Chapter 8

A solid transportation problems
with non-linear transportation cost

and type-2 fuzzy parameters

8.1 Introduction

Almost all TP and / or STP are formed as a linear programming problem (LPP), where
objective function is the progressive sum of the product of transported quantity (vari-
able) and unit transportation cost (constant) (cf. Haley [52], Shell [136], Basu et al. [11],
Bit et al. [14], Ojha et al. [110], and many more). Ojha et al. [109], and Gupta et al. [51]
developed the TP with a fixed cost and solved through different optimization process.
In transportation allocation system entropy function plays an important role to search
more number of allocation cell. But in reality, transportation cost not linearly depends
on the quantity. In general, upto a certain limit of quantity, it does not matter how
much quantity the managers transport and after that limit, it may varies exponentially.
Till now, none has considered the conception of non-linear transportation cost, which is

quite adequate in reality.
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CHAPTER 8. A STP WITH NON-LINEAR TRANSPORTATION COST

Liu and Mendel [84] proposed the concept of an interval type-2 fuzzy set for dealing
with the impreciseness of quadratic order. Zeng and Liu [156] described the important
advances concerning type-2 fuzzy sets for pattern recognition, and in [139] explored the
calculation of the union and intersection of concave type-2 fuzzy sets. From the compu-
tational viewpoint, type-2 fuzziness is more difficult to deal with than type-1 fuzziness
because the possibility of a type-2 fuzzy variable taking on a crisp value is a fuzzy number
in [0, 1]. To avoid this difficulty, some type reduction approaches have been proposed
in the literature for dealing with type-2 fuzziness, for example, Qin [122] proposed a
defuzzification method with the concept of a centroid of a type-2 fuzzy set. Liu [89]
employed a centroid type reduction strategy for a general type-2 fuzzy logic system
and Qiu et al. [123] developed a statistical method for deciding on interval-valued fuzzy
membership functions and a probability type reduction reasoning method for use with
the interval-valued fuzzy logic system. Takac [138] discussed inclusion and subsethood
measure for interval-valued fuzzy sets and for continuous type-2 fuzzy sets

After, a many research (cf Mendel and John [102], Mizumoto and Tanaka [105],
Karnik and Mendel [68], Fazel et al. [35], Hidalgo et al. [55,56]) studies the develop-
ment of T2FSs theoretically. Now a day, T2FSs has been applied in different fields like
group decision making system (neural network (Aliev et al. [3], Amiri [7], Chen and
Wang [22])), portfolio selection problem (Hasuike and Ishi [53]), data envelopment anal-
ysis (Quin et al. [122]), pattern recognition (Mitchell [104]), data envelopment analysis
(Quin et al. [122]), etc. Karnik and Mendel [68] is discussed the centroid of an interval
type-2 fuzzy set (IT2FS) and they advanced a centroid type-reduction method to con-
vert I'T2FS into T1FS. But this method is very hard to apply the method to general
T2 FS. The centroid type reduction strategies has been developed by Wu and Tan [145]
for general type 2 fuzzy logic system. Liu and Liu [85] discussed a type-2 fuzzy variable
(T2FV) for possibility theory, as a map from a fuzzy possibility space to the set of real
numbers. Three kinds of reduction methods( pessimistic CV, optimistic CV and CV

reduction ) has been introduced by Qin et al. [122] for T2FVs based on critical values
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(CVs) of regular fuzzy variables. Some uncertainty measures such as fuzziness (entropy),

cardinality, skewness, variance of an IT2FS are presented by Wu and Mendel [145]

In this chapter, a solid transportation problem has been considered with non-lincar
unit transportation cost of the item depended on the amount of transportation. The unit
transportation cost decreases at an inverse exponential rate if the transported amount
increases. The availability of the sources, demand of the destinations, capacity of the
conveyances are considered as a type-2 fuzzy parameters. The model is solved follow-
ing CV-based reduction method, nearest interval approximation method and Chance
constrained programming based credibility measures. Finally, a numerical example has
beeen taken to illustrate the model and compared the results obtained through different

methods.

8.2 Notations and Assumptions

8.2.1 Notations

In this solid transportation problem, instead of common notations the following addi-

tional notations have been used.

(i) C";i = initial type-2 fuzzy unit transportation cost of the solid transportation from

i-th supply to j-th destination via k-th conveyance.

