Chapter 9

A Multi-Objective Solid
Transportation Problem with
Discount and Two-level Fuzzy

Programming Technique

9.1 Introduction

In the third world countries like India, China, Nepal, etc, where there is a different com-
petition amongst the companies to win over the maximum possible market, it is common
practice of the transportation managers is that, the companies offer discount to the users
on the unit transportation cost for the orders of more quantities. Such all units discount
policy already have been introduced in different area of Operations Research Nanage-
ment very few researchs Ojha et al used this conception on TP or STP. In today’s life,
any decisions maker is not concious about a single criteria. The decision maker related
to transportation system also thinks about multicriteria systems consideration of total
cost is a long established criteria for STP or TP. Jain and Saksena [61] assume a trans-

portation problem with time minimizing criteria. Chakraborty and Chakraborty [18]
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solved a time-cost transportation problem numerically.

It is often difficult to estimate the accurate values of transportation cost, delivery
time, quantity of goods delivered, demands, availabilities, the capacity of different modes
of transport between origins to destinations, etc. Depending upon different aspects, these
fluctuate due to uncertainty in judgement, lack of evidence, insufficient information,
etc. i.e., it is not possible to get relevant precise data, which are assumed by several
rescarchers cf. Shell [136],Giri. ct al. [44] proposed a STP with fuzzy random costs
and constraints. So, a transportation model becomes more realistic if these parameters
are assumed to be flexible / imprecise in nature i.e., uncertain in non-stochastic sense
and may be represented by fuzzy numbers. Bit et al. [14], Jimenez and Verdegay [64],
Li and Lai [79], Gen et al. [41], Kundu et al. [74], Meiyi et al. [95], Waiel [143]| and
others presented the fuzzy compromise programming approach to multi-objective TPs
and fuzzy TPs. Based on Chanas and Kuchta [19], Das et al. [28] converted the interval
number TPs into deterministic multi-objective problems and proposed a method using

extension principle to solve a fuzzy stochastic two dimensional transportation problem.

In this chapter, a multi-criterium solid transportation problem with a discount on
costs has been formulated as a linear programming problem. Here, the discount on
transportation costs depending upon the transported amount are taken in the form of
AUD. Obviously, when the cost coefficients or the supply and demand quantities are
fuzzy in nature, the total transportation cost will also be fuzzy as well. In this model,
we develop a solution procedure that is able to calculate the fuzzy objective value of the
fuzzy transportation problem. The idea is to apply the Zadeh’s extension principle to
solve the proposed fuzzy solid transportation problem. In this problem, two objective
functions corresponding to two criteria such as time and cost of transported amount
from source to destination via conveyance have been optimized by LINGO — 9.0. This
multi-objective solid transportation problem has been solved using Weighted Average

Method. Finally, the proposed model has been illustrated using a numerical example.
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9.2 Notations and Assumptions

9.2.1 Notations

In this solid transportation problem, instead of common notations the following addi-

tional notations have been used.

(i) T : Total time taken for the item to be transportated from i — th origin to j — th

destination by k& — th conveyance.

9.2.2 Assumptions

In this solid transportation problem, the following assumptions are made.

(i) Here the problem is fully constracted with fuzzy parameters i.e, (a) the cost co-

efficient (Cijx), (b) the availability the suply of source (@;) (c) the demand of the

destination (b;) (d) the capacity of the convayance (€j) all are impresize in nature.

(ii) The model is formulated under the consideration of multi objective problems in

term of total cost and total time.
(iii) The unit transportation cost has an oppourtunity of all unit discount (AUD) facility.

(iv) A bi-level fuzzy programming technique has been considered to solve the problem.

