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1.1 Introduction :
Transform Concept :

We define the integral transform F(a) of a function f{x) by integral

, :
Fla)= jk(a, x)f (x)dx 0
_ where k(a, x)being a known function of o and x, called the kernel of the transform and o is the
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Mathematical Methods

transform parameter. When g and b are both finite we shall speak of F(a) as the finite integral transform
of f (x) On the other hand, if a = 0 or —w and p =0, the transform (1) is called infinite integral

transform.
Example on an infinite integral transform :

1 % i
I.  Fourier Exponential Transform : £ (@) =- ot [ f(x)edx
0

II.  Fourier Sine Transform . E(a)=y% If (X) sin o dx
I Fourier Cosine Transform : | Fo)= JZIf (%) cos axdx
IV.  Laplace Transform . F (S) = Ie"'f (¢ )»dt

V. Hankel Transform . Ffa)= T" J(ar)f(r) dr

0

where J, (ar) being the Bessel function of the first kind of order 7.

AExampAIe on Finite Integral Transforms :

a

Hankel Transform : F,(a) = J- rJ (o) f(r) dr

0
where J n((xr) being the Bessel function of the first kind of order ».

1.2 Objectives :

Utility of an Integral Transform :

By the use of Integral Transform ordinary and partial differential equations can be reduced to algebric
and ordinary differential equations respectively, which are very easier to solve than solving the original ones.
Another importance of Integral transforms is that they provide powerful operational methods for solving initial
value problems and initial-boundary value problems for linear differential and integral equations.

Keywords : » A ‘
Integral Transform, Fourier transform, Fourier sine and cosine transform, Convolution theorem, Parseval’s

thesrem,
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Mathematical Methods

1.3 Fourier Transform : (Exponential Fourier Transform)
Definition : ' '

If (i) fix) and f'(x) are piecewise continuous in the interval (—<0, )}

4

and (i) j(x)‘is absolutely. mngable'm (-0, o) then
Flo)= = [ 1)
is called the Fourier Transform of fx).
Explanation : The above integral exists, if /(x) is iritegrable in any finite interval and the int?gral if (x)drx
is abs?}ute!y convergent. Since if f(;f) is ir.ltegrable in any finite interval then f (‘x)gi“‘ is also integml‘)le in
the same interval and if oﬂ f(x) ax is convergent, then the integral | f (x) e“;“dx is also oonvefg?nt due to

the followmg inequality :

—0

< J]f(x)ﬂ e’ dy = j[fx)ldx

1.4 Some Elementary Properties on Fourier Transform :
(a). The fourier transform of a function, if exists, is bounded.
Proof : Let f(ct) be the fourier transform of a function f(x). Then

F(a):—‘/}—:?f(x)emdx
Since F(a)emsts,themtegml ﬂf(x){dx lsconvergentandhenoe j]f(x)ldxq} aposmveoomtant.

o e b= ok . s

Hence the fourier transform of f(x) is bounded.

Directorate of Distance Educa:ioﬁ ‘3.



Mathematical Methods .......osuen.

() Fourier Transform is linear i.c., if F/(a) and F, () are the fourier transforms of the two
functions £, (* (x) and /2( x) Iespectivély, then the fourier transfor of ¢, f, (x)+ a,f, (x) is a‘}?;(a) +02F2(a),
where @, and @, are (wo complex constants, [Linearity Property]

Proof : Let us suppose that both FI(OL) and Fz(a) exist, then both‘f,(x) and f, (x) are integrable in any
e o] , [o'e) .
finite interval and the integrals | lfl (x ){ dx and | rf 2 (x )l dx gre convergent. This indicates that the function
o o A .
a,f, (x)+ a,/, (x) is also integrable in any finite interval and
<« w . o] .
6,1l 1 o] o s,
— —00 -0
Hence fourier transform of alf1 (x) +af, (x) exists and is given by
F[a,j;(x)wzfz(x)] 7__-— | [a 1)+ a £, (x)] e e
N0

T fotx 1 it
=al——-—.:£efl(x)€ dx+az-E~£of2(x)e dx

Hence fourier transform is linear.

(¢) If F(o) is the fourier transform of x), then F(a)e’™" is the fourier transform of f(x-a),

where ‘a’ is real. [Shifting Property]
Proof : Let us assume that F(c.) exists, then f{x) is integrable in any finite interval and the integral ||/ ()] dx

is convergent. This indicates that f(x —a) is also integrable in any finite interval and since

i!f(x-—@‘dx =ﬂ)f(’)]‘dt,where t ;-—x—a and the integral ﬂf(x—-a)’dx is convergent. Hence

fourier transform of f (x —a) exists and is given by

Are-a)] = T/ -a)

4 ' ' Directorate of Disiance Education



Mathematical Methods

vvvvvvvvvvvvvvv

—_— cj? £(6) e ar, 1=x-a

'-l(lfd’ .

= t
o T10)
= eicza F((X)
(d) - If F(a) is the fourier transform of f(x), then F(o. +a) is the fourier transform of f(x) '™,

where ‘a * is real.

Proof : Let us assume F(a) exists. In above property (c) we have seen that the fourier transform of

f(x) "™ exists and is given by
Fl(s) e} = e [ (o) e - (7_%_;) f 7)== Fla+a)

Since in the expression, F(a)= (_J%_—] f f(x)e™dx
. \ n -

Replacing a by a+a in above, we get

Flo+a) ( ) [ 7(x) e

(e If F(oz) is the fourier transform of f{x), then the fourier gansfom of flax) is + F(%}), where
‘a’ is real and g« 0. [change of scale].

Proof : Let us assume that () exists, then fx) is integrable in any finite interval and the integral

- ‘. | ‘
J } f (x){ dx is convergent. This indicates that f{ax) is also integrable in any finite interval. Hence fourier

transform of flax) exists and is given by

f(ax) ( )jf )e“dx = ( n)if(t)e'(%)t%, where;'—l’-ax

&

=%(5%)if(t) ¢y

=L F()

Directorate of Distance Education ; L)



Mathematical Methods

1.5 Continuity and Differentiability of Fourier Transform :
Therem 1 : If the fourier transform F(ct) of a function f(x) e: *sts, then F(a) is a continuous function of a.