(ii) a = type-2 fuzzy amount of a homogeneous product available at i-th source.

(iii) Ej = type-2 fuzzy demand at j-th destination.

(iv) e = type-2 fuzzy amount of product which can be transported/carried by k-th

conveyarce.

(v) dijr = maximum limit of transportation of the item upto which the initial unit cost

is fixed.
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8.2.2 Assumptions

To develop the proposed solid transportation model, the following assumptions have

been made.

(i) In this model, the unit transportation cost has been taken into non-linear form by

which unit cost is increase in decreasing order. The unit transformation costs C'ji

is the following form

=  _®ijk
= C'i NG ik ’lf Tiik > diik
J 1) 1

Cijk =4 —~ . (8.1)
Ciji if wijr < diji

8.3 Mathematical Formulation of Non-linear Solid Transporta-

tion Problem (NLSTP)

As stated in the above assumptions the proposed non-linear solid transportation problem
with type-2 fuzzy parameters is

M N

~ K
Minimize Z = Z Z Z 5“% Tijk (82)

i=1 j=1 k=1

subject to the constraints

N K N
SN i @ i=1,2,..M

< a;
j=1 k=1
M K ~
Y i > b j=1,2,..N (8.3)
=1 k=1
M N _
Z Z Tijk < € k=12,..K
i=1 j=1

Ty >0 forall i, 4,k

Where (~7l—jk is given by equation number (8.1)
The first constraint in equation (8.3) represents the capacity of the sources, where as the

second & third constraint of equation (8.3) represent the demand of the each destination
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& capacity of the each conveyance respectively. The expression in equation number (8.1)
indicates that unit transportation cost increase due to the increasing the transportation

item in decreasing order.

8.4 Solution procedure

8.4.1 Chance constrained programming using generalized credibility

Now, we solve the problem (8.2) to construct a chance-constrained programming model
with reduced these fuzzy parameters. The reduced fuzzy parameters are may not be
normalized, so general credibility measure is not be used. Since the problem is mini-
mization problem, the following chance-constrained programming model is constructed

as the following (using generalized credibility)

Minimize, (Minimize Z) (8.4)
M N

K
(Aﬁ”{zzz 5z‘jk-77ijk < Z} >«

i=1 j=1 k=1
subject to the constraints

N K
@{ZZ Zijk <ai} > o vV i=12,...M

j=1 k=1

M K

Crid Y ai > b} > B V j=12....N (8.5)
i=1 k=1
M N

a‘{zz Tijk; < gk-,} > Vi V k=12,....K

i=1 j=1
iy >0 forall 4,7 k.

where Minimize Z is the minimum possible crisp form that the objective function attains
with generalized credibility at least a(0 < o < 1). ay, 5; and v, (0 < oy, B ;6 < 1) are
predetermined generalized credibility levels of satisfaction of the respective constraints

for all 7, j, k.
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8.4.2 Crisp equivalences

Suppose that the @jk, a—, Ej and ¢ are all rnutually independent type-2 triangu-

’L’ ’L7 797 4
25 (b}, 52,62, 04,67) and &, = (ei,ei,ek,ﬁé,ek). Also let Cijk, G;, b; and &, are the

lar fuzzy variables given by @jk = (C}

ijk? LJk7

corresponding reductions by the CV reduction method. Using chance-constrained model
formulation (8.4)-(8.5) of Model (i.e., (8.2)-(8.3)) can be converted to the following crisp
equivalent (theorem 2.2 in§2.1.13) parametric programming problems:

Case-I: 0 < a < 0.25 : Then the equivalent parametric programming problem for the
model (8.4)-(8.5) is

(1420 + (1 +40)0],,) Ol ik + 2aCT 2550,

)

Minimize 7 —Z

i=1 j=1 k=1

(8.6)

subject to the constraints

N K
2D vk

< Fy V o i=1,2 ..M
j=1 k=1
M K
SN i > Fy Vo j=12....N
=1 k=1
M N
SN i < Py V o k=1,2...K
i=1 j=1

Tijk >0 forall 4,5, k.