9.3 Mathematical Formulation of Fuzzy Solid Transportation

Problem

A classical solid transportation problem may be considered with M supply nodes (origin),

N demand nodes (destination) and K types of conveyance, where all STP parameters
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are fuzzy in nature and followed traditional STP is in the following form

Il]k}ioy Vi,j, k.
N K
Z Z Tijre < i, i=1,2, ... M
7=1 k=1
M K
Z Tijk > by, j=12... N (9 1)
1=1 k=1
M N
Z Tijk < ek, k=1,2,...K
i=1 j=1
M N K
ST o
i=1 J=1 k=1
M N K
Z Z Cijk i, is minimum
i=1 j=1 k=1

In this model, we consider the resources a;, b; and e, as a fuzzy quantity i.e., a;, b;

and €. The unit transportation costs are not only fuzzy amount but it is also decided

through a discount (AUD) policy, i.e.,

( Cly if 0< i, <Ry
G = C2 if Ry <aie < Ry 02)
L ijk; if Ry <y, <00
where Cly > C2, > ..., > CL,.

Here, the decision maker also introduces the fact of “time” in addition with “cost”.

Hence, the problem is to determine x;j;, and ¢;;, which is written as

M N K

Minimizc Z1 = Z Z Z éij]g Tijk (9'3)
i=1 j=1 k=1
M N K

Minimize Z2 = Z Z Z tijk’yijk (LUijk) (94)
i=1 j=1 k=1
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subject to constraints

N K

ZZ Tyl < Qg 1=1,2, ... M

j=1 k=1

M K

Z >z > by, j=1,2...N (9.5)
z]\:JI k;l

SN wgk < k=1,2,....K

7J\:/[1 ~ N o K

S a-y b= o

i=1 j=1 k=1

where

Yijk = . ! (9.6)
0 Zf Tijk = 0

and the costs C}jy, follows the policy (9.2)

9.4 Two Level Fuzzy Mathematical Programming

To find the solution space of (9.5), (9.6) for the optimization of (9.3), (9.4), a solution
procedure “two level fuzzy mathematical programming technique” has been modified. It
is supposed that the membership functions of unit shipping cost d-jk, supply a;, demand

bj and conveyance e are denoted by pe , pa, My, He respectively. Now these fuzzy
ik

numbecrs can be written as

Cijp = {(Cijis g, (Cigr)) | Cligi € S(Cijn)}
a; = {(ai, pz,(a:)) | ai € S(a;)}

by = {(by 15, (1)) | b5 € S(b;)}

ex = {(ex, pe, (ex)) | er € S(ex)}

183



CHAPTER 9. A MULTI-OBJECTIVE SOLID TRANSPORTATION PROBLEM . . .

where S(Ciji), S(@), S(gj) and S(;) are the supports of Cys, ds, gj and €.

Now, the respective a-cuts of the fuzzy numbers CN’ijk, a;, Ej and é;, are defined as:

ok = [Ciikrs Ciipw) = [min{Cij € S( zak>} max{Cy, € S(ka)}]
af = laly,afy,] = [mm{al € S(a;)}, max{a; € S(a;)}] where pz,(a;) > «

2

b} = b5, bjy] = [min{b; € S(b;)}y, maz{b; € S(b;)}] where 1, (by) =

J

er = lerr, enyl = [min{er € S(éx)}, max{e, € S(éx)}] where g, (er) > «

These intervals indicate where the unit shipping cost, supply, demand and conveyance
lie with possibility level . Now we are interested to find the membership function and
the a-cut of the total transportation cost Z,. Based on the Zadeh’s extension principle,

the membership function p15- can be defined as follows:
7 (2) =sunf i (i, (Con o () () )15, 8 | = = Z:(Co )
where Z(é,ﬁ, E, €) is defined in Model (9.3).

Since the a-cut Z;7 is the minimum of /Z:(é,&’aa and 7,7 is the maximum of
Z(é’,fi, g,é); they can be expressed as:
Z1%: min{Z1 (6757 b’a : Cijk € [C‘C;‘kL>C‘C;‘kU]7a’i € [azL7 1U] b € [b?Lab?U]a

e € [eq, egU]}
Z\p= max{Zl(C’ a, b ,€) 1 Ciji € [Ciipr, Cipuls i € [agy, agy], by € [b57, b5yl

e € [efy, ehy]
These two expressions reformulates the problem into the following pair of two-level math-

ematical model:
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Step-1:

