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2.1. PRELIMINARY

2.1 Preliminary

Before studing different solid transportation problems (STPs) in different aspects and

forms in different environments, we need to discusse the following preliminary ideas.

2.1.1 Crisp Set Theory

Crisp Set [109]: In our life, we have mostly used the crisp sets. Crisp means yes or
no type rather than more-or-less type. In set theory, an object can either a member of
a set or not and in optimization problem, a solution is either feasible or not. A classical
set, X, is defined by crisp boundaries, i.e., there is no uncertainty in the prescription of
the elements of the set. Normally, it is defined as a collection of well defined objects or

elements, x € X, where X may be countable or uncountable.

Convex Set [109]: Let x; and x5 be any two points in a subset S C R", the subset S

is said to be convex set iff z1, 20 € S= A1+ (1 =Nz €5; 0<A< 1.

Convex Combination [109]: For a given set of vectors oy, g, -+, @ and Ay, Ag, -+, Ay >

0 a linear combination o = A\jaq + Aocvs + -+ + A\, v, is called a convex combination of
the given vectors provided that i A= 1.

Convex Function: For any twlglpoint x1, 29 € S, if a function f: S — R satisfies the
inequality f{(1 —AN)z1+ Ax2} < (1—N)f(x1)+ Af(x2), for 0 < A < 1, then the function

is called convex

Quasi-convex Function [109]: For any two number x1,z, € S, if a function f(z)
satisfies f((1 — A)xy + Awe) < max (f(z1), f(x2)),for 0 < XA < 1, then it is called quasi-

convex. It is noted that a convex function is also quasi-convex since f((1— )z +Axg) <

(L =N f(z1) + Af(22) <max (f(21), f(z2)).
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Pseudo-convex Function [109]: For any two point x1,x, € S, a function f(z) is
said to be pseudo-convex function provided that f(zy) > f(x1) implies that (zy —
21)TV f(z1) > 0. The definition of convex functions can be modified for concave func-
tions by replacing ‘<’ by ‘>’. Correspondingly, the definition of quasi-convex functions
becomes appropriate for quasi-concave functions by the exchange of ‘<’ to ‘>’ and ‘max’
to ‘min’. To get the definition for pseudo-concave function, ‘>’ is replaced by ‘<’ in the

definition of pseudo-convex functions.

Relationships among Convex, Quasi-convex and Pseudo-convex Functions:
(i) A convex differentiable function is pseudo-convex.
(ii) A convex function is quasi-convex.

(iii) A pseudo-convex function is strictly quasi-convex.

(iv) If f(z) is either positive or negative quasi-convex (quasi-concave)on a subset S of

R, ﬁ is quasi-concave (quasi-convex) on S.

2.1.2 Interval Number

Arithmetic of Interval Number: In this section, real numbers are denoted by lower
case letters and a set is denoted by upper case letter. An order pair of brackets defines
an interval A = [ar,ay| = {a : ap, < a < ay} where ay and ay, are right and left limits

of A respectively.

Definition-2.1: If A and B are two closed intervals, then Ax B = {a*xb:a € A,b € B}
defines a binary composition on the set of closed intervals. The operation * may be any
onc of {4, —, x, +} defined on R. In the casc of division, it is assumed that 0 ¢ B. The

operations on intervals used here may be explicitly calculated from the above definition
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as

A+ B = lag,ay]| + [br,by] = [ar + br,ay + by]

A—B = {CLL,CLU] — [bL,bU] = [CZL —bU,aU—bL]

A X B = [aL,aU].[bL,bU} = [mm{a,LbL,aLbU,a,UbL,anU},ma:C{a,LbLja,LbU,anL,anU}]
A [CLL,CLU] 1 1
— = =lap,ay|.|—,—|, where0 ¢ B
B [bth} [ L U} [bU aU} §é

[ar, Eay), for € >0

(€ay,&ayr), for £ <0, where £ is a real number.

€A =

Order relations between intervals: Here, a order relation represents the decision-
maker’s preference between interval costs. Besically it is defined for minimization prob-
lems. Let intervals A and B represent uncertain costs for two alternatives. It is considered

that the cost of each alternative is known only to lie to the corresponding interval.

Definition-2.2: The order relation <pp between A = [ar, ay] and B = [by, by is defined

as

ASLRB iffa,L SbL and ay SbU

A<LRB1HA§LRBandaU7ébU

The order relation <j i represents the DM’s preference for the alternative with the lower

minimum cost, that is, if A <;r B, then A is preferred to B.

Theorem 2.1: The order relation <pe satisfies the transitive law.
Proof: Let A = |ay,ay|, B = |bL,by] and C' = [cy, cy| such that
A <pc B and B <pc C,
Now A <gc B & B <pc C, which implies that
ay < by & by < cy; and  ac < b & be < cc;
ie,ay < by < cy; and  ac < bo < cc

and 2a0 < 2bc < 2¢co

Then subtracting we have a; < b, < ¢, and A <gc B & B <pc C,
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which implies that A <gc C

If A#pc B and B #rc C, we have A #gc C.

If possible A =g C which indicates that ar, = ¢, and apy = ¢.
Now ay < by < ¢y (Since A <pc B, B<pc C & A<pc ()
So, we have ay = by = cy

Moreover, a;, = ¢;, and ay = ¢y, so it is obiained that

= ac =bc=cc ( Since ac < be < c¢
A<pe B & B <pe CO)
As ac = be, bo = co
ay = by, by = cy

= a;, = b;, and by, = ¢,
=a;, =b;, = ¢y,

= A=B& B=C,
which contra. Therefore,

A#RCBandB#RCCéA#RCC.

2.1.3 Fuzzy Set Theory

In 1962, Prof. Lotfi Zadeh introduced the notion of fuzzy set to formalize the concept of
gradedness in class membership for the representation of human knowledge. It was de-
veloped to solve and define a complex system which is full of imprecision or uncertainty

in the sense of non-statistical nature. A very brief of the fuzzy set theory is given below.

Fuzzy Set: Let F be an universal collection of elements and x be an object of F,
then a fuzzy set A in F is a set of ordered pairs A = {(z, pi(x))|x € F'}, where py(x) is
called membership function of x in A which maps F to the membership space M to be a

closed interval [0,u], where 0 < u < 1. So a fuzzy set is a class of objects in which there
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2.1. PRELIMINARY

is no sharp boundary between those objects that belong to the class and those that do
not.
Some Properties of Fuzzy Set:

e Equality [108]: Two fuzzy sets A and B in F are said to be equal, if and only if
pi(@) = pg(x), Vo € F.

e Containment: A fuzzy set A in F is a subset of another fuzzy set B in F denoted

by A C B, if and ouly if

pi(z) < pg(e),Vo € F

e Support [108]: The support of a fuzzy set Aisa crisp set, denoted by S(g), and

it is defined by S(A) = {z | p;(z) > 0}.

e Crossover Point: The element in F at which its membership function is 0.5, it is

called a crossover point of a fuzzy set.

e Fuzzy Singleton: When support of a fuzzy set AinFisa single point in F with

a membership function of one, it is known as a Fuzzy singleton.

e Core: The core of a fuzzy set /1 denoted by C’ore(g), is a set of all points of F with
unit membership degree in A. So, it is defined as Core(A) = {z € F | pi(x) =1}

e Normality [108]: A fuzzy set A be normal if its core is non-empty, i.e., there

exists at least one element x € F, such that pz(z) = 1.

e Convexity [108]: A fuzzy set A in F is said to be convex if and only if for any

two ellement x1, 2o € F. pu7(x) satisfies the following inequality

i Az + (1 — Nag) > min{pz(z1), pz(x2)} for 0 <A <1
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Based on above properties of a fuzzy set, the definition of fuzzy number is given below

Fuzzy Number [108]: A fuzzy subset A of real number % with membership function

pi R —[0,1] is called a fuzzy number if
(a) There exist an element x( such that p;(zg) =1, i.e, A is normal;
(b) A is convex.

(c) py is upper semi-continuous and

(d) S(A) is bounded, here S(A) = cl{z € R : pz(x) > 0}, and ¢l is the closer operator.

Some particular examples of continuous fuzzy numbers defined on real number set

are as follows:

General Fuzzy Number (GFN) [110]: For any fuzzy number A, if there exist four
numbers ay, as, as, ay € R and two functions f(z) : ® — [0, 1] and g(x) : R — [0, 1] where
f(x) is non decreasing and g(x) is non increasing, such that its membership function p ;(2)

is defined in a following manner (cf. Figure 2.1):

Figure 2.1: Membership function of a GFN
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0 for x < ay
f(x) for a; <z < as
pilz) =< 1 for as <z < ag (2.1)
g(x) for as <z < ay
L O for ay < © < 0

The functions f(x) and g(x) be called the left and right functions of the fuzzy number A

respectively.

Linear Fuzzy Number (LFN) [107]: For any fuzzy number A, if there exist two
numbers aj, az € R and is defined by its continuous membership function pz(z) : ® —

0, 1] as follows (cf. Figure 2.2):

|0

0 ay a3 x

Figure 2.2: Membership function of a one side (left) TFN i.e, LFN

1 if vx<ay
pilx) = ;:2__51 if o <z<a (2.2)
0 if x> as

Triangular Fuzzy Number (TFN) [21]: For a fuzzy number A, if there exist three

numbers ay, az, a3 € RN and it is defined by its continuous membership function p () :
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R — [0,1] follows (cf. Figure 2.3), it is known as triangular fuzzy number (TFN).
Centraly, it is represented by the triplet (aq, as, as)

0 ay ag a3 X

Figure 2.3: Membership function of a TFN

Tr—ap .
if ar <z < a
o — Ay
as — T .
pi(z) = ’ if ay <z <ag (2.3)
a3 — ag
0 otherwise

Parabolic Fuzzy Number (PFN): For a fuzzy number A, if there exist three numbers
ar, az, a3 € N and it is defined by its continuous membership function pz(z) : ® — [0, 1]
follows (cf. Figure 2.4), it is known as parabolic fuzzy number. Centraly, it is represented

by the triplet (ay, as,as)

03

a3 a3 'EE

Figure 2.4: Membership function of a PFN
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oy — T

1—(— )2 fora; <z <ay
o — a1
I —a
pi(r) = 11— 2)2 for ap < z < as
a3 — Q9
0 otherwise

Trapezoidal Fuzzy Number (TrFN): [110] For a fuzzy number A, if there exist
four numbers ay, as, as,as € R and it is defined by its continuous membership function
pi(x) : R — [0,1] follows (cf. Figure 2.5), it is known as trapezoidal fuzzy number.

Centraly, it is represented by the triplet (a1, as, as, aq)

T — ay
for a1 <z < ay

ag — ap

1 for ay < a < as

ﬂ'A(x) = 9 a4 — T (2'4)

for azs < a < ay

agq — as

0 otherwise

4 a7 a3 ag  x

Figure 2.5: Membership function of a TrFN
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Arithmetic of Fuzzy Number:

Hsieh [59] presented Function Principle in fuzzy theory for computational model avoiding
the complications which arc caused by the opcrations using Extension Principle. The
fuzzy arithmetical operations under Function Principle for two trapezoidal fuzzy num-
bers A = (a1, a9, a3, a,s) and B = (b1, bo, b3, by) are as follows:

Here &, 6, ® and @ are the different fuzzy arithmetical operations by Function Principle.

(i) The addition of Aand Bis A® B = (a1 + b1, as + by, a3 + bs,aq + by), where

ai, as, as,ag, by, by, b3 and by are any real numbers.

(ii) The multiplication of Aand Bis A® B = (c1,¢9,¢3,¢4), where ¢; =min T,
co =min T, ¢ =max Ty, ¢4 =max T for, T = {aiby,ar1by, asby,a4bs}, Ty =
{agbs, asbs, aszbs, asbs}. Also, if ay, ao, as, ag, by, bs, by and by are all positive
real numbers, then A®B = (@11, agbs, azbs, asby), where A® Bis a trapezoidal

fuzzy number.

(iii) A™ = (a1™, a2", as", as™) if a1, as, as and a4 are all positive real numbers and n is

a natural number.

(iv) —B = (—by, —bs, —bs, —by), then the subtraction of A and B is defined by
Ao B = (@ — by, ag — by, a3 — by, aq — by), where aq, az, ag, aq, by, by, by and by are

any real numbers.