Case-II: 0.25 < a < 0.50 : Then the equivalent parametric programming problem for
the model representation (8.4)-(8.5) is

M N K I
Z]kxmk + (2o + (4a = 1)0;,)C. ]kxljk
Minimize Z = g E g 1+ (do— 1)01
=1 j=1 k=1 ijk
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subject to the constraints

N K

2D Tk
j=1 k=1

M K
DD ik
i=1 k=1

M N

2D i

i=1 j=1

IN
S
<C
|
\.l—‘
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<

v
>
<C

<

|

\.P—‘

\.M
=

VAN
5
>
<C
o
|
—
\.l\D
=

Tijk >0 forall 4,4,k

Case-III: 0.50 < a < 0.75 : Then the equivalent parametric programming problem for
the model representation (8.4)-(8.5) is

M N K 3 i 2
. (20 — 1)Cijk$i,7‘k +2(1—a)+ (3 - 4a)9ijk)cijk$i.7k
Minimize Z = E E 1+(3- 404)01“
i=1 j=1 k=1 ijk

subject to the constraints

N K
DD ik

< Fu vV i=1,2,.... M
j=1 k=1
M K
SN win > Fy Y j=1,2...N
i=1 k=1
M N
SN v < Fy V k=12 ...K
i=1 j=1

Tijk >0 forall 4 4k

Case-II: 0.75 < a < 1 : Then the equivalent parametric programming problem for the
model representation (8.4)-(8.5) is

M N K , . 3 9
S (200 — 1+ (4o — 3)051.) Ciipijr + 2(1 — oz)C’Z-jkxijk
Minimize Z = g E g 1+ (40 — 3)977‘]{
i=1 j=1 k=1 t
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subject to the constraints

N K
ZZ Tijk S Fai i 1= 1, 2, ...... M
j=1 k=1
M K
ZZ Tijk > Fbj v ] = 1,2, ...... N
i=1 k=1
M N
SN i < Fu V k=12 ..K
i=1 j=1
Tijk >0 forall 4,4 k.
where,
( —aly; — 4oy l (7,3 ()/,‘(1,2 .
= l+1(i(14—41123¢f)‘1))941 o if 0 < a; <0.25;
. (a0 DI i0.25 < a; < 0.50; .
(gai_l)al+1(-2+((13,__3239(§_4mwg)ag if 0.50 < oy <0.75; .
(2a;—1+4(4a; —3)01)al +2(1—a;)a? : A .
\ T (dar—3)0] if 0.75 < o; < 1,
( (1-2B;+(1—48;)0,)b3+25,b2 .
! 1+(1fiaj)9gj - it 0 < B; <0.25;
—2B,)b3+(28; —1)67)b2 .

. (1 zﬁj)bﬂggigj; 1)67)b5 if 0.25 < 8, < 0.50; 58)
bj = 1)\l BV (348072 .
(28 —1+(4B;—3)6L) bt +2(1—p,)b? . .

\ 1+(4ﬂj—3)19§ . if 0.75 < /Bj <1,
( o o 11 e3 e2 A
U IR0 < 9 £ 0.25
- e —1)67)e2 .

B U2 Onetbe =D £ 0,25 < o < 0.50; 59
ek - 7—1)e _ ff ) - . )
S e T 1050 <9 <075,

(27 —14+(4ys—=3)01) el +2(1—p)e? . )
\ 1+(4%73;“9% k if 0.75 < v, < 1;

8.4.3 Using nearest interval approximation

Suppose that the ajk,ii,gj and gk are all mutually independent type-2 triangular

" . L 1 2 3 l ~ _ (1.2 .3l o\ 1. _
fuzzy variables defined by Cyji = (Cjy, Ciip, Ciins Oije, Oin), @i = (ag, 07, a;,0;,07), b =
1 32 13 pl pr =

(ei,e7,e3,0L 07). Then we find nearest interval approxima-

tions (credibilistic interval approximation, cf. §2.1.14) of éijk,gi,gj and gk suppose these

are [Cijkr, Cijruls [ain, aiv], [bjr, bju] and [egxr, exy| respectively. Then with these nearest
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interval approximations the Model (8.2-8.3) becomes

M N K

Minimize Z = Z Z Z[Cv‘jkb Cisku| ijk (8.10)

i=1 j=1 k=1

subject to the constraints

N K
E : E : Tijk < @iz, aiv] 1=1,2,..M
j=1 k=1
M K

SN w > b, D] j=1,2,..N (8.11)
i=1 k=1
M N

ZZ Tijk < lexL, exu] E=1,2,.. K
i=1 j=1
iy >0 forall 4,7 k.