- w N
Proof : Since fourier transform of f(x) exists, /(x) is integrable in any finite interval and the integral J|/(¥)]
. . —~0

is convergent. We further assume that f{x) is bounded in any finite interval. Since the integral | I f (x)j dx is

convergent, corresponding to any arbitary positive ¢ there exists a number X (>0) such that
1 -X
(TEE) [lf@as<ss

(\f—;;);flf(x)idxé% e

Now F(o+h)~ F(a) = 7%—: }o fx) e b \/—12_; Oj?ei‘_”"‘cbc

R o

- _~1_ r i(a+h)x _1_ X i{a+h)x. 1 < i{o+h)x
w'\/rig:(flof(x)e dx + n_xf(x)e c&+72_—£{’f(x)e . dx

N

L e L g L
.-m_{of(x)e dx \/Z:_-J;Yf(x)e dx \/Z—E—{\’f(x)e dx

-X o ¢ jox (i
= 7.-;; J7 ()€™ ("™ ~ 1)+ g+ ) ~§(h)+7;4—1~;c* )f( S () (™ - 1)as ©)

1 ¥ fox
¢(k)=—ﬁ~_;~£,f(x)e dx

Since fx) is bounded and integrable in the finite interval (=X, X) and ¢ is a continuous function
of x and  in the intervals (X <x < X), (~0 <t < o). ¢(c) is the continuous function of . Therefore

corresponding to the arbitary-positive <, which we have already chosen, there exists a positive number § such
that .

160+ k) - §(cr)] < 5% ) whenever |H<3.
Therefore from (3) we get,

6 Directorate of Distance Education
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|Flon+ )~ F(a) S‘¢(a+h):—¢(a)’ +(7§;)f1 7(0)|] € ™) +1) ax

e ol )

<S+2%+2%=e by (1), Q) & @) & | <8

= |F(o.+ )~ F(at) <e and |4 <8
- This implies that F(q) is a continuous function of .
- Therem 2 : Ifthe fourier transform of a function fx) and xfx) exist, then the derivative of F{c), the fourier
- transform of f{x), exists and is given by #”(« )= Flixf (x)] ' '

Generahsmg the above theorem we get,
F™a)= F{(ix)m f (x)} where F™(o.) means that m times differentiation of Fla),m beiﬁg

any positive integer, o |
Fourier Transform of Derivatives : - | ' 1
Theorem 1: If in any finite mterval a functxon Ax) is continuous and its derivative is piecewise contmuous,

the Trfegrals f / (x) dx and f f'(x) @ are absolutely convergent and f (x)—)() as |x|— o, then

Fr (x)] = —ic. F(at), where F(a) is the fourier transform of Ax).
A Theorem 2 : If a function ﬂx) and its derivatives upto order (n~1) are continuous in any finite interval, its

nth dmvanvelspleoemse conhnwusmany finite interval, the integrals f fr (x)dx are absolutely oonvergent
for m=0, 1,2, ..,nand f™(x)>0 as |x] > for m=0, 1, 2, .y N—1, then

F{ f "(x)}-: (~ia)" F(a), where f"(x) means that the »-th derivative of f(x).
Examples : - )

Ex.-1 ; Find fourier transform of =P , a>0.

. | o A
Solu : F{e aM] = 7%;’ fe oM, % (by the definition of fourier transform)
-0

Directorate of Distance Education | : 7
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-x, x<0
X, x>0 -

| welqlowtha_t I"|={

. 0 @
= 71- fe*e ™ dx + 71- Je e
2% 2% 5

(a+ia)x 0 ~x{a-ft)
—_11¢€ L] € :
_"727{ a+io } * 2"[ a-io T

ot o

Ex.-2 : Find the fourier transform of %, >0,

Solu: . Now, F[e“’z"z]::ﬁ% e~ ¢ia* g [by the defination of fourier transform]

® --(azJ?2 -:'ax)
= 7%; -);’e dx

8 Directorate of Distance Education _
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=)

2

=e  SinceI(})=x

2
B
oA
Ex3: Prt?ve that the fourier transform of }{‘ is i,/%; sgn(k) where sgn(k) signum function.
1 io.x 1 x‘ax fox
: e+ —edx
Sola F{}/} 7 L e S
’ L4 s
1 iw:dxr_,_ 1 J‘_l_em.xdx

72=ﬂ x' ‘on

[Put g = —x' in the first Integral]

ol o)

- a
Solu : Now the fourier transform of 2 ra is

a 1 ° g™
2 - Ta &
F[x2+a2] \/2_1?_{0 x?+q?

Directorate of Distance Education A ‘ | B



Mathematical Methods .....

To evaluate this integral we apply the themy of complex variable. We integrate the function f( z) = ‘2'8

oz

2 +a®

of complex variable z around the closed contour C, or C, according as @ >0 or <0 in the complex z-

plane. Cl"‘consists of straight line segment 4B
joining the points — R to R and a semi-circular arc
Cpild=R, 0<argz<n; C, consists of
straight line segment CD joining the points R to -

R

C2 R:] '.z’ =R,
" (a) For a > 0. The only singularity of the function z) that lies inside C, for sufficiently large R is at

z = ia , which is a simple pole, and the residue of f{z) at this pole is 58

10

A

and a semi-circular are 5 o Contour C, B_, ais

-n<argz<0.

—-aa’

Therefore by Cauchy’s Residue theorem we have

R
ae™ ““(cos B+isin 0) . .
P e L

Since on 4B, z = x, and on Cpp, = R®

—uRsinO n Rae
'ff dil JR’e“+a <£m '.