Min
zgkL < Oljk C]kU
ayy <a; <af <

b3y, < b; < (b))

[e%

« - o
€ S ep < epy

Vi, j, k

Now, the necessary and sufficient conditions for the above Model to have feasible solu-

b and ZN b = YK | &. Adding these feasible conditions,

tions are S2M. @, > Zj\]:

the above problem becomes

M N K

Min Z Z Z 6ijkllﬁijk

i=1 j=1 i=1
. M N K
Min .0, ijl > e tijkYign

subject to constraint

Zj-vﬂ Zszl Tijr < Qi 1=1,2,...... M
Zf\; Z;ﬁil Ty = Ej, j=12...N
Zf\il Zjvzl Tijr < €k, k=1,2,..... K
Yijk = .
if Ty =0
LL‘z‘jk >0 Vi, g, k
M N K
Min 323 > Cippge
i=1 j=1 i1=1
. M <N K
Min 77, Zj:1 > ey tijkYijh
subject to constraint
Z;\] 1 Zf 1 Tijk < Gy, 1=1,2,..... M
zz 1 Zk 1 Tijk > b77 ] = 1,2 N
Zi:l ijl Tijk < €k, k=1,2,.... K
1 if x>0
Yijke = .
0 Zf CCijk =0
L >0 Vi, j, k
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Step-2:

Min
C%kL < Cz‘jk < C]kU

« -~ «
ajp, < a; < Gy

i < by < bjy <

iy < € < ey

ZM ~‘>Z;‘V1~j

ZN b‘_Zk | €k
Vi, 3,k

Max
C‘C;‘kL < Cijk < Oka

(2

[e]) ~ o)
G, < @i < ag

i <0 < by

(8 g (a4
€L < €k < €y

ZM a >Zj‘v1 J
ZN b‘_Zk 1 €k
Vi, j, k

Now, we simplify the first portion of the above Model.

b N
< 2] p 0jp and Zj:l

for any a level if M. ay,

M N K

Min Z Z Z 6ijkxijk

i=1 j=1 i=1
. M N K
Min 37500 22000 D ke LigkYih

subject to constraint

Zj-vﬂ Zszl Tijr < g, 1=1,2,...... M
Zf\; Z;ﬁil Tyl = Ej, j=12...N
Ef\il Zjvzl Tk < ek, k=1,2,....K
1 ’Lf Tijk > 0
Yijk = .
if xip =0
Lijk >0 Vi, . k
M N K
Min 3% > Cippge
=1 j=1 =1
. M <N K
Min 377, Zj:l > ey LijkYijh
subject to constraint
ZN Zf 1 Tk <y, 1=1,2,...... M
Sl Sl e > bj, j=12..N
Zi:l ijl Tiji < €k, k=12,.... K
1 Zf Tijk > 0
Yijk = .
0 if @i =0
| Tk 2 0 Vi, j, k

This model will be infeasible
B> D ey

In other words, a fuzzy transportation problem is feasible if the upper bound of the

total fuzzy supply is greater than or equal to the lower bound of the total fuzzy demand.
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Step-3:
To derive the lower bound of the objective value in first Model, we can directly set @jk
to its lower bound Cfp Vi, j, b, to find the minimum objective value. Hence, the lower

level problem can be reformulated in conventional way as follows:

M N K
Z§ =Min Y >N Oy i (9.7)

i=1 j=1 i=1

M N K
Zy = Min Z Z Z LijkYijk (9.8)

i=1 j=1 k=1

subject to the constraints

YN e <a and o <a<al, 0= 12...0
-
Z Ty > by and ?L <b; < b;‘U, j=1,2...N

N
Z i < e, and ey <ep < ey, k=1,2,.... K

N
Du =Y ey ik

where y; = S i (9.9)

Similarly, the upper level problem conventionally can be written as
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M N