(v) % = (X, AL i), where by, by, by and by are all positive real numbers. If aq, as,

as, as, by. by, by and by are all positive real numbers, then the division of Aand B

is Ap B = (4,42, %) provided 0 ¢ B
~ ai, pas, pas, pa. for p >0

(Vi) p@ A = (pai, pas, pas, pay) p
(pau, pas, pas, pay) for p < 0.
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2.1.4 Overview of fuzzy inference process

Human knowledge is often represented imprecisely. In real life problems some vague
terms such as high,medium,low etc are used.The target of fuzzy inference process is to

form it into natural language expressions of the following type,
IF premise (antecedent) THEN conclusion (consequent)

It is commonly referred to as IF -THEN rule-based form. A fuzzy inference process
compriscs of three parts(according to Mamdani [91]): (i)Fuzzification of input variables,
(il)Rule-strength and fuzzy output calculation and (iii)Difuzzification of the fuzzy out-

put. Fuzzification of input variables:

m Qutput
| |

Rule-strength
— | and fuzzy output —

calculation

Difuzzification of
the fuzzy output

Fuzzification of
input variables

Figure 2.6: Fuzzy logic system

When a crisp value of the transportation costs are given as an input, it must correspond

to someone or more antecedent of the rules including some membership grade.

Rule-Strength Calculation:
After fuzzification of the inputs, the degree of belongingness to which every part of the
antccedent is satisfied to cach rule is known. The degree of a rule is the rule strength of

the corresponding rule. If there are more than one antecedent, then the rule strength is
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calculated by standard fuzzy intersection operator (min operator) as
R R
pir, = min{py’ (@), py'(y), ...}

where ;5 (), ¥ (y), ... are the membership values of inputs x, y, ... to the antecedent
A, B of the rule R;. Hence. the output is a single truth value for each rule. This is
known as the rule strength of the corresponding rule(where the rule strength lie between

0 and 1), the membership value of fuzzy output is calculated using the relation

ma:zzw{mz'n{pR"A(x), JLR; <vveens HVre X

R

where X is the universal set and u}ji (x), p'i are respectively the membership values of

the consequent A to the i-th rule R; and the rule strength of that rule.

2.1.5 Approximated Value of Triangular Fuzzy Number (TFN)

The approximated value of a triangular fuzzy number a = (ay,as,a3) is given by

2
a= W, according to Kaufmann and Gupta [67].

2.1.6 Zadeh’s Extension Principle

One of the basic concepts of fuzzy set theory which is used to generalize crisp mathe-
matical concepts to fuzzy sets, is the extension principle. Let X and Y be two universes
and f : X — Y be a crisp function. The extension principle tells us how to induce
a mapping f : P(X) — P(Y), where P(X) and P(Y) are the power sets of X and Y
respectively.

Following Zadeh [155], the fuzzy extension principle is as follows:
We have a mapping f : X — Y, y = f(z) which inducc a function f : A —» B such
that B = f(A) = {((v, n3®))ly = f(),z € X)}, where
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sup pi(e) i 7N y) # @,
pply) =9 z € f )
0 otherwise
In general, if f: X; x Xy x ... x X, — Y, and I,Z;,....,ZL are fuzzy sets in

X1, Xo, ... , X, the extension principle is defined as f : A — B such that
B = {((y, ug(W)ly = f(x1, 22y oy ), (21, T2, .y ) € X))}, where

sup min{p (1), pz(ra), o pz(za)} i fH(y) # @,
ﬂB(y) = (x1;$27“'7xn) € f_1<y)
0 otherwise
v A
Hp0) )

Hy (x)

[~~~ X

Figure 2.7: Fuzzy Extension Principle

Example 2.1: Let f(x)=2? and Abe a symmetric triangular fuzzy number with mem-
bership function

| — x|

1— if |a —2z| <a

pi(x) =
0 otherwise
Then using the extension principle we get,

pi(vy) ity >0

ps(y) = ,
0 otherwise
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1= e gl < oy = @) 2 0

0 otherwise

2.1.7 a-cut of Fuzzy Number

The a-level set / o~ cut of a fuzzy number Ais a crisp set and it is defined as A% = {z €
R : pi(r) > a}. In other words, the a-level set / a- cut is a non-empty bounded closed

interval (Wu [145]), which is denoted by A® = [A%, A2], provided A is a closed fuzzy

number. Here, A? and Af; are the lower and upper bounds of the closed interval and
Af =inf{r e N: pz(x) > a}
Af =sup{z e R: py(z) > a}.

Proposition 2.2: (Wu [145]) If A and B be two closed fuzzy numbers, then A & B,
Ao B and A® B are also closed fuzzy numbers. These are defined as

(AeB)" = A% @ B = (A3 + B}, Ay + BY).
(AeB)" = A ey Bo =43 + By, A7 + B
(AeB)" = A"y B°
= [min{A7 B}, AL Ay, AGAT, AGAG Y
maz {A} By, B By, Ay AL, Ay Ay ]
where, @, © and ® are binary operations between two fuzzy numbers or one real and

another fuzzy number.

2.1.8 Defuzzification Methods

By this mecthod any fuzzy valued function is converted to corresponding crisp valued

function. This section, discusses some significant defuzzification methods as follows
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(i) The Nearest Interval Approximation:

Here, in this method a fuzzy number is cstimated by a corresponding crisp interval.
Suppose that A and B be two fuzzy numbers whose a-cuts are [A%, A%] and [BY, BY]
respectively. Then according to Grzegorzewski [47], the lenth of the space between A

and B can be elucidated as:

1 1
d(A, B) = \//0 (A% — B9)2da +/ (A¢ — B2)2da
0

In this approach, for a fuzzy number A, a closed interval C’d(fl) is determined in such
away that it is the nearest to A on the basis od distance d. Each interval is also a fuzzy

number with constant a-cut V o € [0, 1]. Hence (Cy(A))* = [C¢, Cf]. Now, with respect

to Cf and (7, the following matric is minimized.

1 1
d(A, Cq(A)) = \/ / (Ag — C¢)2da + / (A — Cp)2da
0 0
In order to minimize d(A, Cy(A)), it is sufficient to minimize the function D(C, C%) =
d>(A, Cy(A)). The first partial derivatives are given by

D o o 1
M — _2/ A%da +2C; and
5Cy 0

5D(C3,C8) _ . 8D(CE,CF)
5Cs 5C8

o « 1
dD(CE, Cp) :_2/ A% dor+ 20y
0Cy 0

Solving, = 0, we get the following

C; = [} Agda and C; = [ Apda.

0D*(C7. Cp) 0D*(C7, Cp)

Again since, 50?2 =2>0, 5C2 =2>0
S 71)2 * * S 71)2 * * T2 * % 2
g PDPCEC) BDHCLLCo)  (SDACLCN' _,
5C% 6C? 6CL.0Cy

so, D(C%, C%) is a convex function of C¢ and C2. Henceforth, D(C¢, C%) ie., d(A, Cy(A))

has global minimum at C'j, C}; . Therefore, the nearest interval is given by

1 1
Cy(A) = [ /O A%da, /O ACU“da}
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so, with respect to metric d, this is nearest interval approximation of fuzzy number A.
Similarly, if A = (a1, aq, a3, ay) be a fuzzy number, the a-level interval of A is defined as
(A)* = [A%, A%]. When A is a TrFNs, then AY = a1 +a(as—ay) and AY = ay—a(ag—as),
for0< o <1.

By nearest interval approximation method, lower and upper limits of the interval are

given by respectively as
1 1 1
Cf = / Afdo = / [a1 + a(ag — a1)]da] = 5(@2 +ap)
0 0

1 1
1
and o = / Al da = / [as — alay — a3)]da] = §(a3 + ay)
0 0

Using the above definition, the nearest crisp interval number considering A as a trape-

zoidal fuzzy number is [“11%2 9stas],

ai1taz ag+tas ]

Similarly, for a triangular fuzzy number A, the nearest interval approximation is [#25%2, %27

(ii) Signed Distance:
Following Yao and We [151], if two fuzzy numbers A and B be represented by A=
U [4%(),A2(a)] and B = |J [B2(a), B%(a)], then the signed distance of A and

acl0,1] «€l0,1]
B is the distance between the mid points M(A(«)) = M of [Ap(a), Ap(a)]

and M (B(«a)) = w of [Br(a), By(«)] over av in [0,1], where [Af(«), Ay ()] and
[Br(a), By(a)] arc the real intervals corresponding to [A¢ (o), A% («)] and [BY («), By (a)]

respectively, which is as follows

AWAB) = 1y [ Aw@) - M(B(@)lde
- /0 [As(a) + Au(a) - By(a) - By(a))da. (2.5)

In particular, if A be a TFN and 0 be a TFN represented by (aq,az,a3) and (0,0,0)

respectively, then d(A,0) = BTy

(iii) Graded Mean and Modified Graded Mean Integration Representation:
In addition, Chen and Hsieh [23] introduced Graded Mean Integration Representation
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method based on the integral value of graded mean a-level of generalized fuzzy num-
ber. The graded mean a-level value of generalized fuzzy number a = (ay, as, as, ay) is
Q [%ﬁ@)} for all @ € (0,1]. So, the graded mean integration representation of TrEN

ais

P(a) = /1 a {a‘(a’) —; a*(a)} dae/ /1 ada = é[al + 2a9 + 2a3 + ay). (2.6)
0 0

Here, equal weightage has been given to the left and right parts of the membership

function. But the weightage depends on th attitude or optimism of the decision maker.

For this reason it has been modified to a [ka™(a) + (1 — k)a™(«)], where k € [0,1] is

called the decision maker’s attitude or optimism parameter. It is known as the modified

graded mean a-level value of the fuzzy number a. The value of k closer to 0 implies that

the decision maker is more pessimistic while the value of k& closer to 1 means that the

decision maker is more optimistic. Therefore, the modified form of (2.6) is

Jo alka=(a) + (1 — k)a*(a)] da
j; ada

b(a) =
= ;[k(al + 2a5) + (1 — k) (2a3 + a4)]. (2.7)

The method is also called as k-preference integration representation.

Defuzzification of fuzzy inference:
For calculation of transportation cost, the fuzzy inference module (for single input to
single output) is given below-
Stepl: Take transportation distance as input and transportation cost as output.
Step2: Calculate the membership values to the fuzzy sets High, Medium
and Low for finding cost.
Step3: Evaluate the rules and find the rule strengths of each rule.
Step4: Calculates the membership functions of the fuzzy amount High,
Mecdium, Low which arc represented by the rules with

non-zero strength.
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Step5: Apply fuzzy union operator to find the fuzzy output.
Step6: Apply centroid method to find the defuzzified cost.

(iv) Centroid Method:
If Abea fuzzy number defined on ¥, then the centroid of A is defined by

o0

[ apz(a)de
CA)=">2—"—. (2.8)

For a triangular fuzzy number A = (@1, as, az) with membership function defined in (2.3),

then C'(A) = w

2.1.9 Possibility / Necessity / Credibility in Fuzzy Environment

Considering the degree of membership p7(z) of an element z in a fuzzy set g, defined
on a referential U. Three interpretations of this degree (Dubois and Prade [34]) can be

found in the literature as following

(i) Degree of similarity: On the basis of the degree of similarity, p 7(x) is the degree
of proximity of x to prototype elements of A. Basically, this is the oldest semantics of

membership grades since Bellman et al. [12].

(ii) Degree of preference: On the basis of the degree of preference, A represents a set
of more or less preferred objects (or values of a decision variable ) and j ;(u) represents
an intensity of preference in favor of object u, or the feasibility of selecting u as a value
of x. Fuzzy sets then exprese criteria or flexible constraints. This view is the one later
put forward by Bellman and Zadeh [13]; it has given birth to an abundant literature on

fuzzy optimization, especially decision analysis and fuzzy linear programming.