Cir

Now

since for 0<B<n,sing>0 and therefore ,-KRsiné

n
jaRde—-nﬁﬁvOasRAw
o R* R

[f(z)dz—>0as R >,
Cr ‘

Thérefore from (i) proceeding to the limit R —» o , we get

? _ae™ -l
dx e
-£o x2 +a (2)

(b) For o <0,
In this case the only singularity of the function f(z) that lies inside C, is at z = —ia, which-is also a s1mple

Directorate of Distance Education
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-loja

pole, and the residue of f{z) at this pole is :'_‘}_%___ (since ¥ is negative we can write K .~}K]) Therefore
ia

by cauchy’s residue theorem, we have

"R ae;‘ aR(cos B+ sind) ' ‘
‘ "j g Bt I T iRe® d0 = ~me™" : 3)
e +a’ R +a’ ‘ N

The integration of C,, for large R becomes

0 ila|R(cos0+isin8)

[ 1R
€

’ D : C
0  |a|Rsin®. ' » Real
. axis

N

-%

x *]aRsm¢ '
=J d¢<2—7-t~—>0asR~)oo
0 R :

Since ¢ lfsn¢ 1, as sin >0 for << . Contour C,

Therefore from (3) proceeding to the limit R — « , we get
© el -
f - ds=ne~l®] @)

-oox2+a

Consequently whether K>0 or <0, we have

1

® ae —da) [ ]_ -a|a} __\/;t
dx F = e = |2
_{o 7, ne and therefore Il R 5

1.6 Inverse Fourier Transform :
If F(c) is the Fourier Transform of a function f{x), then by inverse Fourier Transform of F(a) we

mean a function G(x) of real variable x denoted by Ff"{F (a)] and defined by

G(x)= F'[F(a)]= ( }J'F a)e” “ oy
If Ax) satisfies certain conditions then G(x) = f(x), at points of continuity of fx)

Directorate of Distance Education 11
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= %[f (x+0)+f(x- 0)] , at points of finite discontinufy of f(x).
Theorem : [Riemann;- Lebesgue’s Theorem]
If x) satisfies Dirichelet’s conditions in —co < x < co, the integral || (x)| dv exists and F{ct) be the
_ o
Fourier Transform of fx), then F(a)-» 0 as |o| - , i.e., Ia.IL-t* mF(a) =0.
Theorem : [Fourier inversion theorem]

_ o 2
If f{x) satisfies Dirichelet’s conditions in —w < x <o and the integral | ] f(x),abc exists, then
L 4

U\E oy oy . , .
(:/“5';‘) i Flo) e da. = E[f (x+0)+ f(x—0)] where F(q) is the Fourier transform of /(x).
- Theorem : [Fourier Integral theorem]

@
If fx) satisfis Dirichelet’s conditions in —w < x <o and the integral | l f (x)] dx exists, then
T w0

[f(x 0)+ f(x+0)]= (}/)Jdajf(t)cos a(l- x)]

Proof : From Fourier inversion theorem, we have

1 —ax 1§ | LT it
2[f(x+0)+f(x 0) J_JFa)e da=~\[—.2__;£da‘e (u\/-:z—;-{dtf(t)e )
[Using the value of F(a)]

10 iofi-x), 19, % {1
—Znidaidtf(t)e +21,”I)da—£°dtf(t)e

1 ® @ i (tmx 1 @
=—[da' [dif(t)e™™ )+"'"f dff(f)em(t ™ Put o= —q in first Integral

=_1-]'°d<x }’dt £(r) 079 4 ~2‘—}° Tat £(1) 0=
No -

=

“ }_ ia(t-x) | ~ia(t-x)
2 jdtf(t)z[e +e7tel)]

12 Directorate of Distance Education
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v

1 0 «© .
. 0 PRAT A .
1.7 Convolution Theorem and Passeval’s Theorem for Fourier Transform :

Definition : The function 4(x) or /*&(x)= “\/—'%;n‘ Tf (x-y)a(y)dy

J—— If(y)g(x -y)dy

is called the conolutlon or Faltung of the two functions f(x) and g(x).
- The above integral exists 1f both the functions f(x) and g(x) are integrable in any finite interval and the

integrals _Jlf (x)ldx and ”g(x)}dx exists.

Convolution theorem or Faitung theorém :
If F(a) and G(a) are the fourier transforms of the functions f{x) and g(x), then the product F(a)

G(wv) is the Fourier Transform of the convolution product A(x) or f+g i.e.,
L Tar e - T f(x-y)e(y) dy = Fla) G(a) |
‘\/—2; —0 \/57_; ~00 . '
By Fourier inversion theorem the above can be Mitten as
Fa) G(a) ™ do = x—
L TR 6le) e = Trte-n)at .

Proof : Let H{ct) be the Fourier transform of the convolution h(x) of the two functions f{x) and g(x) where

He)= 5= 1/(x=2)80) &

therefore, H(oc) = —-—%——- [ h(x) e dx
. T

=——-——Idxe'“"‘ ff( ¥)8)dy  [Using the value of h(x)]

-0

1% F; ‘+z < S ‘
=_2.;Ldze°‘(y )_{of(z)g(y)dy [Putx -y =z dx = dz]

Directorate of Distance Education o 13
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=[- ujof(z) %z || o afg(y) Ody| [Assunﬁngthatthebhanging&xe
N2m - Vin ‘
it ~ ' Order of Integration is .

= F(a) G(a) - permissiblc]
Hence the theorem.

Theorem : PARSEVAL’S IDENTITY :

If () is the Fourier Transform of f{x), then | |F(a)|2da = | {f(x)]zdx
-0 ' -0
Proof : The convolution of the two functions f(x) and g(x) is given by
. e
’(ﬂb\g—; _{of () glx-y)dy 0

If F(a), G(ex) and H{ct) be the Fourier Transforms of f{x), g(x) and h(x) respectively, then according
to the convolution theorem, . .
H(a) = F(a) G(a) | N ¢))
By Fourier inversion theorem, we have
1 % i
h(x)= =l jH(a) e da, | 3)

Here assume that both j(x) and g(x) are contmuous functxons of x and therefore A(x) is also a
continuous function of x. _

Using (1), (2) the equation (3) becomes,
1 = 1= iax
= 110)elx-5) dy= = T(0) Gla)e ™o
Putting x = 0 in above, we get ’
110)8(=) dy= [Fle) G(a) da @
Again let g(-y)= f(y), where the bar indicates complex conjugate of f (»).