K
Zig =Min Y YN8 (9.10)

i=1 j=1 =1

M N K
Zy = Min Z Zztijkyijk (9.11)

i=1 j=1 k=1

subject to the constraints

N K
Z z Ty <a;  and  ajp < a; < agy, i=1,2,.....M
J=1 k=1
M K

Z Ty > by and b5 < by < by, j=1,2...N
=1 k=1
M N

Z T < e, and ey <ep < ey, k=1,2,...K
i=1 j=1
M N

a’iaU S bjL
N K

L= ey ik
j=1 k=1

1 if wgk >0

where y;;, = Y (9.12)

First and second problems are assured to be feasible, if the lower bound of the total
fuzzy demand is smaller than the upper bound of the total fuzzy supply and the upper
bound of the total fuzzy demand is equal to the lower bound of total number of fuzzy
conveyance, ie. S a; < Z;V:l b; and Z;V:l b = SO& | ep. If this condition is not

fulfilled then the problems will be infeasible.
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9.5 Numerical Illustration

A STP with two supplicrs, two destinations and three conveyances in fuzzy environment

is considered. The imprecise unit shipping costs with maximum discount (minimum

possible unit costs) are given below:

(
(5,6,7,8) ifwip > 10 (3,7,9,11) ifayy > 10
Cii =14 (6,7,8,9) if b<ain <10 Ciot = ¢ (4,8,10,12) if 5< a1 < 10
(7,8,9, 10) ’&f 0§1‘111 §5 (5,9,11,13) Zf 0§£K‘121 S 5
(3, 6,9, 11) ’&f To11 > 10 (7, 8,9, 10) Zf ZTo1z > 10
Cont = (4,7,10,12) if 5 <y <10 Corg = (8,9,10,11) if 5 <y <10
(5,7,11,13) if 0<umy; <5 (9,10,11,12) if 0< x99 <5H
(2,3,5,9) if x> 10 (4,6,8,12) if 199 > 10
Chg = ¢ (3,4,6,10) if 5 <wyp <10 Ciaz = (5,7,9,13) if b < a9 <10
(4,5,7,11) if 0<m19<5H (6,8,10,14) if 0<mx19 <5
\
(
(3, 7,9, 12) Zf ZTo12 > 10 (5, 8,10, 13) Zf To99 > 10
Coo =14 (4,8,10,13) if 5<zy2<10  Com =14 (6,9,11,14) if 5 < 299 < 10
(5,9,11,14) if 0<x2<5 (7,10,12,15) if 0< 29 <5
\
(
(11) 12,13, 14) Zf r113 > 10 (5, 9,12, 14) Zf Z193 > 10
Chis =< (12,13,14,15) if 5<z13 <10 Cis =1 (6,10.13,15) if 5 < 2193 < 10
(
(6,8,13,15) if w3 > 10 (3,5,9,13) if x93 > 10
5213 = (7, 9,14, 16) Zf h< a3 <10 5223 = (4, 6,10, 14) ’Lf D < 2993 <10
(8,10,15,17) if 0<z93<5 (5,7,11,15)  if 0 < @3 <5

Again, the time for transporting the certain amount of quantity from i-th source to j

-th destination by the k -th conveyance for only one trip is shown in the following time

matrix.
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Table-9.1: Input Data-Crisp Time matrix

‘ conveyance-1 ‘ ‘ conveyance-2 ‘ ‘ conveyance-3
D1 Doy Dy Do Dy D2
01 5 6 7 10 5 6
O 8 9 9 3 8 15
1 Tat Supy
UNJPY Total Conveyance
1
0.8
05 Total Demand
04
0.2
0 %4 @ il

Figure 9.1: Total supply, total demand total conveyance

Now for this problem, the total supply, demand and conveyance are obtained using the
addition rule of fuzzy numbers, which are as A, + Ay = (58, 62, 65, 69), Dy + Dy =
(56, 61, 66, 70) and Ei+ Ey + B3 = (62, 70, 73, 80) respectively and these are also
trapezoidal fuzzy numbers which are graphically shown in Figure 9.1. The spread of
the total fuzzy supply overlaps with the spread of the total fuzzy demand. In other
words, the upper bound of the total fuzzy supply is greater than the lower bound of the
total fuzzy demand, implying that the problem is feasible.