Where 5”1@ is given by cquation number (8.1)
Now if the constraints are allowed to be gratified with some predetermined possibility de-
gree level a;, 5; and v, (0 < ay, 5;, v, < 1)respectively, then the equivalent deterministic
inequalities of the respective constraints are given as follows:

N K

ZZ xijk S Q;ry _ai<aiU —aiL) ’L = 1,2,]\[

j=1 k=1
M K

ZZ :Bijk 2 bjL‘f’ﬂj(bjU_bjL) ] = 1,2,N (812)

i=1 k=1
M N
Z Z Tijk < eaw — mlew — ewr) k=1,2,..K
i=1 j=1
Now to deal with objective function we find minimum possible objective function
value (say Z,) and maximum possible objectivefunction value (say Z*) for the interval

costs [Cijkr, Cijru ), by solving the following two problems:

s M N K

N inimize o

Z. =Gt <CinCoine {Mmlmlze E E E Cijk x”k} (8.13)
i=1 j=1 k=1
M N K

x _ Maximize T

7 =m0 2CinECipt {Mmlmlze g g g Cijk :z;ijk} (8.14)
i=1 =1 k=1
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CHAPTER 8. A STP WITH NON-LINEAR TRANSPORTATION COST

subject to the above constraints (8.12) for both cases.

Now we search compromise optimal solution by using two objective problems (8.13) and
(8.14) together and applying Zimmermann’s [158] fuzzy linear programming as given by:
Let us consider Z;(z;5,) = Z. and Zy(x;,) = Z*

We lower and upper interval for both the objective Z; and Z, as [ 71, Z1y| and [Zar, Zay]
respectively. For these objective functions, we construct the following two membership

function asgiven by

L, if 7, < Zip; L, if Zy < Zar:
m(Z) = 2ot it Zu < 20 < Zw; pa(Zo) = § 7 i Zoy < Zo < Zous
0, if Z, > Zyw. 0, it Zy > Zoy.

Now, we solve the problem

Maximize A
subject to
ui(Z1) > A, pe(Zz) > A (8.15)
and the above constraints (8.12)

0<A<1

Solving this we minimizes both the objectives Z; and Z, for the solution ;L';*jk(say) Vi, j, k,

with certain degree A* (say) and the range of the objective value [Z,, Z*].

8.5 Numerical Illustration

In this section the proposed models and methods are illustrated numerically. Two dif-
ferent examples for the models are presented and solved to demonstrate the proposed

methodologies numerically.
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8.5. NUMERICAL ILLUSTRATION

8.5.1 Illustration of discrete type-2 fuzzy problem

To illustrate the Model, we consider an example with two sources, three destinations and

two conveyance, i.e., i = 1,2 ; 5 = 1,2,3 and k = 1,2. The unit transportation costs

52‘;‘1« the availability of the sourcc(gi)7 demand of the dcstinations(gj) and capacity of

the conveyances (€;) are the following discrete type-2 fuzzy variables.

2, with chance (0.2,0.4,0.6,0.8); 7, with chance (0.5,0.7,0.8);
Cin = 4, with chance (0.5,0.7,0.9); Chiz = 8, with chance (0.3,0.5,0.7);
5, with chance (0.3,0.5,0.7). 9, with chance (0.6,0.8,0.9).
\
7, with chance (0.4,0.6,0.7); 5, with chance (0.2,0.4,0.6);
Cian = 8, with chance (0.5,0.7,0.8); Cron = 6, with chance (0.4,0.6,0.8);
9, with chance (0.7,0.9,1.0). 7, with chance (0.1,0.3,0.5,0.7) .
( (
1, with chance (0.3,0.5,0.6); 8, with chance (0.3,0.5,0.6);
Ciz = 2, with chance (0.3,0.4,0.6); Cran = 9, with chance (0.5,0.7,0.8,0.9);
3, with chance (0.4,0.6,0.7). 10, with chance (0.5,0.6,0.8).
\
(
0.3 0.5 0.7

4, with chance
04 1 0.7

5, with chance (0.2,0.6,0.7);
x 0.6 0.8 0.9

Con = {5, with chance Cora = 8, with chance (0.3,0.4,0.8);