(iii) Degree of uncertainty: This interpretation was proposed by Zadch [155] when

he introduced the possibility theory and developed his theory of approximate reasoning
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(Zadeh [153]). pz(u) is then the degree of possibility that a parameter x has value w,
given that all that is known about it, is that ‘@’ is A. Then the values encompasses by
the support of the membership functions arc mutually exclusive, and the membership
degrees rank these values in terms of their respective possibility. Set functions called
possibility and necessity measures can be derived so as to rank-order events in terms of
unsurprising-ness and acceptance respectively.
Possibility, Necessity, Credibility and Expected Value of Fuzzy Parameter:
Let R represents the set of real numbers. A and B be two fuzzy numbers with
membership functions i 7 and pt5 respectively. Then taking degree of uncertainty as the
semantics of fuzzy number, according to Dubois and Prade [32,33], Liu and Iwamura

[86,87], Zadeh [155], possibility is defined by:

Pos (A B) = sup{min(p;(z), pp(y)), 2,y € R,z xy} (2.9)

where the abbreviation Pos represent possibility and x is any one of the relations >, <

,=,<,>. Analogously, if B is a crisp number, say b, then
Pos (A xb) = sup{p(z),z € R,x*b} (2.10)

On the other hand, necessity measure of an event A B is a dual of possibility measure.
The grade of necessity of an event is the grade of impossibility of the opposite event and

is defined as:

Nes (A% B) =1 —Pos (A B) (2.11)

where the abbreviation Nes represents necessity measure and A * B represents comple-
ment of the event A x B.
On the basis of possibility and necessity measure, the credibility measure function

Cr, analyzed by Liu and Liu [80], is defined as follows:

If we denote the support of a by R = {r € R|ua(y) > 0}, the credibility measure is
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given by
Cr(A) = ; Pos(A) + Nes(A) (2.12)

for any A € 2%, where 2% is the power set of ® and Cr satisfies the following two condi-
tions:

i) Cr(¢) =0 and Cr(R) =I;

ii)A C B implies Cr(A) < Cr(B) for any A, B € 2%

Tthus, Or is also a fuzzy measure defined on (R,2%). Besides, Cr is self dual, i.e.,

Cr(A) =1— Cr(A°) for any A € 2%,

In this thesis, based on the credibility measure (2.12) the following form is defined

Cr(A) = | pPos(A) + (1 — p)Nes(A) |, (2.13)

for any A € 2% and 0 < p < 1, where p is the degree of pessimism. It also satisfies the
above conditions.
For the triangular fuzzy number a = (ay,as,as)) and the crisp number r, Pos(a > r)

and Nes(a > r) are given by

1 if r<ay
~ ag—r1r .
Pos(a >r) = it ay<r<as (2.14)
a3 — a9
0 if r>ay
1 if r<aq
- az —1r
Nes(a>r) = it a <r<a (2.15)
Ao — Qq
0 it r>a

The credibility measure for of the events @ > r and a < r for the TFN @ can be defined
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as

1 if r<a
_ 1 —
G2 = P4 _ ( pIr if a<r<as
Cr(a>r)y= ®—®0 G270 (2.16)
plas —) : ,
—Z if ay <r<as
asz — g
\ 0 if r>as
( .
0 if r<agq
M it a; <r<ay
Cr(a <r)= az — ap (2.17)
= o — 1 .
pas = a2 ( pIr if ay <r<oas
a3 — Q9 a3 — Q9
\ 1 if r>as

Let X be a normalized fuzzy variable. Then expected value of the fuzzy variable X is

defined by

E[X] = /Cr(X > r)dr — / Cr(X <r)dr (2.18)

When the right hand side of (2.18) is of form oo — oo, the expected value is not de-
fined. Also, the expected value operation has been proved to be linear for bounded fuzzy
variables, i.c., for any two bounded fuzzy variables X and Y, we have E[aX + bY | =

aE[X] + bE[Y] for any real numbers a and b.

Lemma 2.1: Let a = (ay,az, az) be a triangular fuzzy number and 7 is a crisp number.

The expected value of a is given by

1
Ela] = 5|(1—=pla+ax+pas |, 0<p<l. (2.19)
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Proof. From (2.18), by using (2.16) and (2.17), we have

Ela] =

0

50 0
/C’r(& > r)dr — / Cr(a <

r)dr

as

a1
= /CT(& > r)dr + /C’r(& > r)dr + /CT(& > r)dr +0
0

a1

a2

/ ay — par _
o — a1

= 2[(1—p)a1+ag+pa3}

e [l

az

Lemma 2.2: For two TFN @ = (a1, as, as) and b = (by, by, bs), Pos (@ > b) > ¢

iff —ea=h

[ —" > €, ((IQ < bg, as > bl)

Proof: Let us consider, Pos(a > IN)) > €.

From definition (2.14), if @ = (a1, a2, as) and b = (by, by, bs) be two TFNs then

i
i
1
3
i

H(x),

4 (x)

] by ar hy

O

Figure 2.8: Pos (@ > b)

1
5SS p) — . az=b
Pos (@ > b) Gl e
0
Hence, Pos (a > B) >eiff (= % > €,

54

for ag > by
for Ay < bg, as > by

for as S b1

(CLQ < bg, as > bl)



2.1. PRELIMINARY

Note: Pos (a > b) > eiff ¢, = ;2:121 >e€, (b <a<b).

Lemma 2.3: For TrFN @ = (a1, as, as, ay) and a rcal number b, then Pos (@ < b) > € iff
% > (ag <b<ay).
Proof: Let us consider, Pos(a < b) > e.

From definition (2.14), if @ = (a1, as, az,as) be TrFN and b be the crisp number then

Figure 2.9: Pos (a < b)

Pos (a <b) = {sup(min(ps(z),1)), z.b € R,z <b}
0 for —c0o<b<a
= § m= ot fora <b<a (2.20)
1 otherwise,

which is depicted in the Figure 2.9. Therefore, it is clear that the event (—oo < b < ay)
is not acceptable ( impossible event ) with respect to the fuzzy event a < b asa < b
which implies the value of b > lcast valuc of a. On the other hand, the cvent b > as is
certain case of the fuzzy event @ < b. Hence. we consider the case a1 < b < a9, which
gives Pos (@ < b) = 2% Therefore, Pos(a < b) > € = % > €.

as—ai

Lemma-2.4: If a = (ay,as,as3,a4) and b = (by, bo, b3, by) be TrFNs with 0 < a; and

- by —
0 < by then Nes(a > b) > « iff L <1l-a.
ag —ay; + by — by

Proof: We have Nes(a > b) > o
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That is, {1 — Pos(a < b)} > «
= Pos(a<b)<1l—a«
So from Figure 2.10 it is clear that
Pos(a <b) =6 = by — an

a/2—01+b4—b3
and hence the result follows.

FPuw  we

Obt by 8 by 8, by 23 a3 a4 3

Figure 2.10: Measure of Pos(@ < b)

Lemma-2.5: If a = (a1, a9,a3,a4) be a TrEN with 0 < a; and b be a crisp number,
b— aq

then Nes(a > b) > « iff <1l-a.

a9 — A1
Proof: Proof follows from Lemma-2.4.

Note 2.1: Asa TFN a = (ay, az, ay), is a special case of a TrEN a = (ay, as, az, ay) with
as = ag, so results of Lemma-2.3,2.4,2.5 are remain valid for a TFN a = (a1, as, ay), if

we replace az with as.

Lemma 2.6: When the membership functions of @ and b in [a — Aa,a, a + Adl, and

[b— Ab,b, b+ Ab] are linear, then

Pos(b

7\
S
N~—

Pos (a ~ b) =
Pos(b

NV

2
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Proof: For two TEFN, a and E, a<bhmeans a < b . Hence, we have

p

1 fora=1»
_ atAa—bitAb for b—Ab<a<a-+Aa
Pos (a/ ~ b) = Cl Aa+Ab
C?»:%—ZN) for b—Ab<a—Aa<a<b
0 otherwise

\

Pictorial representation is present in Figure 2.11. Similarly, for the second case we need

F S

1

Ao N

b—-Nnbh & B a+ita

]
2

Figure 2.11: Measure of Pos(a ~ b)

to interchange only a and b.

If the attitude of a DM is toward optimistic, the equation (2.11) is the measure of best
case and in pessimistic sense equation (2.9) gives the measure of worst case of that event.
Now, if we consider p the optimistic and pessimistic index to determine the combined
attitude of DM, then the measure of Weighted Possibility and Necessity (WPN) of @ xb
is given by

W PN (ab) = pPos(a xb) + (1 — p)Nes(a  b) (2.21)
The optimistic (pessimistic) fill rate can be used to measure the maximum (minimum)
chance to accomplish the target of the SC. The fill rate also determined as the weighted
average of optimistic and pessimistic fill rates as shown in the following Figure 2.11

Note 2.2: In particular when p = 0.5, WPN is known as Credibility of that event, i.e.,

Cr(axb) = 5(Pos(Zi xb) + Nes(a b)) (2.22)
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FOSSIBILITY

+ MECESSITY
CREDIBILITY

Figure 2.12: Possibility / Necessity / Credibility Weighted fill rate

Integration of a Fuzzy Function:
Let f(z) be a fuzzy function on [a,6] € R to R such that f(z) is a fuzzy number,
i.e., a piecewise continuous convex normalized fuzzy set on . Then integral of any

continuous a-level curve of f(z) over [a,b] always exists and the integral of f(z) over

[a,b] is then defined to be the fuzzy set

T(a,b) = { ( / (o) (@) + / (o) (@), a> } (2.23)

The determination of the integral I (a, b) becomes somewhat easier if the fuzzy function
is assumed to be LR type. We shall therefore assume that f(z) = (fi(z), f2(2), f3(2)) 1R
is a fuzzy number in LR representation for all z € [a, b], where f1(z), fo(z) and f3(z) are
assumed to be positive integrable functions on [a, b]. Dubois and Prade [31] have shown

that under these conditions

I(a,b) = ( / ’ fi(z)dz, / ’ fo(z)dz, / b f?,(@dx)m (2.24)
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2.1.10 Rank of a fuzzy number

There are several methods available for ordering the fuzzy numbers. To compete the

order of two fuzzy numbers, we introduce a rank value for each fuzzy number. We

introduce a new ranking formula for fuzzy numbers. Let us consider a trapezoidal fuzzy

number A = (a1, a9, a3, ay). Ranking of A is calculated by following algorithm :

Step-1 : Calculate the mean position [X j = @+e2Faata]of the fuzzy number along
X-axis.

Step-2 : Calculate the spread (S7 = a4 — a1) of the fuzzy number.

Step-3 : Calculate the area [A y = 24+9:-9-02] of the fuzzy number.

Step-4 : Calculate the ranking value (R 3) of the fuzzy number by the following formula.
R;Z%{(QXYX—I—SK)—I—AZ} (2.25)

Property -1 :The rank value of any fuzzy number (a1, as, as, ay)is less or equal to a4
Proof : Let A = (a1, as, as, ays) be a trapezoidal fuzzy number where a1 < as < ag < ay.
Then from the above definitions:

The ranking value is given by

1

Ry = {@x X5+ 50+ 45

1 1 1

:§{2>< Z(a1+a2+a3+a4)+(a4—a1)+§( 1+ a3 —a; —a)}
1.1 1

= g 5(@1 + a9 +as + a4) -+ (a,4 — al) + 5(&4 +as — a; — Clg)} (226)
1

= 5{2 * (aq +ag —ar)}
1

< 5(3 * ay) las — a1 < ay —ay < a4

< ay

Property -2 :The rank value of any fuzzy number (ay, as, as, a4)is positive when ay, as, ag, a4
arc all positive

Proof : Let A = (a1, ag, a3, ayq) be a trapezoidal fuzzy number where a1 < az < az < ay.
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Then the ranking value is given by

a; — az)}

1
R _g{(QXXZ"‘SA)"‘AA}

1 1 1

= 5{2 X Z(al +as + az +ay) + (ag — a1) + §(a4 +as —
1.1 1

= §{§(a1 +ag + a3+ aqg) + (as — aq) + 5(@4 +az—a; —ay)} (2.27)
1

:5(2*a4+a3—a1)
1

> 5(2 * a4) [CL;; —a; > O]

>0 [ag > 0]

Example-2.1: The order relations of three fuzzy numbers A = (0.4,0.5,1), Ay =
(0.4,0.7;1), 12(3 = (0.4,0.9,1), is represented in Figure 2.12. The rank value of three
fuzzy nunbers are Ry = 0.722, Ry = 0.767, Rz = 0.811 (Followed 2.5). Hence

Al < Ag < Ag.
12
] R.—0.767
0.8 !\ /\‘
2 os r,=0.723 NN R;=0.811 N
= o [ /7N -
0.2 l’/ \\ s
Y Y . W
o o1 az 03 a4 as o6 o7 o8 asgs 1 1.1

Figure 2.13: Order relation of three equal spread TFN

Example-2.2: The two fuzzy numbers in (represent in Figure 2.13)are respectively

A1(0.2,0.5,0.8), A5(0.4,0.5;0.6), then we have: Ry = 0.633, Ry
A > A,

os AR
g o6 R1=0,633// \\
2 e NN at
oz Ay | AN Az
. / ‘i{;= 0.43 3\ \ i

Q

0.1 o.z 0.3 o.a 0.5 a6 o7 0.8 = =1

Figure 2.14: Order relation of two equal mean TFN
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Example-2.3: The three fuzzy numbers in (represent in Figure 2.14) are respectively

A1(0.5,0.7,0.9), A(0.3,0.7,0.9), A5(0.3,0.4,0.7,0.9), then we have: Ry = 0.667. Ry
0.722, Ry = 0.733.

1alX)

Henee Ay < Ay < As.

Al

AD
AS

1 M-Axis

Figure 2.15: Order relation of three fuzzy number

Example-2.4: The three fuzzy numbers in (represent in Figure 2.15) are respectively

A1(0.3,0.5,0.8,0.9)

0.678, Ry = 0.533,

, 45(0.3,0.5,0.9), A3(0.3,0.5,0.7), then we have: R = 0.767, Ry, =

hence A3 < Ay < A;.