Then G{o) = JZ_n | g(x) e dx = J_ J g(—u) e dy Putx =-u

14 ‘ : Directorate of Distance Education
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= ~--‘/%—_";j{:}_(zf)e"m‘“f.i'u = F- (a) ( 5) ’

'-_——-J.—;__;zf(x)ewdx |

which is the complex conjugate of F(a).
Using (5), (4) becomes
® _ -
[f)f(y)dy = [ F(o) F(a) dox
-0 -0 .
2 2 @ 2
= [|[f0)[d=[|Flo)|dx
-0 )
Examples on Fourier Inversion Formula and application of convolution theorems :
1<t

Ex.- Find the Fourier Transform of the function / (x) = {-0 le >1

Hence evaluate j sin % .

Sofii + st Part .
By the definition of Fourier Transform we have

F(oc) J_ ff(x)e‘“"abc—ja ]f(x)e’“‘dxi»r jf(x)e‘“"dx+r ff(x)e‘““dx
ol
fox N
Ei['e = E[F}—l
1 |- (2.
ST

1 Sin&:JZ-‘Sinva .
J?.n X O

#

9!&

Directorate of Distance Education 15
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\/‘Sln a, a>0

JI a=0

x?

F(oc)

2nd Part : _
By Fourier inversion theorem, we get the following at places of continuity of fx).

- L TRy e = \[. S0 @ iy
flx)= I (a)e N I
The point x = 0 being a point of continuity of f(x), putting x = 0 in the above equation, we get

1 Fsin 1 $sina i”sina
0':— 2N — S Bl e
0 nj a da 1:;[ a da+u-! "o

-0

1 ¢sin ¢ 4 sin a '
;j “j o do [changing a. by —a in the Ist integral]
1] .

_gfsmdda
my @

do.  since f(0)=1

ﬂ‘ <«
=5=7 % (an

' I—xz, <1
Ex.: Find the Fourier Transform of J (x) = {O, : ll*:ll> )

’ ®© . )

X cos x—sin x

Hence evaluate J = cos (%)dx .
o .

Solu : (1st Part)
By the definition of Fourier Transform we have

- Flo)=—= 110 e"%=7_—_}( %) i

15 _ . Directorate of Distance Education
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! 1 o iax ox |
1 2 €% 1 e 2 | xe e
e (1-27) & p A VI N A
Pr [( ) L“fzn 2 om L«a)’ (fa)’]..
(e +e . g0 _ gt
= n[ 2o PN
‘[‘Zcosa in (
in & =—,/=—(a cos a-sin a)

2nd Part : By Fourier inversion theorem we have the following at places of continuity of f{(x).

x)?()/ﬁ;)TF(a)e‘mda
(}/ﬁ;)(\/_/;) -3 (ot cos a—sin a)e” iox gy

At x= }/ , the function f(x) is continuous, so we have

%)= AI (ot cosa— sma.)e Vda

=1- V=-AI ina){eod%5)- fSM(‘V)}

Equating real parts in above we get

—% = i&% (o cosa—sinat) cos(%)da
““3‘ (o coso-sina WS(O/)"‘I = [since the integrand is an even function]

Ex.: Use Parseval’s identity to prove that

-

°I° dx __ =
—eo(xz + az) (xz +b2) ab(a+b)

Directorate of Distance Education 17
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flx)=e™, a>0

Solu : We consider two function { g(x)= e—b:xl, 5>0

Let us denote the Fourier transforms of fx) & g(x) are F(o) énd G(a).

b
Then F(e)= (% o 60 = P e

To‘+a
Here a, a, b are all real so f(x)=f(x) & g(x)=g(x)
Therefore from the Parseval’s identity, we get,

0 o0 b
P P PR O L do.
-.{o . _J;o\/:az +a* %a2+b2

@ 1 n 7 ~(a+b){x|
= do = -— e dx
L) o)™ 2
< do, T LT —(a+b)y]
=>__{0(a2 +a2) (az +b2) - 2ab2£e dx [As the integragd is an even function]

n ew(u'fb)x © o
~ab| ~{a+b) | " abla+b)

“J" do __=n
' ~_co(a2+a2)(a2+b2) ab(a +b)

1.8 Fourier Sine Transform and Cosine Transform :

Definition : If a function f{x) is defined in the interval (0, o), then its fourier sine transform denoted by

Fy (o) defined by the integral Fy(a) = \/E/; “l: f(x) sin(ox) d&x = (1), provided the integral exists.

=

[ £(x) sin(oux) dx

¢

Since

< T[ £ (x)]sin (oo ebx < I] ()| |

0

The integrals (1) exists, if fx) is integrable in any subinterval of (0, «) and the integral {) flx)dx i

absolutely convergent.

18 ' Directorate of Distance Education
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-----

Fourier Cosine Transform :

Definition :If a function f{x) is defined in the interval (0, <., then its fourier cosine transform denoted by

F..(e) and is defined by the integral F.(c) = \/%}[ £(x) cos(ox) dx > (2), provided the integral exists.

Since

}f(x) cos{ox) dx| < I]f(x)llcos(ax)ldx < ﬂf(x){dx

[}

o0
The integrals (2) exists, if A{x) is integrable in any subinterval of (0, e} and the integral | f (x)dx is
0

absolutely convergent.

