose concept and relative 
conclusions will be given later, r  is the (constant) interest rate. The main goal of this 
work is to investigate the existence, uniqueness and continuity of solutions to the 
dynamic model (2)-(4). The existence and uniqueness are followed in Section 2. In 
Section 3, the continuity of solution to the dynamic model (2)-(4) is studied. European 
option is priced using discrete type of (2)-(4) and Monte-Carlo simulation. 
 
2. The existence and uniqueness  
Letλ andH be positive constants, 0λ ≥ , (0,1)H ∈ . A mixed fractional Brownian motion 
with parametersλ andH is a linear combination of standard Brownian motion and 
fractional Brownian motion, 

( ) ( )H H
tM B t B tλ= + , 

where { ( ), 0}B t t ≥  is a Brownian motion, { ( ), 0}HB t t ≥  is an independent fBm of the 
Hurst parameterH [11]. 

We give the following lemmas with respect to mfBm which are used to prove our 
main results (for details, see [12]). 
 
Lemma 2.1. A mfBm satisfy the following conditions 
1. The paths of HM are continuous and0 0HM = . 

2. [ ] 0H
tE M = and 2 2[ ]H H

tE M t tλ= + , for any 0t ≥ . 

3. The increments of HM  are stationary. 
 
Lemma 2.2. Suppose that H H

t t tM B Bλ= + is a mfBm process. Then, the path of the 
process is γ -Holder continuous such that 0.5 Hγ < ∧ . 
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Lemma 2.3. A mfBm process with (0.75, 1)H ∈ has long-range dependence. 
 
Lemma 2.4. Let H

tM  be a mfBm process with Hurst parameter H (0.75,1)∈  and 

Rλ ∈ , then H
tM  and tBλ are locally equivalent. 

According to Lemma 2.4, H
tM  is equivalent to tBλ . This process is suitable to 

display the random part of the financial model. 
In this section, we prove the existence and uniqueness of solution for the mixed 

Heston model. To do this, we extend the idea of [13] for mixed stochastic differential 
equation. 
 
Definition 2.1. For anys t< , suppose ([ , ])C s t denotes the Banach space of continuous 
functions equipped with the supremum norm we denote by ,s tf� � ,  ([ , ])f C s t∈  with 

                     , , sup{| ( ) |, }s tf f r s r t∞ = ≤ ≤� � . 

The space of Holder continuous functions of order β > 0 is denoted by ([ , ])C s tβ and its 
norm is 

| ( ) ( ) |
, , sup{ , }

| |

f u f
f s t s u t

u β
νλ ν

ν
−= ≤ < <

−
� � . 

 
Theorem 2.1. The volatility equation of the mixed CEV model has a unique positive 
solution tv  where [0, )t T∈ and inf{ 0 | 0}tT t X= > = . 
Proof: First, we confirm the existence of solution for relevant equation. In order to do, 
we define 0

0tY v= and ( ) ( ) ( )k k
t tY Y ω= inductively as follows 

  ( 1) ( ) ( )
0 0 0

( )d ( )d
t tk k k H

t t t sY v Y s Y Mβ σ+ = + +  .                                    (5) 

Therefore 
22( 1) ( ) ( ) ( 1) ( ) ( 1)

0 0
[ ] [ ( ) ( )d ( ) ( )d ]

t tk k k k k k H
t t t t t t sE Y Y E Y Y s Y Y Mβ β σ σ+ − −− = − + −  . 