The lower a-cut of the unit shipping cost per unit item (with AUD policy) are given
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below.
( (
54« ifxlll > 10 3+ 4o ifivlgl > 10
ClanL: { 6+(l/ ’Lf 5<1‘111 § 10 ?QlL: < 4+40¢ Zf 5<£E121 g 10
7—|—Oé ’Lf 0§£B111§5 5—’-40[ lf 0§.Z’121§5
( (
34 3a ’Lf To11 > 10 T+« Zf Too1 > 10
QanL: { 4+ 3x ’lf h < a9 <10 QanL: 8+« Zf H < X991 <10
54 3a ’lf OSI’QHSE) 94+ « Zf OS.T221§5
\
( (
24+« ’lf Ty192 > 10 44 2a Zf T199 > 10
e = § 3+a if 5<x1 <10 o = 5420 if 5 <z <10
44+« ’Lf 0§[E112§5 6+ 2a Zf 0§CL’122§5
\ \
( (
3+ 4o ’lf To19 > 10 54 3a Zf Toog > 10
512L =14 4+ ’lf 5 < X912 < 10 QaQQL = 6+ 3a Zf 5 < X999 < 10
5+ 4o ’Lf 0< 2919 <5 7+ 3a Zf 0< x990 <5H
\ \
( (
11 + « ’lf r113 > 10 5+ 4o Zf T123 > 10
Chisr =9 12+a if 5<a3<10 sz =4 6+4da if 5 <oy <10
\ \
( (
6+ 2« ’lf T913 > 10 34 2a Zf Tooz > 10
/QalgL =< 7+ 2 ’Lf 5 < x93 <10 QanL = 44 2« Zf 5 < 2993 < 10
8+ 2« ’lf U§$213§5 54 2« Zf 0§C['223§5

\

Hence following the solution procedure discussed in section §4, the lower level crisp

problem for the aforesaid fuzzy problem is :

hlinimize ZlaL = 51'111 + Cf?le121 + 02011[11'211 + 71'221 + 01032[11'112 + 010‘221/33122 + C2O£12L.'L'212
+C01 %990 + 117113 + Clog 2193 + Cyz17213 + Ol Tao (9.13)
Minimize Zy = 111 + tio1 + tor1 + taor + ting + tize + to1o + tasg + Liag + tizs

213 + t223 (9.14)
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subject to constraints

111 + T2 + T113 + Ti21 + Tio2 + Tioz <@g
Zo11 + To12 + T213 + Too1 + Taoz + Loz < a2
T1n + Ti12 + T1iz + Tory + Toro + To1z > by
T191 + T122 + T193 + Toor + Tagy + Tagz > by
Z111 + T121 + T + Too1 <€

T112 + T122 + T212 + Tozo < €2

Z113 + T123 + T213 + T2z < €3

314+ 20 <a; <37 -2

27+ 2a < ay < 32 — 2«

25 4+ 3a < by < 34 — 2«

31 4 2a < by < 36 — 2a

18 +2a <e; <26 — 2

234+ 3a <ey <28 —«

21 + 3a <e3 <26 —«

a1+ as > by + by

by +by =€ +ey+es

Zijr>0 V. 0<a<l1

Vooi=1(1)2, = 1(1)2,k = 1(1)3.

(9.15)

Similarly, when the decision maker chooses the upper level (pessimistic sense) of the

imprecise parameters, the problem as reduced for the upper a-cut of the unit shipping
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cost as follows:

[0 —
111U —

[&4 —
211U —

@ —
C(112U = 9

&4 —
212U —

69

113U —

[&4 —
213U —

88—« Zf T111 > 10
99—« Zf 5 <z111 <10
10—a if 0< 2111 <5H
11 — 2« Zf ZTo11 > 10
15— 20 if 5<wa < 10
12 — 2« Zf 031’211§5
9 — 4« Zf T112 > 10