Inversion Formulas for Fourier Sine and Cosine Transform :

For Inversion Formula of Fourier sine transform, let us introduced a function g(x) in (-, »)and

defined as

glx)= {f(x)' vz

- f(=x). x<0
If Fourier sine transform of fx) exists, then the Fourier Transform G(a) of g(x) exists and is defined

by
o , 0 ) oG .
G(a) = s jq(x) e “dx = 7%—; f{-—f(~x)} ' dx + ~—%;t— gf(x) ' “dx
= af~ F(x) e ™ dx + 1 }0 f(x) e ™ dx
0 2n o

= “"'Jf (x) m;e dx [Putting x by -x in the Ist Integral]
i
0

1 5 . x . N
= EZl'!f(X) sin(owx) dx = z\/;'o[f(x_) sin(owx) dx = iF;(a)
Soif fs) satisfies Dirichelet’s Conditionsin (0. «) and JIf (x)‘ dx is convergent, then obviously the
0

function g(x) satisfies the same conditions in (—o, ) and the integral _ﬂg (x )f dx g convergent.
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Therefore by Fourier inversion theorem we have for x>0,

—;—[ S(x+0)+ f(x-0)]= (}{/57?):[6(“) e o,

= ( }/ J-z—;)lz Fy(o) e™™dat ; | ~ since G(a) = iFy(er)

-

..A \F'o ©
= i ~iox i
(//E;{, iFs(a)e da+_£Fs(on)e do.

e -

oY o - o

-

- -

= (/‘/—2-‘;\ I—Fk(a) e“do +:£F:g(a) e “da [Since FS(_Q) = -F:s(a)]

-4

e

=-(/J:2—7t—):j2 i Fy(a) sin(ax) da, |

-7 }:Fs(a) sin{ax) do

So, the inversion formula for Fourier Sine 'I‘tansfonn becomes

L0 fx-0)= 3] ZFS((!) sinax) o

2

When f(x) is continuous, then inversion formula becomes

1=y Iw) sinocx) do

Similarly for inversion formula of Fourier Cosine Transform, let us introduced a function g(x) in (0, )

and defined as

f(x), x=20

glx)= { f(=x), x<0

Now design the same technique as in Fourier Sine Transform we reach the followiﬁg inversion formula

PO
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for Fouricr Cosine transform
1
2[f(x+0)+f(x -0)]= 1’/ JF (o) cos (oux) dot
When f{x) is continuous, then inversion formula becomes,

= ‘F/; IFC(a) cosoux dot

1.9 Parseval’s Theorem for Fourier Sine and Cosine Transforms :

Let f(x) and g(x) be two functions both defined in the interval (0, ) and let their Fourier Sine and

cosine transforms be FS(OL), Gs(a) and Fc(a) , GC(OL) respectively.

Now }OFC(&) G(at) cos(ax) do. = ]:da F.(a) cos(ax) \/% Ig(t) cos(ax) dt

= \PZ; Idt g(?) Ida F.(a) cos(owx) cos(aur)

[Assume that changing order of mtegzation is pennissai)le]

4

- [ Jarg(0) [ Fule) oo ax+1)+oos ofs )] da

= %j’g(t)dt[\/‘% Tda Fe(a) coda(x+1)]+ 1/%7&1 F.(a) cosfarfx — r[]}
0 0 .
Using the inversion formula for Fourier Cosine Transform we get,

F(0) G(o) cosowx dat ——;-T (t)arl s (x+0)+ f (e~ ~ 1))

© Sy 8

Now putting x = 0 in above we get

l\}n—-ﬂ

© Loy §

R0 - [a0al O+ 10} [rOs0a

Let g(r)=2(t), where the bar indicates Complex Conjugate of g(r).
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Then G () = G, () (proof is obvious) & where G, (a) is the Complex conjugate of G..(2t).

From (1) using above, we have
| Fe(e) Golor) dow = f f()g(r)a @)
0 )
- Again let g(r)= £(¢), then we get the relations, |

Z’Fc(a) F. (o) do = }° 70 7o) at

| ::>)'I (a,d(x flf(t){ dt v 3)

This relation (3) is known as Parseval’s relation for Fourier cosine Transform.

The relation (2) is known as Generalized of Parseval’s Relation for Fourier cosine Transform.

In the same Fashion, we obtained the Generalised of Parseval’s relation and Parseval’s relation for
Fourier sine Transform as follows. .

= [F(e)G(a)da= ] 1) g

=] 2 R
& (j) IFS(a)l do. = (j) ] f(t){zdt

Example on Inversion Formula and Parseval’s Relation :
Ex.: Prove the following by using the inversion formula for Fourier Sine & Cosine Transform.

1 cos(aa) T e x>0 7 asin(ox) T o 20
= L o =T,
@ ;{ozz-#bz W= b0 ®) ;{a T 20 b0

Solu. : (a) Let us define the function f(x)=e™, x>0, b>0

Now taking Fourier Cosine Transform f,.(a)of f(x), we get

2 [—-l s \ =D cos(ax)+a sin(owx N
| F}:(a)= /% {e"beOS(GX) da= 211: e ( (bzl’az ( ))}0
[‘_ b
- %bzuxz
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Therefore by inversion formula, we get,

flx)=e J——IF(a ) cos(ox da-JZ\[—J bbc;o:(:x)d

m

COS T >0 .
J' b € s X (PI‘OVed)

9
(®) Letus define the function f(x)=e~*, x> 0. 5>0 Now taking fourief sine Transform Fy(c)of
Sx) we get ' '

O ac;s@»]o “
=\/7’;b2+oz2 .

Therefore by inversion formula we get,

f(x)=e™ \/—/;Jﬁg(a ) sin (ax) do = JZ!J: abiu::x).

:J. &Mda:%e_m. . ; x>0,b>0‘

Ex.: Find the Fourier Cosine Transform of e-&?’

Solu.: By the definition of Fourier Cosine Transform we have,

E::(“):\/?; :fe*”’ cos(aut) i (l) .

Differentiating with respect to a, we obtain

dFC | /jte in (ot dt~-——\/_/;j'sm ou)d

_21. %{[ﬂ' sn(a)] -GI,eT"f"f‘?st“?“?)- "} |

Directorate of Distance Education }3
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=-% JZ(—a)Ie“’z cos(a) dt

==L F (o), Using (1

d Fc(a)

= --?— {94
F(a) 2a

) 2
Integrating, we get Fc(a) = Ce'a/M [C = Integration Constant]

When g = 0, from equation (1), 'we have

F(o'.) JZ;Ie dt = A————-—

) Then from (2) we get by putting o = 0,
Jui™€

A
Hence Fc(a)-—-me 4a

1 o
Therefore the Fourier Cosine Transform of —at is ;72:8 /4“.

a
Ex.: If the Fourier Sine Transform of Ax) is Lt 2’ find fx).