We know that 1( ) 2 ( )n n n na b a b−+ ≤ + ,so  
2 22( 1) ( ) ( ) ( 1) ( ) ( 1)

0 0
[ ] 2 [ ( ) ( )d ] 2 [ ( ) ( )d ]

t tk k k k k k H
t t t t t t sE Y Y E Y Y s E Y Y Mβ β σ σ+ − −− ≤ − + −  .      (6) 

Using the Holder inequality, one derives 
2

( ) ( 1) ( ) ( 1) 2 ( ) ( 1) 2
10 0 0

[ ( ) ( )d ] [| ( ) ( ) | ]d [| | ]d
t t tk k k k k k

t t t t t tE Y Y s t E Y Y s tM E Y Y sβ β β β− − −− ≤ − ≤ −   .  (7) 

 
Here 1M  is the Lipschitz coefficients related to the β . Next we pay attention to 

2
( ) ( 1)

0
[ ( ) ( )d ]

t k k H
t t sE Y Y Mσ σ −− . Using the Ito lemma , we obtain 

2
( ) ( 1) 2 2 1 ( ) ( 1) 2

0 0

2 2 1 ( ) ( 1) 2
2 0

[ ( ) ( )d ] ( ) [| ( ) ( ) | ]d

( ) [| | ]d .

t tk k H H k k
t t s t t

tH k k
t t

E Y Y M t E Y Y s

t M E Y Y s

σ σ λ β β

λ

− − −

− −

− ≤ + −

≤ + −

 


             (8) 
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The integral w.r.t. the Wiener process { ( ), 0}B t t ≥ is understood as the Ito integral, while 
that w.r.t. the process { ( ), 0}HB t t ≥  as Wick integral. Now, putting together (6), (7), and 
(8), we have 

2( 1) ( ) ( ) ( 1) 2

0
[ ] [| | ]d

tk k k k
t t t tE Y Y M E Y Y s+ −− ≤ − ,                                   (9) 

where 2 2 1
1 22 2( )HM tM t Mλ −= + + . 

Next we pay attention to
2(1)

1 0[ ]th E Y v= − . Taking 0k =  in (5), one obtains  
2 2

1 0 0 0 00 0 0
[ ( )d ( )d ] [ ( ) ( )d ]

t t tH H
s sh E v s v M E v t v Mβ σ β σ= + = +   . 

Now we use 1( ) 2 ( )n n n na b a b−+ ≤ +  and Ito lemma to obtain 
2 22 2 2

1 0 0 32 [ ( ) ] 2( ) [ ( ) ]Hh t E v t t E v M tβ λ σ≤ + + ≤ , 

where the constant 3M  depends on λ , C, T , 2

0[ ( ) ]E Yβ  and 2

0[ ( ) ]E Yσ . Accordingly, 

by induction on k  we obtain 
1

2( 1) ( ) 3
1 [ ]

( 1)!

k k
k k

k t t

M M t
h E Y Y

k

+
+

+ = − ≤
+

. 

Thus, the sequence 1 1 1
0

( )
k

k i i
i

h h h h+ +
=

= + − is absolutely convergent with the 2L norm. 

Hence, the existence is proved. 
We now show that the solution of (3) is unique. Suppose ( , )Y t ω  and ( , )Z t ω  

satisfy (3), (0, )Y Yω =  and (0, )Z Zω = . Therefore, 
2 2

0 0
[| ( , ) ( , ) | ] [| ( ( , )) ( ( , ))d ( ( , )) ( ( , ))d | ]

t t H
sE Y t Z t E Y Z Y s Z s s Y s Z s Mω ω β ω β ω σ ω σ ω− = − + − + − 

 
We may use Young’s inequality to obtain  

( ) ( )
2

2 2
2

0 0

[| ( , ) ( , ) | ]

3 [| | ] 3 [ ( ( , )) ( ( , ))d ] 3 [ ( ( , )) ( ( , ))d ].
t t H

s

E Y t Z t

E Y Z E Y s Z s s E Y s Z s M

ω ω

β ω β ω σ ω σ ω

−

≤ − + − + − 
 

(10) 
Following the similar proof of (7) and (8), we obtian 

( )2
2

10 0
[ ( ( , )) ( ( , ))d ] [| ( , ) ( , ) | ]d

t t
E Y s Z s s tM E Y s Z s sβ ω β ω ω ω− ≤ −  ,                 (11) 

( )2
2 2 1 2

20 0
[ ( ( , )) ( ( , ))d ( ) [| ( , ) ( , ) | ]d

t tH H
sE Y s Z s M t M E Y s Z s sσ ω σ ω λ ω ω−− ≤ + −  .       (12) 

Substituting (11) and (12) into (10) and letting 2 2 1
1 23 3( )HM tM t Mλ −= + +  yeild  

2 2 2

0
[| ( , ) ( , ) | ] 3 [| | ] [| ( , ) ( , ) | ]d

t
E Y t Z t E Y Z M E Y s Z s sω ω ω ω− ≤ − + − . 