1z
1
0.8 ‘\\. S B,=0.767
Z os \\%. )
= 4 \ az
0.4 \ A
o2 . a1
B.=0 533
o \ \ -Axi
o 0.1 0.2 0.3 0.4 0. 0.6 Q.7 o.8 o9 1

Figure 2.16: Order relation of three fuzzy number

Example-2.5: The two fuzzy numbers in (represent in Figure 2.16:) are respectively

A1(0.3,0.3,1), A5(0.1,0.7,0.8), then we have: Ry = 0.706, R4, = 0.706, hence A; = Aj.

1.

[

P,=0.706 B.—0_.706
Z o >\
= 0.4 // \\ Al
1 = az
(v] / \ \ N-Axis

o 0.1 0.2 0.3 0.4 0.5 0.5 0.7 o.e =] 1

Figure 2.17: Order relation of two different spread TFN
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2.1.11 Type-2 fuzzy set (T2FS)

In an universal set X, a type-2 fuzzy set Ais a fuzzy set in which the membership
function of an ellement /point of Ais also fuzzy in nature, i.e., membership grade of each
clement /point is no longer a crisp value but a fuzzy sct. This membership function is

called type-2 membership function. A T2FS A is defined as (Mendel and John [99])

A= {((@,0), p3(x,v)) : o € X, %0 € G € [0,1])

where 0 < uj(x,v) < 1 is the type-2 membership function, is termed a secondary
membership function having domain G, C [0,1] is the primary membership of z € X,
so that all v € G, are the primary membership grades of the point x. A can also be

written as (Mendel and John [100]) A = {(.CL,[A/?i(JZ)) | Vo € X'} or

g B /mEX ﬁj(w)x N /mEX |:/1;€Gm fm(v)/v] !

where 0 < f,(v) < 1 and for a particular x = 2’ and v = v € Gy, fu (V') = uj(:b’, V') is
called secondary membership grade of (z/,v'). [ and [ denote union over all admissible
@ and v. For discrete universes of discourse [ is replaced by Y.

When all the secondary membership grade values are 1 (i.e. f.(v) = 1,Y(x,v))
such T2FS is called interval type-2 fuzzy set (IT2FS) (Mendel et al. [101]). A IT2FS
is characterized by the footprint of uncertainty (FOU) which is the union of all of the
primary memberships function G, i.e. the mathematical form of FOU of a IT2FS E is

as

FOU(j) = G..

reX
Regular fuzzy parameter (RFP) (Liu and Liu [84]): For a possibility space
(1,p, Pm), where 7 is nonempty set of points, p is power set of 7 and possibility mea-
sure (Pm) (Zadeh [153]) of a fuzzy event possibility space, a regular fuzzy parameter
n is defined as a measurable map from the set 7 to [0, 1] in the sense that for cvery

t € 10,1], one has {y € 7 : 77(y) <t} € p. A discrete RFP can be represented as follows
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N~ propa e po , where p; € [0,1] and p; > 0,V7 and max{u;} = 1.

H1 M2 oo Un
If 7= (p1, p2, p3, pa) With 0 < p; < pa < p3 < py < 1, then 7 is called a trapezoidal RFP.

If 9 = (p1, p2, p3) with 0 < p; < p2 < p3 < 1, then 7 is called a triangular RFP.
Example 2.6: Suppose E = {(2,/i5(z)) : € X} be a type-2 fuzzy parameter (T2FP)
where X = {6,7,8} and the primary memberships (possibilities) of the points of X are
Jo = {0.3,0.4,0.5}, J; = {0.6,0.7,0.9}, Js = {0.4,0.6,0.7,0.9}. The secondary member-
ship function of the point 6 is

0.3 04 0.5

0.5 1.0 038
i.e., 15(64,0.3) = 0.5, 1%(6,0.4) = 1 and ,LLZ(6,0.5) = 0.8. Here p5(6,0.3) = 0.5 means

fi(6) = p=(6,v) = (0.5/0.3) + (1.0/0.4) + (0.8/0.5) ~

secondary membership grade that the point 6 has the primary membership 0.3 is 0.6. So
0.3 04 05

A takes on the value 6 with membership , which represents a RVP.
0.5 1.0 0.8
Similarly,
- 0.6 0.7 0.9
MEW) = u;‘;(?, v) = (0.7/0.6) + (1.0/0.7) + (0.8/0.9) ~
0.7 1.0 0.8

Ji=(8) = p=(8,v) = (0.5/0.4) + (0.6/0.6) + (1.0/0.7) + (0.7/0.9)

04 0.6 07 0.9
0.5 06 1.0 0.7

So discrete T2FP E is given by A = (0.5/0.3)/6+4(1.0/0.4) /6+(0.8/0.5) /6+(0.7/0.6)/ 7T+
(1.0/0.7)/7 + (0.8/0.9) /7 + (0.5/0.4) /8 + (0.6/0.6) /8 + (1.0/0.7) /8 + (0.7/0.9) /8.
A is also written as
6, with fi:(6);
A= 7, with f£(7);
8, with fi+(8);

Example 2.7: A type-2 triangular fuzzy parameter 1 = (p1, p2, p3; 01, 0,), where py, pa, p3 €
R and 6,0, € [0,1] are two parameters characterizing the degree of uncertainty that 7
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takes a value x and the secondary possibility distribution function ﬂ,,:l(st) of 77 is defined
as follows

g:(x):(m_elmm{ P P2 N PO TP g min (P P2 }) (2.28)
7 P2 —p1 p2—p1 p2—p1 p2—p1’ p2—p1 p2—p1’ p2—p1

for any x € [py, po], and

ﬂ:(x):</73—x _elmm{px—m::Jc—pz}~ p:;—:]c}p:a— 0, mm{iﬂﬁ — P2 }> (2.29)
P3 — P2 P3—p2 P3—pP2° P3—pP2 P3— P2 pP3 —p2 P3— P2

for any = € (pa, ps),

A type-2 triangular fuzzy parameter is an extension of a triangular fuzzy parameter
(TFP). In TFP (p1, pa, p3), the membership grade of cvery point is a fixed number in
[0,1]. However in a type-2 triangular fuzzy parameter n= (p1, p2, p3; 01, 6,), the primary
memberships of the points are no longer fixed values, instead they have a range between
0 and 1. Here 6, and 6, are used to represent the spreads of primary memberships of
type-2 TFP. Obviously if 6, = 0, = 0, then type-2 TFP 7 becomes a TFP and the
equations (2.28) and (2.29) together become the membership function of a type-1 TFV.
Now from equations (2.28) and (2.29), jiz(z) can be expressed as

[ (= O i 0 ) i€ )
o= | G A e ) e (el
(=2 —el,jgi’;;,,j’;; oz g2 ) i € (o, 3):
(B -opp pr a0 ) e (7l

Now we illustrate numerically the Example 2.7. Consider the type-2 TFP 0= (2,4,6;0.4,0.8).
Then the secondary possibility distribution of 7 is given by

(0.3(z — 2),0.5(z — 2),0.9(z — 2)), if z € [2,3];
R (0.5(x —2) — 0.2(4 — x),0.5(x — 2),0.5(x — 2) + 0.4(4 — 2)), if © € (3.4];
P =0 (0506 — 2) — 020z — 4), 0.5(6 — 2).0.5(6 — 2) + 0.4(x —4)). if o € (4.5);
(0.3(6 — 2),0.5(6 — ),0.9(6 — x)) , itz € (5,6;

Here secondary possibility degree of every value of z is a triangular RVP, e.g., fiz(2.5) =
(0.15,0.25,0.45), f17(5.6) = (0.12,0.20,0.36), ctc. The FOU of 7 is depicted in Fig-
ure 2.18.
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0ot
08|
0.7}
06}
E o5t
04|
03}
02|

01

Figure 2.18: FOU of n

2.1.12 Critical values (CVs) for RVPs

Three kinds of critical values (CVs) of a RVP 7 has been introduced by Qin et al. [122)]
and these are defined by:
(i) the optimistic CV of 7, denoted by C'V x [7], is defined as

OV # [1]] = supge oyl A Pm{i] > a}]
(i) the pessimistic CV of 7, denoted by C'V,[7], is defined as
CV.[] = supaepyla A Nmin > a}]
(i) the CV of 7, denoted by C'V[7], is defined as
CV[ij] = supaepoyla A Cr{i = a}]
In perticular, if 7 = (p1, P2, p3, pa) be a trapezoidal RVP. Then we have

(i) the optimistic CV*[7] = pa/(1 4 ps — p3)

(ii) the pessimistic CV,[77] = pa/(1 + pa — p1)

2p2—p : 1.
1+2(2prlpl)’ if py > 29
(iii) the CV[f] = 3 if po <1< ps;
p : 1.
1+2(pj_p3)7 lf P3 S 2
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03 04 05 08

Example 2.8: Let 7 be a discrete RVP defined by 7 =

Then for « € [0, 1],

Pm{;] Z a} :sup

r>a

Nm{q>a}=1-""

r<a

Cr{ﬁ >al=

therefore we have

CV )

CVn]

pa(r) =

pa(r) =

SuDeoyle A P > o]

p

p

p

1

04 0.7 1.0 0.6

,if a <0.5;

0.6,if 0.5 < a < 0.8;
0, if08<aua<l;

1, ifa<0.3;

1

0.6,if 0.3 < <0.4;
0.3,if 0.4 < a < 0.5;
0, if0bh<a<l,;

, if  <0.3;

0.80,if 0.3 < o < 0.4;
0.65,if 0.4 < o < 0.5;
0.3,if 0.5 < a < 0.8;
0, if08<a<l;

SUP4e[0,0.5] [ant]v SUP,e[0.5,0.8] [a A 0.6] Vv SUPne[0.8,1] [a A O]

0.5v0.6Vv0=0.6

SUPqe[0,1] [a A Nm{ﬁ > afl

(2.31)

SUPqc[0,0.3] [anl]v SUPqe(0.3,0.4] [a A 0.6] v SUPqc[0.4,0.5] [aN0.3]V SUPqc[0.5,1] [a A 0]

02v04v03v0=04

SUPaeo, 1[0 A Pm{i > a}]

(2.32)

SUPqe[0,0.3] [an]V SUPqe0.3,0.4] [a A 0.80] V SUPqe(0.4,0.5] [a A 0.65] V SUPqe[0.5,0.8] [aA0.3]

V 8UD,ep0.8,0.1) (@ A O]

0.2v04Vv05Vv03Vv0=0.5
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The following theorems introduce the critical values (CVs) of triangular and trapezoidal

RVPs.

2.1.13 CV-based reduction method for type-2 fuzzy parameters

To reduce the complexity of T2FS, a common idea is to convert a T2FS into a T1FS
so that the methodologies to deal with T1FSs can also be applied to T2FSs. Qin et
al. [122] proposed a CV-based reduction method which reduces a type-2 fuzzy param-
eter to a type-1 fuzzy parameter (may or may not be normal). Let 7 be a T2FP
with secondary possibility distribution function fiz(z) (which represents a RVP). The
method is to introduce the critical values (CVs) as representing values for RFP jiz(w),
Le., OV*[z(x)], OVilfiz(x)] or C'V]jiz(w)] and so corresponding type-1 fuzzy parameters
(T1FPs) are derived using these CVs of the secondary possibilities. Then these meth-
ods are respectively called optimistic CV reduction, pessimistic CV reduction and CV
reduction method.

Example 2.6 (continued). For the T2FP A. in Ex. 2.6, 1 1(6), 14(7) and fi4(8) are
discrete RFPs. So the CVs of these RFPs can be obtained by using ($2.1.12), we have
CV*[fiA(6)] = supacipnlar A Pm{fiz(6) > a}], where

1, if a <0.4;
Pm{jii(6) > a} = 0.7,if 0.4 < a < 0.6;
0, iif06<ac<l,;

CV* [ z(6)] = supaepoqla A1V sup 4epa06l@A0.T]V sup ep6.1l A0
= 04Vv0.6Vv0=0.6
In this way, we obtain

CV*[fiz(6)] = 0.6.CV*|jix(7)] = 0.8,CV*[i5(8)] = 0.6

CVilpa(6)] = 0.4, CViluz(7)] = 0.6, CVi[fa4(8)] = 0.6
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CVIjiz(6)] = 0.4,CV[ii;(7)] = 0.65, CV[i;(8)] = 0.6

Then applying optimistic CV, pessimistic CV and CV reduction methods, the T2 FV A

is reduced respectively to the following T1FPs
6 7 8 6 7 8 6 7 8

and
0.6 0.8 0.6 04 06 0.6 04 0.65 0.6

Theorem 2.1 (Qin et al. [122]). Let 7 be a type-2 triangular fuzzy parameter defined
as 1 = (p1, p2, p3;61,0,). Then we have:
(i) Using the optimistic CV reduction method, the reduction 7; of 7 has the following
possibility distribution

140,) (2 pites
(1=0r)z+0rpa—p1 1fxe[7’“+p2,/)]'

_ p2—p1+0r(p2—x)
€T) =
unl( ) < ( 1_,’_9 )x 9rp2+ﬂ5

p3—p2+0r(z—p2)
(1+6:)(ps—z) p2+p3
\ p3—p2+Or(ps—x)’ if 7 6[ 3.