10 — 4o Zf 5 < x119 <10
11 — 4o Zf O§1112§5
12 — 3« Zf To1o > 10

13 — 3« Zf 5 < 29190 <10
14—3a if 0<@y2<5
15—« Zf T113 > 10

16 — o Zf 5<.T113§10
17—a if 0<w1135<5
15 — 2« Zf Ta13 > 10

16 — 2« Zf 5 < T3 < 10
17—2a if 0<uw93<hH

[0 —
121U —

@ —
221U —

a —
122U —

a —
222U

(e}

123U —

o —
223U —

The correspondence upper level problem is given by

/

11 — 2«
12 — 2«
13 — 2«
10 — o
11 —«
12—«
12 — 4o
13 — 4o
14 — 4o
13 — 3«
14 — 3«
15 — 3«
14 — 2«
15 — 2«
17 — 2«
13 — 4o
14 — 4
15 — 4o

Zf T191 > 10
Zf 5 <z <10
if 0< 291 <5

Zf Tao1 > 10
Zf 5 < 2991 <10
if 0<@y1 <5

’lf Tyg9 > 10
’Lf D < x99 <10
if 0<x99<5H

’Lf Togo > 10
’lf 5 < X999 < 10
if 0< @9 <5

Zf T193 > 10
Zf 5 < Tz < 10
if 0<u@3<5

’lf To93 > 10
’Lf 5 < Tooz < 10

if 0< 193 <5

. . . - " " o
Minimize Z?U = 7$111 + CIOéQIleﬂ + CQOCHUCEQH + 121221 + ClauUCLHQ + CIQQQUllQQ + 0212U$212

« a a (o]
+Cg9urT222 + 97113 + Clagp iz + ColspTarz + Cogra23

(9.16)

Minimize Zy = ty11 + tion + tor1 + toon + i1z + tioe + loga + tooe + tiis + tias

+ia13 + Loo3
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subject to constraints
111 + T2 + 11z + Ti21 + Tio2 + Ti23 < a4y
To11 + X212 + T213 + Too1 + Tao2 + Loz < A2
Tin + Tii2 + Tz + Torr + Taro + To1z > by
Tio1 + T122 + T123 + Toor + Tagy + Togz > by
111 + @121 + To11 + Too1 < €
T112 + T122 + T212 + Tazo < €9
T113 + T123 + T213 + T3 < €3 (9.18)
31 +2a < ap <37 —2a
27+ 2a < ay < 32 — 2«
25+ 3a < by <34 — 2«
31 4 2a < by < 36 — 2«
18 +2a <e; <26 — 2
234+ 3a <ey <28 —
21 + 3a < ez <26 —«
a1+ as > by + by
by +by =€ +ey+e3
ryek >0 V. i=1(1)2,7=1(1)2,k=1(1)3. 0<a<1

Since the above two crisp models (9.13) — (9.14) and (9.16) — (9.17) subject to (9.15) or
(9.18) are multi-objective, hence these two models can be converted into the following
single objective models (9.19) and (9.20) for the lower and upper level respectively as

follows:

Minimize ZL = leltz + (1 — Wl)ZQ (919)
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with the constraints in (9.15) and
Minimize ZU = WQZlg + (1 — Wvg)ZQ (920)

with the the constraints in (9.18).

Now, Lingo [9.0], a mathematical programming solver is used to optimize the above
two models (9.19) and (9.20) taking W1 = Wy = 0.8 and T'able — 9.3 shows the a-cuts of
the objective function when transportation cost and time are simultaneously minimized

at eleven distinct « values: 0,0.1,0.2,...and 1.0.

Table-9.2: The a-cuts of the objective functions

@ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
71 % 147.5 161.6 175.8 190.3 205.1 240.3 249.2 258.6 268.61 278.4 289.0
(Z2) (46) | 46) | (46) | (46) | (46) | (46) | (46) | (46) | (16) | (46) | (52)
Z1?]' 570.0 | 566.1 565.7 | 561.4 | 550.0 | 543.0 | 537.7 | 535.5 530.0 519.6 | 510.0
(Z2) (46) | 46) | 46) | (46) | (46) | (46) | (46) | (46) | (46) | (46) | (52)
75, 127.2 138.5 149.9 161.4 173.3 201.4 208.6 216.1 224.1 231.9 241.6
Zy 465.2 462.2 461.2 458.3 449.1 443.6 439.4 437.6 432.5 424.9 418.4