Using Gronwall inequality, we have 
2 2[| ( , ) ( , ) | ] 3 [| | ]exp{ }E Y t Z t E Y Z Atω ω− ≤ − . 

The uniqueness of solution can be proved using 
(0, ) (0, )Y Y Z Zω ω= = = . 

Consequently, the theorem is proved.□ 
Next, we will derive pL estimate for the solution of the volatility equation under 
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appropriate hypotheses on the functions of β  and σ  in which the restriction are 
weaker than that present in [10]. 
 
Assumption 1. There exists a positive function 2( ) ([0, ])M t L T∈ , such that for any x R∈ , 

max{| ( ) |,| ( ) |} ( )(1 | |)x x M t xβ σ ≤ + . 
 
Lemma 2.1. Assume that Assumption 1 holds, and Let 0T >  be fixed. Then for any 
positive constant ( , , )C C x T p= , we have  

0 ,
[0, ]

[ sup ( ) ]
p

S i
t T

E X t C
∈

≤ .                                                 (13) 

Proof:  Let inf{ 0,| ( ) | }N t v t Nτ = ≥ > . Since 

0 0 0
( ) ( ( ))d ( ( ))d

N Nt t H
N sv t v v s s v s M

τ τ
τ β σ

∧ ∧
∧ = + +  . 

Using Young’ s inequality, we have for any 2p ≥  that 
1

0 1 2( ) 3 (| | )
p p pv t v A A−≤ + + ,                                            (14) 

where 1 0
( ( ))d

N
pt

A v s s
τ

β
∧

=  , 2 0
( ( ))d

N
pt H

sA v s M
τ

σ
∧

=  . Now, we compute 1A  and 2A . 

Using Holder inequality, and lettingmax 1 2max{| |, | |}µ µ µ= , we have 

1 0 0[0, ] [0, ]
[ ] [ sup ( ( ))d ] [ sup ( ) 1 | | d ]

N N
pt t p

t T t T

E A E v s s E M t x s
τ τ

µ
∧ ∧

∈ ∈
≤ ≤ +  . 

Note that for any [0, ]Ns t τ∈ ∧ , | ( ) |v s N≤ . Therefore, 

1 0[0, ]
[ ] [ sup ( ) 1 d ]

Nt p

t T
E A E M t N s

τ∧

∈
≤ + .                                       (15) 

Following similar proof which was performed for (14), we obtain 

0

22
, 2 0[0, ]
[ ] [ sup ( ) 1 d ]

Nt p

S i
t T

E A E M t N s
τ∧

∈
≤ + ,                                    (16) 

where max 1 2max{ , }σ σ σ= . Substituting (15) and (16) into (14), and letting 
22

1 0 0 0[0, ] [0, ]
[| | ] [ sup ( ) 1 | | d ] [ sup ( ) 1 d ]

T Tp pp

t T t T
C E v E M t x s E M t N s

∈ ∈
= + + + +  , 

we obtain 

0

1
, 1

[0, ]
sup [ ( ) ] 3

p p
S i N

t T
E v t Cτ −

∈
∧ ≤ , 2p ≥ .                                       (17) 

Letting N → ∞ , by Fatou’s lemma one finds that 

0

1
, 1

[0, ]
sup [ ( ) ] 3

p p
S i

t T
E v t C−

∈
≤ , 2p ≥ .                                          (18) 

Second, we prove that (13) still holds for any 1 2p≤ < .Using Cuachy inequality, 

obtains 
1

1 22 22

[0, ]
[ ( ) ] [ ( ) ] sup [ ( ) ]

p p p

t T
E v t E v t E v t

∈

 ≤ ≤  
 

.                                  (19) 

Note that2 2p ≥ , and using (18) obtains 
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0 , 0[ ( ) ] ( , , )
p

S iE v t C S T p≤ . 