(2.34)

lf = [P 7Pz-i-ps]

’

(i1) Using the pessimistic CV reduction method, the reduction 7y of 7 has the following
possibility distribution

z=p e +p
ity i@ € o, B
. T=pr P1tp2
Ly () = < p2—p1+01(p2—2)’ ifze ( pal; (2.35)
" P37  _ifx c ( pz+p3}
p3—p2+01(z—p2)’ P2, ?
p3—z ; p2tp
oy, LT € (PP ps].

(iii) Using the CV reduction method, the reduction ns of 7 has the following possibility
distribution

(_(40)(z—p1)
p2—p1+20, (x—p1)’
%ma if v € (2522, py;

(r:sl—tzezlg;f(f:ﬁ,if z € (p, 2105);

\ pg,(j;;o:;—%, if x € (7252 py.

if € [py, 572 ];

s () = (2.36)

From the above examples it is obscrved that reduced type-1 fuzzy paramcters as ob-

tained by CV-based reduction methods are not always normalized, i.e. are general fuzzy
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parameters. For such cases, generalized credibility measure Cr is used instead of the
credibility measure. The following theorem approaches to find crisp equivalent forms of
constraints involving typc-2 triangular fuzzy paramcters. This theorem is cstablished
using generalized credibility measure for the reduced fuzzy parameter from type-2 trian-
gular fuzzy parameter by CV reduction method.
Theorem 2.2 (Qin et al. [122]). Let 7; be the reduction of the type-2 triangular fuzzy
parameter 7; = (pL, pb, p4; 0,.40,.;) obtained by the CV reduction method for i = 1,2, ..., n.
Suppose 71, 7o, ..., 7, are mutually independent, and k; > 0 for i = 1,2, ..., n.
(i) Given the generalized credibility level o € (0,0.5],

if a € (0,0.5], then Cr{>>", kin; <t} > a is equivalent to

i
1p2 §t7

i (1 —2a+ (1 —4a)0,.:)kipt + 2ak
1+ (]. - 40[)07-’1‘

i=1

and if & € (0.25,0.5], then Cr{> " kg <t} >« is equivalent to

i (1 —2a)k;pt + (20 + (4o — 1)0,,)k

iPé
<t
1+ (4(1/ — 1)0[71‘ -

i=1
(ii) Given the generalized credibility level a € (0.5, 1],
if a € (0.5,0.75], then Cr{> ", km; <t} > a is equivalent to

S~ (20 = Dkl + (21 = ) + (3= 1) )k

iPr t,
1+ (3 —4a)0,, -

i=1

and if o € (0.75, 1], then Cr{3>" ki < t} > a is equivalent to

<t

i (200 — 1+ (4a = 3)0, ) kiph + 2(1 — a)k;ph
1+ (4(1 — 3)97%‘

i=1
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2.1.14 Nearest interval approximation of continuous type-2 fuzzy parame-

ters

We search the CV-based reductions of the type-2 fuzzy parameter for approximation
of continuous T2FP by crisp interval. Then we obtain the corresponding a — cuts
of these CV-based reductions. Now we illustrate the above method with type-2 tri-
angular fuzzy parameter. Let.77 be a type-2 triangular fuzzy parameter defined as.
a — cuts = (p1,p2, p3;01,0,) . Then from Theorem 1, we have the optimistic CV re-
duction, pessimistic CV reduction and CV reduction of.7j as 1, s, 113, respectively with
the possibility distributions given. Now using the definition of o — cuts of a fuzzy pa-
rameter [145] we find « — cuts of the reductions of 7

a —cut of the optimistic CV reduction n; of n: Applying the definition of a — cuts

of a fuzzy parameter we find o — cuts of the reductions of 0y as [ (@), iy («)] where

(1+0r)p1+(p2—p1—brp1)a 0<a<0.5;

_ (146,)—0rcx J =& =
mr(a) =
(p1—=0rp2)+(p2—p1+6:p2)
! (2170,n)+9i.f 2= 05h<a<l.
(p3=0rp2)—(p3—p2—0rp2)c: )
mula) = 0-0ea o DB @S
140, ) p3—(p3—pa+0,
Utolps tsputlome - (eq < 0.5.

« — cut of the pessimistic CV reduction 7, of 17 :  « — cuts of the reductions of 7,

as [mar (), noy ()] where

p1+(p2—p1—9191)0¢’ 0<a<0.b;
,'72L<a) _ 170[0& —
m+(p21*+%1’z"lﬂﬂ)"‘7 0.5 <a<l.
p3—(ps—p2—Oip2)a 05 <a<1;
772U(a> _ 1+01(¥ ) . - Py bl
p3—<p311%i29zv3>w7 0<a<0.5

70



2.1. PRELIMINARY

a—cut of the CV reduction n; of n:  a—cuts of the reductions of 13 as [n31,(a), N3y (a)]

where

(146,) p1+(p2—p1—20,p1) .
773L<04) _ (1+6,)—26,« ’ 0<a< 0'57

' (p1—01p2)+(p2—p11+20;p2)cx
: (1—01)+291za ! , 05<a<l.
(p3—01p2)—(p3—p2—201p2)x .
773U(a) _ (1-0;)+20, ’ 05<a< 17
(rda=lnopad 2l (leqr < 0.5.

Now we know that nearest interval approximation of a fuzzy number (Grzegorzewski
[47]). A with distance metric d is given by Cy(A) = [CL, Cy], where Cf = fol Ap(a)da
and Cy = fol Ap(a)da , where distance metric d to measure distance of A from Cd(g)

is given by

d(A, Cy(A)) = \/ /O {AL(0) — CLY2da + /0 {Ay(a) = CyY2da

We can find out the nearest interval approximation of 7 for the oo — cuts of optimistic
C'V, pessimistic C'V or C'V reduction of 7 using above method.
Nearest interval approximation of 7 using « — cut of the optimistic CV reduc-
tion 7, of 77 : In this case the nearest interval approximation of 7 is obtained as [C',, Cy/]
where

1
CrL = / 1 da
Jo
_ /0.5 (14 6:)p1 + (p2 — p1 — 9"p1)ada N /1 (p1 — 0rp2) + (p2 — p1 + 97-P2)ada
o 146 —br 0 (1=0r)+bOrcx
(1 + 97-)/?1 1+ 0, p2 — pP1 — 97~p1 1+ 6,
= l - 0.50, — (1 +6;)1
6 "G o5, 02 1056, = (1 +60)in(1 550 )
— 0y — 0
f%ln(l —0.50,) + W[OMT (11— 6,)n(l — 0.50,)] (2.37)
T T
1
Cu = / muda
]
_ /0‘5 (14 0:)p3 — (p3 — p2 + f)r/)g)(yda n /1 (p3 — Orp2) — (p3 — p2 — F)r/)g)(yda
o (1+0r) — bra Jo.s (1=6r)+bra
(14 60r)p3 14 6r p3 — p2 + 0rp3 14 6r
= l 0.50, — (1 4+ 6,)1
0, n(1+0.597.) 62 [0-50- = (1 +6r) n(1+0.591.)}
3 — 0, - 0,
SR (1 - 0.50,) - W[O.S@r + (1= 0,)In(1 — 0.50,)] (2.38)
” r

Nearest interval approximation of 7 using a — cut of the pessimistic CV

reduction 7, of 7 : In this case the nearest interval approximation of 7 is obtained as
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[CL, Cy] where

1
Cr = / mrda
0

— /0.5 p1+ (p2—p1 — 91p1)adoz + /1 et 91p2)ada

0 1 —910& 0.5 1+0la

=0
- —%ln(l 4 0.50,) — W[O.wl +In(1 — 0.56,)]
! i
p1 1+6 p2 — p1+ 01p2 146,
Py R L 2.
(A O g g Ly 239)

1
Cyr = / Mmudo
0

0.5 1
0 — (03— 0o — O g — (pa — 9
:/ ps — (ps — p2 lﬂs)@da+/ ps — (p3s — p2 + lp2)ad0[
0 1— 910[ 0.5 1 + 910[

-0
= D1 = 0560) + P22 700 50, 4 In(1 — 0.56,)]

) 0

p3 1+ 0, p3 — p2 — Oip3 1+06

P - 0.50, — In(-~ 2.40
0" 050 g =) (2.40)

Nearest interval approximation of 7 using « — cut of the CV reduction 7, of 7
: In this case the nearest interval approximation of 7 is obtained as [C, Cy] where

1
Cr =/ Nz do
0
_ /.05 (1+6,)p1 + (p2 — p1 — 29"'p1)ada N /-1 (p1 —O1p2) + (p2 — p1 + 291P2)ada
0 (1+06;) —20ra 0.5 (1-6;) + 260,
146, —p1 — 20,
_ = P11 4 0,) — WW” — (14 6,)n(1+6,)]
—0 o — p1 -+ 20
+4 {)01”’2 In(1+6) + %02”’2[91 (1= 0)in(1 +6)] (2.41)
= l
1
Cu :/ muda
0
_ /'0‘5 (1 +6r)ps = (ps = p2 + 20rps)a | + /'1 (ps = b1p2) = (ps = p2 = 261p2)ax
0 (1+0r)_29r(1 0.5 (l—er)+29111
1"1‘67‘ . 3 — ‘+29T5
_ - s In(1+6,) + W["" —(1+0,)in(1+6,)]
r r
—0 —pp—20
+p3270lm21n(1+91) - W[el (1= 0)in(1 +6)] (2.42)
l

Now we find nearest interval approximation of type-2 triangular fuzzy parameter 7 =
(2,3,4;0.5,0.8), the credibilistic, pessimistic and optimistic interval approximations of ﬁ

are obtained as [2.4925, 3.5074], [2.5567, 3.4432] and [2.4086, 3.5913] respectively.
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2.2 Optimization

under given circumstances, Optimization is the process to obtain the best return(s) /result(s)
of a syustem. In construction, design, maintenance and production of any engineering
or management system, engineers or decision makers have to accept many managerial
and technological decisions at different stages. The final terget of all such decisions is
either to maximize the longing profit or to minimize the effort cost/required. Therefore,
the problem of optimization is connected with the maximization/minimization of a tran-
scendental or an algebraic function of one or more variables which ere known as objective
function under some available resources that are described as constraints. Optimization

problem in Crisp Environment is mainly classified into two types

i Single-Objective Linear Programming (SOLP)/ Non-Linear Program-
ming (SONLP) Problem in Crisp Environment
A single-objective mathematical programming (SOMP) problem is an optimization
problem consisting of only one objective function. We can formulate the minimiza-

tion of a SOMP problem as the following:

Find x = (21,29, .o, @p)?
which minimizes f(x)
subject to reX (2.43)
(x) <0, 7=1,2,....m
where X = x:gj()_ J
xz; > 0, 1=1,2,....,n

J
where, f(z) and g;(z), j=1,2,....,m are functions defined in R".

It is stated that, if both the constraints and the objective function are linear,
the above SOMP problem turns out a single-objective linear programming problem
(SOLPP). In another way, it is known as a single-objective non-linear programming
problem (SONLPP).

A dccision variable vector = (21, 9, ..., z,)T that gratifics all the constraints is

knonwn as a feasible solution to the problem. The gathering of all such solutions
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ii

shapes the feasible region. The SONLPP (2.43) is to search out a feasible solution
x* such that for each feasible point f(x) > f(z*) for minimization problem and
f(z) < f(z*) for maximization problem . Here, 2* is named an solution or optimal

solution to the problem.