05 09 1
10, with chance (0.2,0.7,0.9).
05 0.7 0.8

04 1 07

7, with chance

0.3 04 06

06 1 0.7
3, with chance (0.3,0.4,0.6);
x 0.6 0.8 0.9 =

Cag1 = § 5, with chance Ca31 = { 5, with chance (0.7,0.9,1.0);

0.7 1 08
6, with chance (0.4,0.6,0.7).
05 06 0.7 0.8

03 04 1 05

4, with chance

6, with chance
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6, with chance (0.4,0.5,0.7,0.8); 6, with chance (0.5,0.7,0.9);
Caz = 7, with chance (0.6,0.8,0.9); Casz = 8, with chance (0.4,0.5,0.9);
9, with chance (0.4,0.6,0.7). 11, with chance (0.5,0.6,0.7).
30, with chance (0.5,0.7,0.9); 42, with chance (0.3,0.6,0.7);
a1 =4 32, with chance (0.4,0.5,0.9); s = { 43, with chance (0.1,0.2,0.4);
34, with chance (0.5,0.6,0.7). 44, with chance (0.5,0.8,0.9).
\
25, with chance (0.2,0.4,0.5); 22, with chance (0.3,0.6,0.7);
b = 26, with chance (0.5,0.6,0.7); by = 23, with chance (0.7,0.8,0.9);
27, with chance (0.5,0.6,0.9). 27, with chance (0.5,0.6,0.9).

23, with chance (0.6,0.8,0.9);
by = < 25, with chance (0.3,0.5,0.6);
27, with chance (0.6,0.7,0.8).

35, with chance (0.6,0.7,0.9); 35, with chance (0.3,0.6,0.9);
e =4 36, with chance (0.1,0.4,0.6); e = 39, with chance (0.1,0.7,0.8);
38, with chance (0.2,0.6,0.7). 42, with chance (0.5,0.6,0.8).

\

To solve the above problem we first find corresponding defuzzified (crisp) values of the

type-2 fuzzy cost parameters 6’%, the availability of the source(gi), demand of the

destinations(b;) and capacity of the conveyances (€x). For this purpose we first apply
CV reduction method to reduce type-2 fuzzy variables to type-1 fuzzy variables, then
applying centroid method we get the corresponding crisp values. Now using these crisp
costs, we optimized the objective function using the Lingo—11.0 toolbox. The optimum

solution of the problem is obtained and given in T'able — 8.1.
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8.5. NUMERICAL ILLUSTRATION

Table-8.1: Optimum solution of the problem 8.5.1

Defuzzification value of éijk 57 Zj 5;€ using CV method
Cii1 Cli2 Cl21 Cl22 ay a2 Optimum Solution Transp-
Cann C212 Ca21 Ca22 b1 b2 b3 ortation
Ciz1 Cis2 Ca31 Ca32 e1 €2 Cost
3.6956 8.0385 8.1071  6.0476 31.931 43.081 | x121 = 21.63  x231 = 14.64
5.4615 7.7181 5.121 7.36 26.1056 23.913 24.949 w132 = 10.31 w212 = 26.12 29.7313
2.1 9.0482 4.8523  8.269 36.269 38.712 To22 = 2.29

8.5.2 Illustration of continuous type-2 fuzzy problem

To illustrate the Model, we consider an example with two sources, three destinations and

two conveyance, i.e., i = 1,2 ; 5 = 1,2,3 and k = 1,2. The unit transportation costs

571]‘1«, the availability of the source(a},), demand of the destinations(gj) and capacity of

the conveyances (€) are the following continuous type-2 fuzzy variables. In this example

the inputs are given in T'able — 8.2.

Table-8.2: Continuous type-2 fuzzy input of the problem 8.5.2

Cri11 C112 C121 Ci22 a1 by €1
C131 Ci3a Ca11 Cai2 a2 ba €
Caai Ca22 Ca31 Casz2 b3

(33,37,41,0.5,0.7) | (35,38,41,0.4,0.8) | (30,34,38,0.2,0.9)
(41,44,47,0.3,0.7) | (18,20,22,0.2,0.6) | (44,48,51,0.4,0.9)
(20,22,23,0.2,0.9)

(2,3,4,0.4,0.6) (4,5,6,0.3,0.6) (8,9,10,0.5,0.7)(6,7,8,0.2,0.6)
(1,2,3,0.4,0.5) (2,3,4,0.4,0.5) (7,9,11,0.6,0.9)(5,6,7,0.2,0.8)
(6,7,8,0.5,0.7) (7,8,9,0.4,0.8) (2.4,6,0.3,0.6)(3,5.7.0.5,0.6)