Because [0, ]t T∈  is arbitrary, (13) is proved when1 2p≤ < . 
Finally, if 0 1p< < , note that 

1

{ ( ) 1} { ( ) 1} { ( ) 1} { ( ) 1}( ) ( ) ( ) ( ) ( )
p p p p p

v t v t v t v tv t v t I v t I v t I v t I
+

≥ < ≥ <= + ≤ + . 

Further we have 
1 1

{ ( ) 1}( ) ( ) 1 ( ) 1
p p p

v tv t v t I v t
+ +

≥≤ + ≤ + . 

Hence it follows from the case 0 1p< <  

0
[0, ]

sup [ ( ) ] ( , , ) 1
p

t T
E v t C v T p

∈
≤ + . 

This completes the proof of the lemma□ 
By following the proof of Theorem 2.1 and Lemma2.1 for Stock price equation can 

prove the following lemma. 
 
Lemma 2.2. Stock price equation of CEV model has a unique solution In the case that 

( )β ⋅  and ( )σ ⋅  satisfies Assumption 1, then  

0 0
[0, ]

sup [ ( ) ] ( , , , )
p

t T
E S t C v S T p

∈
≤ . 

 
3. Continuity  
In this section, we are going to discuss the continuity to Stock price equation of CEV 
model.  
 
Theorem 3.1. Stock price process of CEV model { ( ), 0}S t t ≥ is continuous. 
Proof: Note that for any0 s t T≤ < ≤ , 

( ) ( ) ( )d ( ) ( ) d
t t H

ss s
S t S s S s s v s S s Mαµ− = +  . 

Using Holder inequality 
4 3

3 4( ) ( ) 2 2S t S s A A− ≤ + ,                                               (20) 

where 
4

3 ( ( )) ( )d
t

s
A s S s sµ α=  ,

4

4 ( ( )) ( )d ( )
t

s
A s S s w sσ α=  . It follows by Cauchy inequality, 

( )4 2
2

( )d ( ) d
t t

s s
S s s S s s≤  . Therefore 

4
4 4 2 4 22 2

3[ ] [ ( )d ] [( ( ) d ) ] [ ( ) d ]
t t t

s s s
E A E S s s E S s s E S s sµ µ µ≤ ≤ ≤   . 

Using Cauchy inequality again, we obtain 

( )2
4 2

3[ ] [ ( ) ]d
t

s
E A E S s sµ≤  . 

It follows by (19) that 
4 22

3[ ]E A C t sµ≤ − .                                                  (21) 

Now we pay attention to 4[ ]E A . Using Cauchy inequality, we obtain 
4 2

2
4[ ] [ ( ) ( ) d ( ) ] [ ( )d ( ) ]

t t

s s
E A E v s S s w s E S s w sα≤ ≤  . 
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We may use Ito lemma and Holder inequality to arrive at 

( ) ( )2 2
2 2 4 4

4[ ] [ ( ) ( ) ]d [ ( ) ] [ ( ) ]d
t t

s s
E A E v s S s s E v s E S s sα α≤ ≤  . 