Solu.: From the deiinition of Inverse Fourier Sine Transform, we have

10={% [
JZ; I a 1++la sin{owx) dou
\/ZIsm(ax drm \/Z:J‘ sx;nio:)

sin(ox) da M
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- % -
-7 B

Differentiating w. to x, we get,

df (x JZ jc;)i(zr)

Again differentiating w.r. to x, equation (2)

dfx) J’Zjoasmorx)

Subtractmg (2) from (4) we get,

. vt_i_z._f._{.)_-.f(x =55 +.J2/ J—Ia

(1+a?) sin(ox)

ofl1+a?)

K

da

i
do = 5

- ¢ sin
smcej
: )

—

2)

(3)

@

=—\/;/; +JZI§?~%@¢1&

=-\/§/;+\/5/;%

o dzf(X)_f( )

The solution of above differential equation is

f(x)=Ce™ + Cze“'x

where C, & C, are arbitary constant

Directorate of Distance Education
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T r T ()

Pux=0in(2,  f(0)= \/%

and put x = 0 in (3), \/Zolﬂx da.=—\/7‘[+a or, Jzy_ J*

Using the above results, by putting x = 0 in (5) & (6) we have
| Ci *G = \ﬁ/;
& G-G=-%
=C=0,C =1
Hence f(x)= \[% e,

Ex.: Use Parseval Relation for Fourier Cosine Transform to evaluate the following integrals
dt _ n
)(b2 +,2) 2ab(a +b)

() ',52

(a +1°
sin At sm pt T .
J =—min(A, p)
2. 0
~ Solu.: We consider the two function

f(x)=e™, x>0, and g(x)=e™

, x>0
If we denote the Fourier Cosine Transform of f(x) and g{x) are FC(OL) & GC(OL) . Then we easily
calculated that ' '

Fol)= B and (@)=

T ra?

Therefore from the generalisation of parseval’s relation for Fourier Cosine Transform

ch(a) G (o) dot = }: 1) 20 a

26
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_ N , .
Then we have %{)(a2+a2‘)1(b2+a2) do = ge W om0 gy
= T do : _.n g(asd)x T
o(a2 +a2) (.b2 +a2) 2ab| —(a+b) \
= ?‘ dou ‘ - n
o(az2 +a2) (b2 +a2) 2(a+b)ab (Proved)

(b) Let us consider the two function as follows

f(x)={

1, 0<x<p o= 0<x<A
0, x2p 10, x2A

Let us also denoted the Fourier Cosine Transform of f(x) and g(x) are FC(OL) & GC(G) respectively.
Then we can calculate :

.Fc(o‘)"'\/é—/;zf(x) COS(W)dx=\/§/Z;’:I. cos(mx)dxz\[%[sm(ax)]: - %S_ill(}l_j-t_)_

o o

Similarly Go(a)= \/ Z ;i g{x) cos(owx) dx ‘

- \/y—; sin(aA)

Therefore from the generalisation of Parseval’s Relation for Fourier Cosine Transform

| ch(a) G, (o)do: = Z’ 1) 5(0) e

- . . min(A, u)
2/ fsin(ar) sin(op) .

- A ;’; L da = '! 1 dx
2 sin(aA) sin oy .

- J' ( ()12 ( )da=/2mm(x,u) - (Proved)
4]
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1.10 Multiple Fourier Transform :
Let us introduced the Fourier Transform of a function « .’ several variables. The methodology of Fourier

Transform of a function of single variable can be extended to functions of several variables. Let f(x, y) be
a function of two independent variables x and y, defined in (~0 <x <, ~w <y <o}.Let f(a, y) bethe

i 1 @
Fourier Transform-of f(x, ) then fle, J’Fﬁ [f(x, y)e¥ax — (1) in this case y treated as constant.

Again take the Fourier Transform of 7(a, y) and denote-as F{o, B) and defined as
T _“__-__L_ Tz iBy
. Flo, B) \/2-7;.{{(&' yye¥dy — (2)
Using (1), (2) becomes
_ _ ___‘_l____ 24 w i(ax+y) A L
Fla, B)"[Jz"i) L_{of(x.y)e dedy - (?)

The above result is called two demensional Fourier Transform of the function f(x, y) of two variables
x & y. In the same fashion, we can find the inversion formula for two dimensional Fourier Transform. Let us
assume that f(x, y) is a continuous function of x & y, then takxng the inversion formula of (1) & (2) we get

successively,

f(x, y)=—— f fla, y)e ™ da — (4)

A-

f - .._L (5l ~By
& J(@) \@;iF(a, B = ()
Using (5), (4) becomes

2 o 0
X y)m(-L) | [F(o, B)e‘i(”+ﬁy)dad8 - (6)

-0 ~0

The above results is called two dimensional inversion fonnula of Fourier Transfonn of the function

f (x. y) of two variables x & y.

Generalising the above ideas we can obtained the following. Let f (xI P Xy s x”) be function of
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independent variables. X, X,, ..., X . Then ndimensional Fourier Transform of the functions f(xl, x5, xn)
is defined by the function. '

F(q;, Uy veey =(}/m) J' x" Xpo wres X, )et(u,x,m,x;-c» -m;.)‘& ‘& &,

-

If f(xl,xz, ) be a contmuous function of X, X,, .., ¥, in (-—oo'<xl <, —0<X, <®,

ey =< x < oo) then the inversion formula for n-dimensional Fourier Transform is given by

' 1 Yoo ® ‘ ~i{or 5 0%+t x )
_ f(x ) Xy, xn)=[7-§_;} { j...J’F(a,, Oprenes a”)e 72 do da,...do.

Bt s « SRR ¢ o]

11 Solution of Partial Differential Equations by the help of Fourier Transform :

Using smtable Fourier Transform, the partial differential equanon of some problems of Physics can be
reduces either to an ordinary differential equation or to an algebraie equation, which are very easier to so!ve
than solving the original ones.

- Solution of Diffusion Equation (Heat Equation) :
Ex.: Solve the following heat conduction problem given by

: 2
PDE : %=K~g;i~, —o<x<w, >0
Subject to BCS : u{x, ) and 4 (%, 1) both —0 as x>
IC: ux, 0)= f(x), ~o<x<ow

- Solu.: Let us denote the Fourier Transform of u{x, f) with respect to x by #(c., f}. Then we can write.