Solution using chance-constrained programming: The predetermined general

credibility levels for the chance-constrained programming model as formulated to solve

the Model are taken for various a, a;, 5 and v, , 4 =1,2; j =1,2,3; k =1,2.
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Table-8.3: Result of chance-constrained programming problem

« ;i B; 072 Optimum Solution Transportation cost
0.80 z132 = 20 112 = 17 xo11 = 21 za31 = 12 wg32 = 11 22.7191
0.65 | 0.5 0.5 0.5 2131 = 21 w112 =21 wo11 = 18 wooo =20 w232 =6 20.2748
0.50 2131 =21 2112 =21 2211 = 18 z220 =20 w232 =6 19.2717

0.6 131 = 16.16 2112 = 20.44 2211 = 17.85 2222 = 20 2232 = 5.85 19.5238

0.50 | 0.55 | 0.50 | 0.50 2131 = 16.08 2112 = 20.70 2211 = 17.92 z220 = 20 w232 = 5.92 19.4065
0.45 131 = 15.90 112 = 21.35 @211 = 18.10 zo2s = 20 mu32 = 6.10 19.1153

0.6 z131 = 16.27 z112 = 20.73 x211 = 17.73 2222 = 20.31 z232 = 5.96 19.3453

0.50 | 0.50 | 0.55 | 0.50 | z131 = 16.14 x112 = 20.86 x211 = 17.86 w222 = 20.16 w232 = 5.98 19.3085
0.50 r131 =21 2112 =21 2211 =18 2222 =20 2232 =6 19.2717

0.55 131 = 15.90 w112 = 21.10 @211 = 17.90 z220 = 20 w232 = 6.10 19.2979

0.50 | 0.50 | 0.50 | 0.45 131 = 16.12 2112 = 20.88 2211 = 18.12 2222 = 20 x232 = 5.88 19.2386
0.40 131 = 16.26 z112 = 20.74 2211 = 18.25 z220 = 20 232 = 5.74 19.1956

Solution using nearest interval approximation: The nearest interval approxima-
tions (credibilistic) of the given triangular type-2 fuzzy parameters are calculated.The
corresponding unit transportation costs, supplies, demands, and capacities are presented

in Table — 8.4 as follows:

Table-8.4: Result using nearest interval approximation

C111 Cr12 Ci21 Cia2 ay b1 er
Ciz Cis2 Ca11 C212 az ba e2
Ca21 Ca22 Ca31 Ca32 b3
[3.49.4.51]  [4.49,5.51] [8.49,9.51]  [6.49,7.52] | [34.98,39.02] | [36.47,39.53] | [31.92,36.08]
(150, 2.50]  [2.50,3.50]  [7.99,10.01]  [5.48.6.51] | [42.47,45.53] | [18.98,21.02] | [45.95,49.53]
6.49,7.50]  [7.49.851]  [2.98,5.01]  [3.99,6.01] [20.98,22.51]
Taking «; Bj = v = 0.5, we get these deterministic constraints and then solve

the objective functions (8.13) and (8.14) and corresponding solutions are as follows:
Z, = 18.7458; 111 = 23.48, w91 = 8.51, X199 = 12.51, 910 = 16.04, xa30 = 20.98 and
7% = 25.2377; x111 = 15.05, x99 = 21.03, 2112 = 23.97, 930 = 22.51 .

Now, we apply the fuzzy linear programming (8.15) to get an unique optimum solution.
The compromise optimal solution is given by as follows:

Zy, = 18.8444, Zy = 25.8811 and the corresponding solution are x19; = 2.4320, z112 =
10.0379, 2139 = 22.5096, 911 = 29.4927, 999 = 16.0402.
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8.6 Conclusion

In this chapter, for the first time, non-linear cost coeflicients has been considered where
the unit transportation cost is depend on the amount of transportation. The unit cost
cocflicients, availability of the source, demand of the destination and capacity of con-
veyance are followed type-2 fuzzy nature. A defuzzification method of general type-2
fuzzy variable is outlined. A chance-constrained programming problem with triangular

type-2 fuzzy variables has been formulated and solved.

177



CHAPTER 8. A STP WITH NON-LINEAR TRANSPORTATION COST

178