Amount to be
Transported 56 56.5 57 57.5 58 58.5 59 59.5 60 60.5 61

in ZL

Amount to be

Transported 56 56.5 57 57.5 58 58.5 59 59.5 60 60.5 61

in Zy

which represents the possibility of the objective function in the associated range. Specif-
ically, the ‘a = 1.0" cut shows the total transportation cost that is most likely to be and
the ‘a = 0’ cut shows the range that the total transportation cost could appear. In this
example, while the total transportation cost is fuzzy, its most likely value falls between
289.60 and 510.00, and its value is impossible to fall outside the range of 147.50 and
570.00. Since the objective functions either transportation cost and time simultaneously

or transportation cost individually are fuzzy in nature, so its membership functions are
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represented in Figure 9.2.

0.8 1

0.4 A

127.2 \pr 2416 9 4184 2652 g 570

Figure 9.2: The membership function of the objective functions

9.6 Discussion

From Table — 9.3, it is observed that for the ‘a = 0’ cut, the lower bound of trans-
portation cost (Z) is 147.5 and total transported time is 46 units corresponding to
optimum transported quantity and time from source to destination via conveyance such
as follows x11; = 0.14, x197 = 14, x917 = 0.86, z112 = 24, X993 = 17, Too1 = Ty90 =
To1g = Tep = T113 = T123 = 213 = 0, t111 = 5, 191 = 6, Lo = 8, t112 = 7, toa3 = 15,
loog = L1929 = to1a = loog = L113 = 123 = to13 = 0 with b;=25,00=31; a;=37,a2=32 and
e1=15, eo=24, e3 = 17.

The upper bound of transportation cost (Z) is 570 and total transported time 46

units corresponding to optimum transported quantity and time from source to desti-
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nation via conveyance oo, = 18, w112 = 11.5, T190 = 9.5, x113 = 13.5, X903 = 3.5,
Tl = Ti21 = Ta11 = T212 = Togg = Ti2z = T213 = 0 too1 = 9, tyig = 7, tigg = 10, 113 = 5,
toas = 15, t111 = t1o1 = ton1 = to1e = tooe = t1a3 = to13 = 0 with by = 25,b, = 31;

a1=37,09=32 and e; = 18, e5=21, e3 = 17.

At the other extreme end of a = 1, the lower bound of Z is 241.60 and taken
time 52 units corresponding to optimum transported quantity and time from source
to destination via conveyance xq117 = 4, X191 = 3, Taoy = 10, 2110 = 24, xo03 = 20,
To1l = Ti22 = T212 = Toze = T113 = Ti3 = T21z = 0 Lip = 5, tior = 6, tagg = 9,
tiig = 7, tooz = 15, tor1 = t1on = to1o = toge = t113 = tia3 = to13 = 0 with by =28,6,=33;
a1=35,a2,=30 and e;=17, es=24, e3=20.

The upper bound of Z is 418.40 and taken time 52 units corresponding to optimum
transported quantity and time from source to destination via conveyance xqy; = 17,
Ty = 22.5, T190 = 1.5, x113 = 5.5, 193 = 1.5 Too3 = 3.5, 111 = Ty = Tonn =
Torg = Tz = To13 = 0ty = 9, ti1g = 7, Liog = 10, {113 = 5, tigg = 6 oz = 15,
t111 = t191 = tar1 = togo = toge = 913 = 0 with b;=28,0,=33; a;=35,a,=30 and e;=17,
es=24, e3=20.

9.7 Conclusion

In this chapter, a model is mainly investigated with uncertain cost of multi-criterium solid
transportation problem based on two-level fuzzy programming technique. Since there
are many uncertain parameters in the model, computing objective value and checking
feasibility become complex in general. In order to solve the model conveniently, we have
discussed the crisp equivalences for the model following Zadch cxtension principal. Here,
a realistic discounts policy (AUD) has been proposed to transportation cost depending
on the amount of transportation units. The fixed time parameters also may be considered

in different environment.
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