Multi-Objective Linear Programming Problem (MOLPP)/ Non-Linear
Programming Problem (MONLPP) in Crisp Environment

As the world has turned out to be more complex and nearly every important prob-
lem of real-world entangles more than one objective. In such situations, according
to multiple criteria, the decision makers search imperative to assess best possible
approximate alternatives solution. A common minimization type multi-objective

programming problem is of the following structure:

Find = (21,29, .., p) 7
which minimizes F(x) = (fi(2), f2(2), ..., fe(2))T
subject to reX (2.44)
() <0, j=1,2...m
where X =< z: g;(x) < J
ZT; 207 7::1727....,’]7/

/
where fi(x), fa(x), ..., fr(x) are k(> 2) objectives. It is stated that, if the ob-
jectives fi(x), for | = 1,2,.....; ko of the original problem are minimized and the
objectibe fi(x) for I = ko+1,ko+2,...., k, are maximized, then the objective in the

mathematical formulation will be

Min F(:[‘) = (fl(-T) fQ(I)v flv’o(‘%.)a _fk’oJrl(‘T)J _fkoJrQ(x)J s _fk(x))T

subject to the same constraints as in (2.44).

If fi(zx) (I =1,2,....,k), and g;(z) (j = 1,2,....,m) arc lincar, the corresponding

problem is called MOLPP. When all or any one of the above functions is non-linear,
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it is referred as a MONLPP. Here, the problem is often referred to as a Vector Min-
imum Problem.

Convex and Non-convex of Multi-objective Optimization Problem (MOOP):
The multi-objective optimization problem (2.44) is said to be convex if all the objec-

tive functions and the feasible region are convex, otherwise it is called non-convex.

2.3 Single-Objective Optimization

The single objective optimization problem based on the following basic concepts
Local Minimum: A point 2* € X is said to be a local minimum of (2.43) if there exists

an € > 0 such that f(z) > f(z*), Ve € X : ||z — 2*|| <,

Convex Function: A function f(xy,zs,....,x,) becomes convex if the corresponding
Hessian Matrix H (zq, 29, ..., Z,) = [agafx} is positive definite/ positive semi-definite.
P Inxn

If it is negetive definite/ negetive semi-definite for the function f(zy,xs,....,x,) , then

f(x) is called concave function.

Global Minimum: z* € X is said to be a global minima of (2.43) if f(z) > f(a*), Vz €
X. In another way, if the function f(z) is convex then the local minimum solution x € X

is global minimun.

Convex Programming Problem: The problem narrated in (2.43) is to be called con-
vex programming problem if the constraint functions g;(z1,za,.....2,),J = 1,2,.....m

and the objective function f(xy,xs,....,x,) are convex.

Lagrange Function: The Lagrange function corresponding to the constrained opti-
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mization problem (2.43) is that

m

L(z.y. \) = f(x)+ Y Algi (@) + 3. (2.45)

j=1
where Yf’s are slack variables and A;’s are Lagrange multipliers. It can be shown that
in case of minimization problem, the values of A;’s will be positive and for maximization

problem it will be negative.

2.3.1 Solution Techniques for Single-Objective Linear/ Non-Linear Problem

in Crisp Environment

Necessary Condition for Optimality: If a function f(z) is defined for all x € X and

has a relative minimum at x = x*, where * € X and all the partial derivatives %(') for

of@) _ .

r=1,2,...,n are exists at x = x*, then =
Ty

Sufficient Condition for Optimality: The sufficient condition for a stationary point
x* to be an extreme point is that the matrix of second partial derivatives (Hessian Matrix)
of f(z) evaluated at x = x* is (i) positive definite when z* is a relative minimum point,

and (i) negative definite when z* is a relatively maximum point.

2.3.2 Generalized Reduced Gradient (GRG) Technique:

The GRG technique is a process for working out NLP problems used for both equality
and inequality constraints. Consider the NLP problem as

Find = (21,29, ..7,)"

which maximizes f(x)

subject to re X
0 (2.46)
g](l') < 05 .] = 1,27 e,

where X =<z h.(z)=0, r=1,2,....p

x; > 0, 1=1,2,....,n
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By adding a non-negative slack variable s; (> 0), j = 1,2,...,m to each of the above

inequality constraints, the problem (2.46) can be stated as,

Maximize f(x)
subject to re X
( x = (x1, 29, ... )
gj(x) +s;=0, 7=1,2...m (2.47)
where X =<z h(r)=0, r=12 ...p
z; >0 1=1,2,..n
L 5; >0, j=12..m ) )
where the lower and upper bounds on the slack variables, s;, 7 = 1,2,....,m are taken

as a zero and a large number (infinity) respectively.

Denoting s; by zjin, g;(x)+s; by &, hy(z) by &nyr, the above problem can be rewritten

as,
)
Maximize f(x)
subject to reX
€T = (ZL'17 €2, ---wner)T (248)

where X = ¢z &(z)=0, j=1,2,.m+p

x; >0 1=1,2,.n+m

J

This GRG technique has been developed eliminating variables using the equality con-
straints. Theoretically, dependent (m+p) variables can be revealed in terms of remaining
(n — p) independent variables. Therefore, (n 4+ m) decision variables can be divided ar-

bitrarily into two sets as
v=(y.2)"
where y is (n — p) independent or design variables and z is (m + p) state or dependent

variables and

y o= (WY Ynp)
T

Q

== (Zl, L9y eenny Zm+p)
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Here, the design variables are entirely independent and the state variables are dependent
on the design variables used to gratify the constraints &;(z) = 0, (j = 1,2,....,m + p).

Consider the first variations of the objective and constraint functions, it is defined as:

n—p . m-—+p
0 0
df(r) = a;dyi + ag_dzi =V, fdy+V.fdz (2.49)
i=1 v i=1 t
n—p m-+p
¢ B
dfj(x) = Z ]dyt+ Z ]dZ,‘
i=1 Ay i=1 0z
or d¢ = Cdy+Ddz (2.50)

of of  of
T _ v -
where V, f = <8y1’ By’ 8%_]7)

and VIf = <df ﬁ of )

- ot o6 T " o6 o6
ayl ......... ayn,p 021 ......... azm+p
o6, % o6, %
O - ayl ......... ayn,p | D aZl ......... azm+p 7
aéerp a§l+m angrp aéerp
ayl ayn—p A L 32’1 az7n+p _

dy = (dyl,dyg,....jdyn_p)T

and dz = (dZ1,d22,----7dZm+p>T

Assuming that the constraints are originally satisfied at the vector z (£(z) = 0), any
change in the vector dz must correspond to dé = 0 to maintain feasibility at = + dx.

Thus, cquation (2.50) can be solved as

Cdy+ Ddz =0
or dz = —D'Cdy (2.51)
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The change in the objective function due to the change in x is given by the equation

(2.49), which can be expressed, using equation (2.51) as

df(x) = (VIf V! fDC)dy

df (x
or ]Zl(y) = Gp (2.52)
where Gy = V]f-VIfD™'C (2.53)

Hence GR is called the genceralized reduced gradient. Geometrically, the reduced gra-
dient can be narrated as a projection of the original n—dimensional gradient into the

(n — m) dimensional feasible region described by the design variables.

For the existence of minimum of an unconstrained function a necessary condition is that
the components of the gradient vanish. Similarly, a constrained function assumes its

minimum value when the appropriate components of the reduced gradient are zero.

2.3.3  Genetic Algorithm(GA):

Genetic Algorithm is a thorough scarch algorithms to be made on the basis of on the
mechanics of genesis (crossover, mutation etc.) and natural selection. It has been ad-
vanced by Holland (cf. Holland [58]), his colleagues and his students at the University
of Michigan (cf. Goldberg [46]). For its several advantages over conventional optimiza-
tion methods, one can effectively apply it to many optimization problems. Holland was
stimulated by Darwin’s theory about evolution and constructed GAs depending upon
the fundamental principle of the theory: ‘Survival of the fittest’. The theoretical basis
for the GA is the Schema Theorem which narrates that individual chromosomes with
short, low-order, highly fit schemata or building blocks receive an exponentially increas-
ing number of trials in consccutive generations. It is known to that in natural gencsis,

chromosomes are the main carriers carrying the hereditary information from parent to
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offspring and hereditary factors which are presented by genes, are lined up on chromo-
somes. In this process, hereditary factors of parents are mixed-up and these are carried
to their offsprings. Again according to Darwinian principle, nonc but the fittest animals
can endure in nature. In this process, a better offspring is regenerated by a pair of fittest
parent normally.

For an optimization problem, we can follow the same phenomenon to build up a genetic
algorithm . Here potential solutions of the problem are analogous with the chromosomes
and chromosome of better offspring with the better solution of the problem. Crossover
and mutation take place among a set of potential solutions to get a new set of solutions
and it goes on until terminating conditions are faced with. For a particular problem a

GA consists of following six components.

(a) Representation of genetic for potential solutions(chromosomes) to the problem

(b) Inmitialization to crecate an initial population of potential solutions(chromosomes).

(c¢) Evalution to be used to determine fitness of each solution.

(d) An evolution function that plays the environmental role, rating solutions in term

of their fitness, i.c., selection process for mating pool.
(e) crossover and mutation which change the composition of children.

(f) Different parameters to be used in the genetic algorithm.

Procedures for different GA components

(a) Representation of Chromosome : To find a feasible solution to the problem, we
can basically use the concept of chromosome in the GA. A chromosome has the struc-
ture of a string of genes from where some value can be taken from a specified search
space. Normally, chromosome representations are of two types as the following - (i) the
binary vector representation based on bits and (ii) the real number representation. In

this rescarch work, the recal number representation scheme has been used.
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(b) Inmitialization: A population is a set of chromosomes ie solutions. There are N
chromosomes ie solutions such as X;, Xs, X3, ... Xy which are generated randomly
from scarch spacc of the problem. Here, cach X; ¢ = 1,2... N satisfics the constraints
of the problem. We take this solution set as initial population and it is the beginning
point for a GA to advance to longing solutions. At this pace, probability of mutation p,,
and probability of crossover p. are also initialized. These two parameters are applied to
select chromosomes from the mating pool for genetic operations- mutation and crossover

respectively.

(c) Fitness value: In the population all chromosomes are assessed using a fitness func-
tion. Whether a chromosome convenient or not for the environment under consideration,
that is mcasured by the fitness value. The higher fitness chromosomes will receive larger
probabilities of inheritance in subsequent generations, while lower fitness chromosomes
will more likely be extruded. The selection of a good and accurate fitness function is
thus a pointer to the success of working out any problem in a quick way. The value of a

objective function is taken as fitness of f(X) for the solution X in the thesis.

(d) Selection process to create mating pool: Selection in a GA is a method by
which some solutions be selected from the population for mating pool. From this mating
pool, pairs of solutions in the current generation are choosed as parents to regenerate
offspring. There arc different sclection processes, such as ranking sclection, roulette wheel
selection, sampling selection, stochastic universal local selection, tournament selection,
truncation selection etc. Here, Roulette wheel selection process has been used in several

cases. This procedure is made of following steps:

N
(i) Calculate total fitness of the population F=> f(X;)

i=1
(ii) Find the probability of selection p; of each solution X; by the formula
_ (X))
pi = I
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(iii) Find the cumulative probability ¢; for each solution X; by the following formula

i
G = ij where ¢y =1
=0

(iv) Create a random number ’r’ from the range [0,1].

(v) If r < ¢ then select X;, otherwise select X; (2 <i < N) where ¢;_1 <r <g;.

(vi) To select N solutions from current population repeat step (iv) and (v) N times .
(Clearly one solution may be selected more than once.

(vii) This selected solution set is represented by PY(T).

(e) Crossover: Crossover is an important operator in the GA. It works to interchange
the main characteristics of parent chromosomes and carries them on the offspring. It

consists of two steps:

(i) Selection for crossover: At first, generates a random number r from the range [0..1]
for each solution of PY(T). If r < p,, then we can take the solution for crossover.
Here p. is the probability of crossover.

(ii) Crossover process: Crossover are taken place on the selected chromosomes ie, solu-
tions. For each pair of coupled solutions X; and X5 a random number ) is generated
from the range [0,1]. Then X; and X, are replaced by their offspring’s X;; and

X5 respectively as follows
Xll = AXl -+ (1 — )\)ng X21 = )\XQ + (1 — )\)Xl
. if X771, Xo; satisfied the constraints of the problem.

(f) Mutation: After the crossover operation, the mutation operation is applied to
maintain the diversity of the population and it recovers possible loss of some good char-

acteristics. It consists of two steps:

(i) Selection for mutation: Generates a random number r from the range [0, 1] for each
solution of P(T). If r < p,,, the solution is taken for mutation. Here p,, is the
probability of mutation.
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(ii)) Mutation schem: Select a random integer r in the range [1, K] to mutate a solution
X = (21,29, .,2k). Then the variables z, is replaced by randomly generated value

within the boundary of 7" component of X.

After the operations of selection, crossover and mutation, the new population is ready
for its next generation, i.e., P1(T) is considered as population of new generation.
Therefore, the genetic algorithm is written as follows in which 7T is iteration counter and

P(T) is the population of potential solutions for iteration T

. Set iteration counter T=0.

i). Initialize the probability of crossover p. and the probability of mutation p,,.