It follows by (13) and (19) that 
22

4[ ]E A C t s≤ − .                                                     (22) 

Substituting (21) and (22) into (20),yeilds 
4 22[ ( ) ( )E S t S s C t s− ≤ −]  .                                            (23) 

Therefore, the theorem is proved.□ 
 
4. Option pricing 
In this section, we consider the following European call option with 

terminal payoff max{ ( ) }S T K= − . 
Here K  is the strike price and ( )S T  is the terminal price of the underlying asset 
following extended Heston model 

1d ( ) ( )d ( ) ( )d ( )HS t rS t t v t S t B t= + ,                                         (24) 

0 2d ( ) ( ( ))d ( )d ( )Hv t v t t v t B tκ θ σ= − + ,                                      (25) 
2

1 2d ( ) d ( ) dH H HB t B t tρ⋅ = ,                                                (26) 
which is special case of model (1.1)-(1.3) if 

0λ = , ( ( )) ( ( ))v t k v tβ θ= − , 0( ( )) ( )v t v tσ σ= . 
From the risk-neutral valuation principle, the price of European call option at time t  can 
be written as 

( )( , ( )) exp{ ( )} [max{ ( ) }]S tc t S t r T t E S T K= − − − , 

   Now we are going to describe the time discretization of the SDE (24)-(25). First 
the time interval [0, ]T  is divided intoN time steps, with t T N∆ =  and nt n t= ∆ , 

0,1,2, ,n N= ⋯ . Let{ }nS and{ }nv be approximation of { ( )}S t  and{ ( )}v t at time level nt  
respectively. The implementation of discretization to (24) and (25) produces 

1,
1 0  , (0)H

n n n n n nS S rS t v S B S S+ = + ∆ + ∆ = ,                                    (27) 
2,

1 0 0  (   ) , (0)H
n n n n n nv v v t v B v vκ θ σ+ = + − ∆ + ∆ = ,                             (28) 

where 1   k k kt t t+∆ = − , 1,
1 1 1( ) ( )H H H

n n nB B t B t+∆ = −  and 2,
2 1 2( ) ( )H H H

n n nB B t B t+∆ = − .  
Since the closed-form solution for the extended Heston model has not been found 

yet, we consider the numerical computations in this section. Thus, for European call 
( )

1

1
ˆ ( , ( )) exp{ ( )} max{ ,0}

M
k

M N
k

c t S t r T t S K
M =

= − − − ,                             (29) 

where ( )k
NS  is the k th simulation of NS . 

 
Example 1. If 0κ = , 0 0σ = , the value of European call has the closed form 

1 2( , ( )) ( ) ( ) exp{ ( )} ( )c t S t S t d K r T t d= Φ − − − Φ ,                                (30) 
where 
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2 2
0

1 2 2
0

1
ln( ( )) ln( ) ( ) ( )

2

( )

H H

H H

S T K r T t v T t
d

v T t

− + − + −
=

−
, 2 2

2 1 0( )H Hd d v T t= − − . 

Here we compare the value of European call obtained using Scheme (27)-(29) with (30). 
Consider an European call with parameters 1T = , 0.5t = , 0.05r = , ( ) 110S t = , 

100K = , 0 0.3v = , 0λ = and 0.5H = . Let {100,200,300, ,10000}M ∈ ⋯ , the curve of the 
European call is plotted in Fig1 with 20N = . From the Fig1, we see that 
ˆ ( , ( ))Mc t S t converges to ( , ( ))c t S t  as M → ∞ . Let {90,91, ,150}S ∈ ⋯ , Fig2 shows 
accurate approximations for large numbers M (Here we set 20000M = ) and the 
relationship between asset price S  and the values of European call. 

 
Figure 1: European call for different value of M  

 
Figure 2: European call for different value of S  

 
The next example shows the effect on values of European call is obvious by the 
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volatility equation. 
 
Example 2. Here the parameters for European call are 1T = , 0.5t = , 0.05r = , 

( ) 110S t = , 100K = , 0 0.3v = , 0λ = , 0.5H = , 20000M = and 20N = . Let 
{0.05,0.1,0.15, ,0.50}θ ∈ ⋯ , Fig3 reports the relationship between θ  and the values of 

European call with 1κ = , 0 0.1σ = . Further, the value of European call computed by (29) 

for different value of 0σ  is plotted in Fig 4.The relationship between the values of 
European call and 0σ  showed an U - shaped curve. 

 

 
Figure 3: European call for different value of θ  

 
Figure 4: European call for different value of 0σ  
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