_0

al el o

Pul 1 0% 1 [ou T 1 Séu |
ety PSSR P ‘&=______ T e I Bl ¥ )
and F{ax’} JZ_u._J;axz ¢ \/EE[axe~L J’2nmaxe ()
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. -—-—\/%_%—!—[u(alc, r) ' ]:o +—j—§—:‘[ Tu(x, 1) em(ia)dx]

—00

2 1 % i
=0+(iot)" —== fu(x, t) e dx

V2n
= -0 #{a, 1) @)

' o
Now taking the Fourier Transform of given PDE i.e., o =k2Z

ot ox?
2
ot ox

d_, u :

= — (o, t)-—K[F{sx-z-}] Using (1)
d_ -

= -a—t—u(or,, f)= K{—azu(a, t)} . Using (2)
difa, 1) . 2

= == Ko a(a, t)
dﬂ(a. t) - ~Ka2dt
i(a, ¢)

The solution of above differential equation is

d(, 1)= A e~k (3)  [A = Integration Constant]
Taking Fourier Transform of IC, i.c., u(x, 0)= /()
Then F {u(x, 0)} =F { f (x)} |

= #@(a, 0)=f(a) (4  where f(a) is the Fourier transform of fx).

Put 7 =0 in (3) and then using (4) we get

o, 0)=4 = fla)=4
Putting the value of A in (3) we get

#(a, 1)= fla)e™ K" )
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Taking inversion formula of Fourier Transform ot the equation (5)

LT 1 77 -Ko?t —iox

ux, 1)= “é’;_{o (o t)e mda:ﬁ_{o () e K" e doy Using (5)
| B i .

. 1)= = |7 (0)glo) € da ©

Where ( ): - Ka’t t.hen g(x)—_— 1 Tg‘(a) e do = 1 Te—lmzf e
£ A L =Tl
e..(xi.{m)
= — [which shown earlier
2k [ ]

Now using convolution theorem on Fourier Transform to the equ” (6)
ux, t)=—=—= | fla)glx—a) do
(x. 1) o [fla)g
e /Kl’ }

‘ﬁ—gjfa)e

Note : Since the ran; < of spatial variable is infinite, the fourier exponential transform is used rather than
the sine or cosine transform. '

Ex.: Solve the heat conduction (Flow of heat in a semi-infinite medium) problem described by

Ou au
PDE : P axz, 0<x<e, >0
BC: w0, t)=u . 120
IC: ulx, 0)=0, 0<x <

u(x, t) and 6%): both tend to zero as x —» co.

Solu.: Since u is specified at x = 0, the fourier sine transform is applicable to this problem. Taking Fourier
sine transform of the given PDE and using Es(a, t) is the Fourier sine transform of u(x, ¢) we have

2
Pg[él'"] = Fy K?Lg'
ot Ox
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= \['j dulx, 1) in(ax)dx=k(j ¥ Sinow d
dt[JZ [ulx r) sin(ax) dx} k %[——

%g_(a, f)}:K\/'%[O-—Q‘!acosax dx] |
=Ko JZ[u(x, t) cos(owx) ]: -]:u(x,}) sixiax(—a) dx]
=Kot [Y(ct) a3 s, 0 sin(r)

=\[% kauo—kﬁzis(a, 1) |
- dus(a t) 7@, )= ‘j—kauo

The solution of above differential equation is

(e, t)e““z' = J%kauo j e~ X gy

«-aj—-—— cosoux dx]

-Ku 1
= (o, t)e“""‘ ‘= A: ktxuo[ ] - [A=Integration constant]
= w27 ke
= T(a, e =- A’ae +4 )
Now taking the Fourier sine transform of u(x, 0)=0.
We get #y(o, 0)=0 | @

Put t= 0 in (1) and then using (2) we get

=;/.’fo_
T
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Putting the value of 4in (1) we get,

ﬁs(a' t) e-Ka_zt ,% [ -K(xzt

Takmg the inversion formula of Fourier sine transform we get

G) -

u(at, ¥) =\F/; It’is(a, t) sin(ow) dot =J§/; IJZ 12— (l—é‘”é") sin{ox) do. [using (3)]

) =(3) 0 T (3 L, s

- (34) 4 (59)-5) ] et
Using the Stanciard Integral erf (»= ( y ,/'E)j: e du

m ( /)e ]f(y) e‘[o —u? sm(2ay) SICY) do
The equaﬁon (4) becomes, o

u(x, 1) =t -%"o[g‘”f (’ﬁ?)] ) "°[l —erf(ﬁ-% )]

Finally, the solution of the heat conduction problem is

s, 1=y~ Zual, )= [1 e;f( \/-KtH ’

Solution of Laplace Equation :

Ex.- Solve the following boundary value problem in the half place y > 0, described by

Bzu 8%u
PDE: 7 Byz =0, -—ool<x<oo,y>0'.

BCS: ulx, 0)=f(x) -wo<x<o

: ou
u is bounded as y —<0; u and —— both vanish as [x] > .