)
)

(ifi). Initialize P(T).
). Evaluate P(T).
)

. Repeat

(a). Select N solutions from P(T), for mating pool using Roulette-wheel selection

process. Let this set be P(T)!.
(b
(c
(d

Select solutions from P(T)!, for crossover depending on p, .
Made crossover on selected solutions for crossover to get population P(T)2.

Select solutions from P(T)?, for mutation depending on p,,.

—

(
(). T« T+1.

).
).
).
e). Made mutation on selected solutions for mutation to get population P(7"+1).
).
).

(g). Evaluate P(T).

(vi). Until(Termination condition does not hold).

(vii). Output: Fittest solution(chromosome) of P(T).
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Handling of Constraints in GA
The basic idea of handling constraints is to design solutions carefully by genetic operators
to keep all these within the feasible solution sct. To ensure that the chromosomes arc
feasible, we have to check all new chromosomes (z) generated by genetic operators. To
check the feasibility of a solution, a function is designed for each target optimization
problem, the output value 1 means that the chromosome is feasible, 0 for infeasible. The
algorithm for finding the feasibility of an individual (solution) (x) for the optimization
problem (2.43) is given below:
fori=1tol do
if(gi(z) < 0)
continue;
clse
return 0O;
endif
endfor
for 7 =1 tom do
if(h;(z) = 0)
continue;
else
return 0;
endif
endfor

return 1

2.3.4 Single-Objective Problem in Fuzzy Environment

The main aim of fuzzy optimization is to search the “best ”solution (decision alternative)
under imprecise information and / or vague resources limits. There are many forms of

imprecision when dealing with fuzzy optimization. Normally, in fuzzy optimization fuzzy
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sets are utilized in two different ways .

i.  To express uncertainty in the goals and the constraints (objective functions).

ii. To express flexibility in the goals and the constraints.

In the first case, fuzzy sets express the generalised formulations of intervals that are
manipulated according to the rules which are extensions of the interval calculus by using
A-cuts of fuzzy sets. In the second case, fuzzy sets express the degree of the aspira-
tion levels of the goals or of satisfaction of the constraints, given the flexibility in the
formulation. Hence, the constraints (and goals) that are essentially crisp one assume
to have some flexibility that can be exploited for improving the optimization objective.
The general formulation of fuzzy optimization in the presence of flexible constraints and

goals is given by

Max  Z = f(x) (2.54)
subject to gi(:E);O, 1=1,2,...m

re X

The sign < denotes that g;(z) < 0 can be satisfied to a degree smaller than 1. The
fuzzy maximization corresponds to achieving the highest possible aspiration level for the
goal f(x), given the constraints to the problem. The concepts of fuzzy goal and fuzzy
constraints were first introduced by Bellman and Zadeh [13]. According to Bellman and

Zadeh [13] decision making model, the fuzzy decision pp(z) defined as

pp(x) = pz () g1 () opta () g .. ol (T). (2.55)

where ‘0’ denotes an operator of aggregation for fuzzy sets, pz indicates the degree of
satisfaction of the goal by x € X and p;(x) (i=1,2,...,m) denote the degree of satisfaction
for the fuzzy constraints by the decision alternative x € X. The decision function (2.55)
is complicated cnough and a numecrical method has to used to scarch for the optimism.

Two commonly used types for the proposed fuzzy objective are discussed in the following.
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. Imprecise Parameters in Objective Function and Constraints

In reality, a decision maker is not able to define exectly different parameters of
the optimization problem under consideration. In such cascs, the specifications
(parameters) are either defined as fuzzy numbers ie, as non-stochastic sense with
feasible membership functions or as random numbers ie, as stochastic sense with
feasible probability distributions. In case of non-stochastic sense, the problems be-
long to the class of ‘Single-Objective Programming Problem in Fuzzy Environment
/

A crisp non-linear programming problem may be stated as follows:

Min f(z,a)
subject to g¢;(z,a) < b; j=1,2,...,m (2.56)
x; >0 i=1,2...,n
where, © = (21,3, ....,2,)7 is crisp decision vector, a = (a1, as, ....,a;)’ is crisp
parameter vector, b = (b, by, ...., bm)T is crisp requirement vector.

When the vectors a and b are fuzzy in nature, i.e., a and b, the above problem

(2.56) is reduced to a fuzzy non-linear programming problem as follows

Min f(z,a)
subject to g;(x,a) < b, j=1,2,....m (2.57)
x; >0 1=1,2,...n
where, = (1, x9,....,2,)" is crisp decision vector, a = (G, ag, ....,ax)" is fuzzy
parameter vector, b= (131, 132, e INDm)T is fuzzy requirement vector (where ‘~’ rep-

resents the fuzziness of the parameters).

. Single-objective Programming Problem Under Fuzzy Expected Value

A general single-objective mathematical programming problem with fuzzy param-

eters should have the following form:

Max f(u, &) (2.58)

subject to  g;(u,§) <0,5=1,2,..m.
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where E and u are fuzzy and decision vectors respectively. To transform the fuzzy
objective and constraints to their crisp cquivalents, Liu and Liu [80] proposed a
new approch to transform the problem into an equivalent crisp model which is as

follows:

Max E[f(u,&)] (2.59)

subject to  Flgj(u,§)] <0,j =1,2,..m.

2.3.5 Solution Techniques for Single Objective Optimization Problem in

Fuzzy Environment

Under Possibility and / or Necessity and / or Credibilty Measure

When the ojective function f(x,a) becomes imprecise in nature, in that case the state-
ment maximize f(x,a) is not well defined. In that case, one can maximize the optimistic
(pessimistic) return z, corresponding to the objective function using possibility (neces-
sity) measure of the fuzzy event {a| f(z,a) > z} as suggested by Liu and Iwamura [86,87].
Therefore, when a is a fuzzy vector, one can convert the above problem (2.57) to the
following equivalent possibility /necessity constrained programming problem (analogous

to the chance constrained programming problem).

max z (2.60)
subject to pos/nes{alf(x,a) > z} >
reX

where (3 is the predetermined confidence level for fuzzy objective, pos{.} (nes{.}) denotes
the possibility (necessity) of the event in {.}. Here, the objective value z should be the
maximum that the objective function f(x, @) achicves with at least possibility (necessity)

3, in optimistic (pessimistic) sense.
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2.4 Multi-Objective Optimization

The multi-objective optimization problem is based on the following basic concepts.

Ideal Objective Vector: An objective vector minimizing each of the objective func-
tions is called an ideal (or perfect) objective vector.

Complete Optimal Solution: z* is said to be a complete optimal solution to the
MONLPP in (2.44) iff there exists * € X such that f;(z*) < fi(z), i = 1,2,....,k for
all x € X. In general, the target functions of the MONLPP dispute with each other,
a complete optimal solution does not always exist and so non dominated (Pareto) opti-

mality concept has been instituted.

Pareto Optimal Solution: A solution is said to be pareto optimal of MOLPP or
MONLPP if none of the objective functions can be upgraded/ improved with out de-
grading some of the objective functions. Unless an optimization problem is convex,
only locally optimal solution is assured using standard mathematical programming tech-
niques. Hence, the idia of Pareto-optimality needs to be modified to institute the notion

of a locally Pareto-optimal solution for a non-convex problem as defined by Geoffrion [49].

Locally Pareto Optimal Solution: z* € X is called a locally Pareto optimal solution
to the MONLPP if and only if there exists » > 0 such that z* is Pareto optimal in
X N N(z* r), there does not exist another x € X N N(z*,7) such that fi(x) < fi(a*),

where N(z*,r) is a r-neighborhood of x*

Concept of Domination: The concept of domination is very useful in evolutionary
multi-objective optimization algorithms. In these algorithms, two solutions are compared
on the basis of whether one dominates the other solution or not. Let us consider the

operator _J between two solutions ¢ and 7 as ¢ J j. It denotes that solution ¢ is better
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than solution 7 on a particular objective. Similarly ¢ C j for a particular objective
implies that solution ¢ is worse than solution j on this objective. With this assumption,
a solution ¢ is said to dominatc the other solution 7, if both the following conditions

hold.
e The solution 7 is not worse than j in all the objectives.

e The solution ¢ is strictly better than j in at least one objective, i.e., fr(i) 2 fr(j)
for at least one k € {1,2,..K}

2.4.1 Solution Techniques for Multi-Objective Linear/ Non-Linear Problem

in Crisp Environment

Weighted Sum Method: The weighted suim method scalarizes a set of objectives into
a single objective by multiplying each objective with user’s supplied weights. The weights
of an objective are usually selected in proportion to the objective’s relative importance
in the problem. However setting up a properly weight vector depends on the scaling
of each objective function. It is likely that different objectives take different orders of
magnitude. When such objectives are weighted to form a composite objective function,
it would be better to scale them properlyly so that each objective possesses more or
less the same order of magnitude. This procedure is called normalization of objectives.
After the objectives are normalized, a composite objective function F(x) can be made
by summing the weighted normalized objectives and the MONLPP given in equation

(2.44) is then transformted into a single-objective optimization problem as follows:
k
Minimize F(x) = szfl(:v), w; € [0,1], z € X (2.61)
i=1

Here, w; is the weight of the i-th objective function. Since the minimum of the above
problem does not change if all the weights are multiplied by a constant, it is the usual
k

practice to choose weights such that their sum is one, i.e., Y w; = 1.
i—1
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2.4.2 Multi-Objective Genetic Algorithm (MOGA)

Genetic algorithm approach was first suggested by Holland [58]. Because of its gener-
alization, it has been strongly applied to many optimization problems, for its diverse
advantages over conventional optimization methods. There are many approaches to deal
with the multi-objective optimization problems using genetic algorithms. These algo-
rithms can be classified into two types-(i) Non-Elitist MOGA and (ii) Elitist MOGA.
Among Non-Elitist MOGA, Srinivas and Deb’s NSGA [137] enjoyed more attention. Two
common features of all these algorithms are- (i) assigning fitness to population members
based on non-dominated sorting and (ii) preserving diversity among solutions of the same
non-dominated front. Diversity is maintained using a sharing function depending on the
problem. Among Elitist MOGAs one can refers Rudolph’s Elitist Multi-objective evo-
lutionary algorithm (Rudolph [129]), Deb et al. ’s [29] Elitist Non-dominated Shorting
Multi-objective Genetic Algorithm. These algorithms normally select solution from par-
ent population for cross-over and mutation randomly. After these operations, parent and
child population are combined together and among them better solutions are choosed
for next iteration. A fast and clitist MOGA is developed following Deb et al. [29] and
it is used to solve few transportation models. This algorithm is named Fast and Eli-
tist Multi-objective Genetic Algorithm (FEMOGA). This multi-objective genetic

algorithm possesses the following two important components.

(a) Dividing of a population of solutions into subsets with non-dominated
solutions: A a problem is considered having M objectives and a population P of
feasible solutions of the problem of size N is taken. The population is partitioned P
into subsets Fi, F3, , F},, such that every subset contains non-dominated solutions,
but every solution of F; is not dominated by any solution of F;;, forz =1,2,..k—1.
To make this propertydo this for each solution (x) of P, the following two entitie

are calculated:

(i) Number of solutions of P which dominate x, denoted by n,.
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(ii) Set of solutions of P that are dominated by . denoted by S,.

To compute above two entities steps O(M N?) computations are required. Clearly
F1 holds every solution « having n, = 0. Now, for each solution x € F}, visit every
member y of S, and decrease n, by 1. In doing so for any member y if n, = 0, then
y € Fy. In this way F; is established. The above procedure is continued to every
member of Fy and thus Fj3 is obtained. This process is continued until all subsets
are identified. For each solution x in the second or higher level of non-dominated
subsets, n,. can be at most (N —1). So, each solution = be visited at most (N — 1)
times before n, becomes zero. At this point, the solution is attributed a subset and
it will never be visited again. Since, there is at most (N — 1) such solutions, the

total complexity is O(N?). So, total complexity of this component is O(M N?).

(b) Determination of distance of a solution from other solutions in a subset:
To calculate the distance of a solution from other solutions in a subset, the following

steps are followed:
(i) First categorize the subset according to each objective function in ascending
order of magnitude.

(ii) For each objective function, the boundary solutions are imposed an infinite

distance value (a large value).

(iii) All other intermediate solutions are assigned a distance value for the objec-
tive, equal to the absolute normalized difference in the objective values of two

adjjoining solutions.
(iv) This computation is carried on with other objective functions.
(v) The final distance of a solution from others is computed as the sum of indi-
vidual distance valucs corresponding to cach objective.
Since M independent sorting of at most N solutions (in casc the subset contains all the

solutions of the population) are involved, the above algorithm has O(M NlogN) com-
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putational complexity. Appling the above two operations, the proposed multi-objective

genetic algorithm have the following form:

Stand iteration counter T = 1.

(i).
(ii).

Create an initial population set of solution P(7") of size N.

(iii). Set probability of mutation p,, and probability of crossover p..

Make crossover as well as mutation on selected solution to get the child set C(7').

(v).

(vi).

)
)
)
(iv). Select solution from P(T) for mutation and crossover.
)
). Stand P, = P(T)|JC(T) , here | J stands for union operation.
)

(vii). Divide P, into some disjoint subsets having non-dominated solutions. Let these
sets be F1, Fy, .., F},.
(viil). Select maximum integer n such that order of Py(= Fy |J FolJ ... U Fn)less or equal toN.
(ix). If O(P2) < N, sort solutions of F,; in descending order of their distance from
other solutions of the subset. Then, select first N — O(F;) solutions from £}, ; and
add with Py, where O(P,) represents order of P,.
(x). Stand T =T+ 1 and P(T) = B,.
(xi). If termination condition does not hold, go to step-4.
(xii). Output: P(T)
)

(xiii). End algorithm.

MOGASs with non-dominated sorting and sharing are mainly censured for their

e O(MN?) computational complexity,

e non-clitism approach,

e the need for specifying a sharing parameter to keep up diversity of solutions in the

population.

In the above algorithm, these drawbacks are get over. Since in the above algorithm
computational complexity of step — vii is O(MN?), step —ix is O(M NlogN) and other
steps are < O(N), so overall time complexity of the algorithm is O(M N?). Here selection
of new population after crossover and mutation on old population, is done by constucting

a mating pool by combining the parent and offspring population and among them, best
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N solutions are taken as solutions of new population. By this way, elitism is initiated
in the algorithm. When some solutions from a non-dominated set Fj (i.e., a subset of
F;) arc sclected for new population, those arc accepted whose distance compared to
others (which are not selected) are much i.e., isolated solutions are accepted. In this way
taking some isolated solutions in the new population, diversity among the solutions is
introduced in the algorithm, without using any sharing function. Since computational
complexity of this algorithm < O(MN3) and elitism is introduced, this algorithm is
named as FEMOGA. Different procedures of the above FEMOGA are discussed in the

following section.

Procedures of the proposed FEMOGA

(a) Representation: To represent a solution a 'K dimensional real vector’ X=(x1, Xo,
Xk) is used , where xy, X, .... xx denote different decision variables of the

problem such that constraints of the problem are satisfied.

(b) Initialization: From the search space, N such solutions X, X5, X3, ..., Xy are
randomly generated by random number generator such that each X; satisfies the
constraints of the problem. This solution set is taken as initial population P(1).

Also set p. € [0, 1], p,, € 0,1], T=1.
(c) Crossover:

(i) Selection for crossover: Generate a random number r from the range [0,1]

for each solution of P(T). If r < p,, then the solution is taken for crossover.

(ii) Crossover process: On the selected solutions crossover is taken place. For
each pair of coupled solutions X; and X, a random number X is generated

from the range [0,1] and offsprings X, and X are calculated by

Xll = AX]_ —l— (1 - )\)XQ, X21 = AXQ —l— (1 - )\)Xl

(d) Mutation:
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(i) Selection for mutation: Generate a random number r from the range [0, 1]
for each solution of P(T). If r < py,, then the solution is taken for mutation.

(ii) Mutation process: To mutate a solution X = (v, 29,73, ... Tx), choose
a random integer r in the range [1, K']. Then z, is replaced by randomly

generated value within the boundary of 7" component of X.

(e) Division of P(7T') into disjoint subsets possessing non-dominated solu-
tions: The following algorithm is developed to divide P(T) into some disjoint
subsets having non-dominated solutions:
for every x € P(T) do

set S, = ® ,where ® expresses null set
ng, =0
for every y € P(T) do
if x dominates y then
Sz = S Uiy}
else if y dominates x then

Ng = Ny + 1

end if
cd For
if n, = 0 then
F = R U{)
end If
end For
set i=1
while F; # ® do
Fia =9

for every x € F; do
for cvery y € S, do

ny:ny—l
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(f)

if n, = 0 then
Fin = Fooa U{y}
end If
end For
end For
i=i+1
end while

Output:Fy, Fy, .. F;_4.

Determination of distance of a solution of a subset F from other solutions:
For this purpose Following algorithm has been used:
sct n=numbecr of solutions in F
for every x € F do
Zdistance = U
end For
for every objective m do
sort F, in ascending order of magnitude of m** objective.
F[1] = F[n| = M, where M is a big quantity.
for i=2 to n-1 do
Flil gistance = £l distance + (F[i+ 1].objm — F[i — 1].objm) /( f5*&* — min)
end for
end for
In the algorithm F'[i] represents i — th solution of F', F'[i].objm represent m — th
objective value of F[i]. Also mm and fM3X yepresent the minimum and maximuim

values of m — th objective function.

2.4.3 Fuzzy Multi-Objective Optimization Problem (FMOOP)

Let us consider, a fuzzy non-lincar multi-objective maximizing problem where objective

goal has some imprecise or fuzzy parameters as below :
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Find T = (21, Ty eee T
which optimizes F(z) = (fi(z), fa(z), ..., fs(2))T
subject to reX

(2.62)
g;(z) <0, j=1,2,...1

where X =<z h.(z)=0b,, r=1,2,....m

z; > 0, i=1,2,...m

Here, ]71(1:), j?;(x), ...and fk(x) (k > 2) are k objectives. It is noted that, if the objectives
ﬁ(x), fori =1, 2,...., kg of the original problem are minimize and ﬁ(m) fori = ko+1, ko+

2, ...., k, are maximized, then the objective be converted for minimization as follows:

Min F(x) = (fi(@), fo(@)-s Fro(@)s = Fros1(2), = Frpsa (@), coeey — fi()) T

subject to the same constraints as in (2.62).

Here, objectives are imprecise in nature.

2.4.4 Interactive Fuzzy Decision Making Method (for Fuzzy Multi-Objective
Optimization Problems (FMOOP))

Now taking the imprecise naturc of decision maker’s (DM) judgment, for cach of the
objective functions DM may have different fuzzy or imprecise goals. In this case, an
interactive approach is used for the man-machine interaction.
Pay-off matrix: Here, DM first bring out the membership functions for each objective
functions f;, (j=1,2,...k) respectively from DM'’s outlook with the help of individual
minimum and individual maximum by non-linear optimization method (GRG ).
Membership function: On the basis of individual minimum and maximum, a DM
can formulate and select any one from among the following three types of membership
functions.

(i) Lincar membership functions,

(il) Quadratic membership functions,
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(iii) Exponential membership functions.
The membership functions for the corresponding objective functions f;, (j=1.2,...k) may
be written as
Type-1 : Linear membership function

For each objective function, the corresponding linear membership function is as follows:

0 for £ > f;(x)
L_f
)= 4 1= I o o< g < g (2.63)
1 for f;(z) > f;

Type-2 : Quadratic membership function

For each objective function, the corresponding quadratic membership function is as fol-

lows:
0 for £ > f;(x)
L_f 2
o) =4 1= (DD o < pw <) (260
1 for f;(z) > f}

Type-3 : Exponential membership function

For each objective function, the corresponding exponential membership function is as

follows:
0 for f]Q > fi(x)
8k <<f}fj<z>>>
1) =9 [1 —e R } for fj < fi(x) < f; (2:65)
(1 for f;(x) > f71

Where the constants and the tolerance of j-th objective function f; can be determined
by asking the DM.
Parametric values: The goal parametric values are determined by DM for the mem-

bership function which to be determined following Sakawa et al. [132] as:
fi = £iE")
1\/,[- max
f;-) = z;ﬁgm{fl(%‘ )}
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Level of significant: After considering the different non-linear /linear membership func-
tions (MF) for each of the objective functions to create a candidate for the saticficing
solution following Bellman and Zadch [13] and Zimmermann [157], the DM is asked to
specify his / her reference level of achievement for the membership values. Let Hy, 18 the
reference membership level of the objective function. The better reference membership

levels are attainable for the better requirement that can be formulated as

Min Max 7. — up) (2.66)

which is equivalent to

Max pf
Preferential Objective: Let us considered that objective fr is more important than
fs (S, T=1,2,..k. and S # T) which is represented as fs < fr. It is rational for us
to expect that objective with higher priorities also have higher level of satisfaction, this

means that the solution is obtained from finding the maximum level of significant. Then

condition of priority can be stated as:

s (27) < ppp ()

Now, after getting 5* , if the DM chooses Z7 as the most important objective function

from among all objective functions f; (j=1,2,...k), then the problem becomes (for g = 5*

)

Max fT(SL‘Z)
subject to " < (1, — py;)

where 0<p38<1
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2.4.5 Implementation of MOGA with FMOOP

Genetic Algorithms are general purpose stochastic search algorithms based on the me-
chanics of natural selection and natural genetics. It has been developed by Prof. John
Holland [58], his colleagues and his students at the University of Michigan and later it
has been made comfortably accepted by Prof. David Goldberg [46] at the University of
[Mlinois. The original Genetic Algorithm and its many variants, collectively are known as
genctic algorithms. These are computational processes that mimic the natural
process of evolution i.e.,it copies the phenomena of biological evolution. An

important observations in the Darwinian evolutionary systems are as follows:

(i) one or more populations of individuals competing for limited resources,

(ii) the notion of dynamically changing populations due to the birth and death of

individuals,

(iii) a concept of fitness which reflects the ability of an individuals to survive and re-

produce, and

(iv) a concept of variational inheritance: offspring closely resemble their parents, but

are not identical.

GAs use two basic procedures from evolution:(i) inheritance, or the flow of features from
one generation to the next, and (ii) competition, or survival of the fittest, which results
in weeding out the bad features from individuals in the population. All genetic algo-
rithms work on a population, or a collection of several alternative solutions to the given
problem. In the population each individual is called a chromosome or string, in analogy
to chromosomes in natural systems. In each iteration of GA, a new generation is evolved
from the exiting population in an attempt to get solutions. One of the causes of
the success of GAs is their population based strategy which stops them from

getting trapped in a local optimal solution and as a result, it increases their
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probability of finding a global optimal solution. Five components of a Genetic

Algorithm is as follows:

(i) a genetic representation for potential solutions to the problem,
(ii) a way to gencrate an initial population of potential solutions,
(iii) an evaluation function that plays in rating of solutions in terms of their fitness,

(iv) gencetic operators (crossover, mutation, sclection) that change the composition of

children,

(v) values for various parameters which are used by the genetic algorithm (probabilities

of applying genetic operators, population size, etc.)

Genetic Algorithms are different from more normal optimization and

search procedures in four ways:

(i) GAs work with a coding of the parameter set, not the parametrs themselves.
(ii) GAs search from a population of points, not a single point.

(iii) GAs utilize payoff (objective function) information, not derivatives or other auxil-

iary knowledge.

(iv) GAs operate probabilistic transition rules, not deterministic rules.
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The procedure of a generic GA (Goldberg [46], Michalewicz [103] and
Srinivas [137]) is described

Input: parameters, GA
parameter

t— 0

‘ Initialize Pt} ‘

False —Ts constrain True

satisfied

Assign penalty

penalty = 0
l

| Ewaluate P(t) ‘

Mot
termination
condition

Print P({t)

‘ select Q) from Pt -1)

‘ Ewvaluate Pt} |
T
|
!
|

Assign penalty penalty = 0
alter Q) by crossover ‘ T T
l True

alter Q{t) by mutation

False
I

Creation of new population
Fit) in the case of
multi-objective (CRPMO)

s constrain
satisfied

Figure 2.19: Representation of flowchart of MOGA
For the present GA, an overall procedure has been given in Figure 2.19

Using this algorithm,GA optimizes the proposed model. The algorithm of the GAs
(cf Michalewicz [103]) is given bellow.
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begin

<0

initialize Population(t)

evaluate Population(t)

while(not terminate-condition)

{

tt+1

select Population(t) from Population(t-1)
alter(crossover and mutate) Population(t)
evaluate Population(t)

}

Print Optimum Result

end.

The GA process for fuzzy inferance model is in the following normal form

POPULATICN —

T

FUZZY INFEREMCE MODULE

J

EVALUTION OF FITNESS

MUTATION

CROSE-0VER

REPRODUCTION

Figure 2.20: GA process for fuzzy inferance model
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The basic GA for the fuzzy transportation model is given below

uzzy Objective Crisp Objective
Function Function

De-fuzzyfication
Methods

Crisp
Transpartation
Iodel

Fuzzy
Transportation
Model

Figure 2.21: Graphical representation of fuzzy transportation model — crisp transportation

model
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