Directorate of Distance Education
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Solu.: Since X has an infinite range of values, we take the Fourier (exponential) transform of PDE with respect
to x, we get

- ® %y i U o ’
Vi L a el Y | Sre =0

= /M{@:— ™ ):, - (ia)i%e‘“"dx} :y—i[}/mlu(x, ¥) e”“‘afx} =

\[2—1? J ""dx \/%—1_:' ju(x, y)e™dx - 0

-0

Ou
[smce uand —~ both vanish as x> a]

= ——l\/%{(ue za)ju e""‘dﬁrJ+—-— [:/—-—_——_L u(x, y ’“’dx} 0

Ou . .
[since- w and =~ both vanish as |x| - a ]

Oox
© 2 ™)
= izaz(}/m Ju(x, ») e"‘”‘dx)%» —5}—;[ / for Ju(x, ) e“"dx:):
= -o’ #(a, y)+a;2 #(a, y)=0 0

where #(a, y) is the Fourier Transform of u(x, ).
The solution of above differential equation (1) is
(o, y)= A e %Y 4 peHoly )
where 4 and B are two constants.
‘Since # must be bounded as y — <0, #(at, y) and its Fourier transform should be bounded as y — .
That indicates that B = 0 and consequently the solution #(c, y) becomes
(o, y)= de™ @)

Taking Fourier transform of u (x, 0) = f(x) we get
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# (@, 0)= f(a) — (3} where f{a) is the Fourier transform of f{x)
Puty=0in (2), # (o, 0)= 4 = f{a) [using (3)]

Putting the value of 4 in (2) becomes
# (o, y)=f(o) e | @)
= F(o) 2(e) (Say) )

where g(a)=e1%”

Now taking Fourier inversion formula, we get

glx)= )-/ﬁ;f fg(a) e“i”da=}</2—n Je ol g=ax gy
) -0 -0
= }/ ?e"y‘ o + y r—-?e’“’"“’"da
'\/27{_@ 2n 0 '

= }/ 2n ({ e da + }/ Jon 4{ e-a(ym)da} [Put o =—a in Ist Integral]

R
~ Vi ~(y-ix)|, ! ~(r+ix)|)

= i 1 e l = 2y = Jz y
')/«/i;t-_y—-ix y+ix JEE(y’-c-xz) Nyt +x? ©)
Now applying convolution of Fourier transform of equation (5) we get
VA pdt= Y — T —
)= Yo 7(0)ax— et )/Jz—n O by )

}/I f(t) 7 A (Answer)

.«,)"*“

Ex.: Solve the follbwing problem of two dimensional flow of a perfect fluid in a half space, where the fluid
. is introduced with prescribed velocity through a slit on the boundary.
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2 2
PDE : 224-%’%:0, —-wo<x<ow, y20

2

BCS : %z—-f(x), lxi*‘«’ft,y&O

=0, |x|>a, y=0
o(x, ) >0, y—>

Also find the solution in the particular case fix) = U.
Solu ; Taking the Fourier transform of the given PDE with respect to x, we get

624) 62
A2 520

6 (a, y)=0 (1)  [which is shown earlier example]

where ¢ (o, y) is the Fourier transform of ¢ (x, y) with respect to x.

Again taking the Fourier transform of the boundary conditions with respect to x we get,

%76 (o, 0)= - () @)
and ¢ (o, y)=>0 ’ (3) ras yowo

where f(a) is the Fourier Transform of f{x) defined in this problem.
Now the solution of (1) is ’
(o, y)= de™ 7 + Bel 7

Since ¢ (o, y)—> 0 as y — o according to the condition (3), then we must have B = 0.

o 9 (o y)= e C)
Differentiatingw rto y
d¢ (o, y) o]y
—i = de s
5 | o] )
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Put y = 0 in (5) we get ﬂf,jj O oo d=-F)  (Using @)
o 4=7)
a|

Hence the equation (4) becomns with the value of 4.
f

| o

@) faly

(o )= ©6)

Now taking inverse fourier transform of above (6) we get

b )= 7D e

© yolaiy j-iux .
- 1 J'e e daf(a)

||

1S o

, { i
where flo)=-=1[f (x) ™ ax

Equation (7) represents the two dimensional flow of a perfect fluid in a half space.
Now when f{x) = U (Const) we have

_1u U sin(aq)

21t 1a[em—e-m] T« o

Hence the solution (7) in this case becomes.

:".—-—.g

¢(x, y) == j——sm((:a) m e P doy

~ Solution of wave equation :

Ex.: Find the solutlon of the followmg problem of free vibration of a stretched string of infinite length.

azu 1 %

Sl o Y TRTEEe

PDE :
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BCS: u(x, 0) = f(x)

0
5% 0) =2(x)

0
u and 5;1 are both vanish as | x |- o,

Solu : Taking the Fourier transform of the given PDE with respect to x, we get
Pul 1 [d%
=== Fl—|=0
ax’] ¢ [ or? }

1 7% | 1 1 $0%
e f s g - (Y% s gy = 0
\/Eilaxz ¢ ETz Jz—iiazz ¢

. 2

- = ot o, t)+-§—2-z7(a, 1)=0
d*u(a, t)

ar? _

where #(a, t) is the Fourier transform of u(x, 1) wr to x,

+c’o? (o, £)=0

, | du(x, 0
Taking Fourier transform of the initial condition u(x, 0)= f(x) and u(;t ). 8(x) we get,
- e diu(a, 0)
(07w Qwge) g
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- where f(a) and g(o) are the Fourier transform of f(x) and. g(x) respectively.
Now the solution of equation (1) is | |

(o, t)= A% + B ' C))]
where 4 & B are constants
Differentiating w r to f to (4) we get

d ﬂ(@; t ) .
, dt
Put £ =0 in (4) & (5) we get

#(a, 0)= A+ B= f(o) [using(2)]

di(a, 0)
dt

= (i) ¢! — (jcsc) B &1 )

=(iac)4-(loc)B=g(a)  [using(3)]

- P
U (@)oo 8(@)]
R RN
flo)-— g(a)- N
Putting the values of 4 & B from above in (4) we get,

o )= 3] 70t v+ 2] 7 L]

Solving above, 4=

N

[ F
L} 1

B

i el B o0 Gl IECN

Now taking M§erse Fourier transform of equation (8), we get

ux, t)= J— j (o, t) e da = [ w4 _[ £ a)e"“("“)da + = I ¥ (a)e”'“(’“’)da +]

;_1_.. - i T § (a) ~lof{x-er) _ ~ia(x+er) '
+20[ 757_{, b e o O
Now we have from inversion formula '
f(x)= L I‘f(a) e dor
7o 3/
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Replacing x by x—cr and x +¢¢ in abeve respectively, we get

I 2 ~io{x—c
f(x—ct):—J—é_-_; Jfla)e (¥t} o (10)
& f (x+°‘f)=7~§—;Tf(a)_e“"“(”"')da .an

Again integrating the following inversion formula we get,

glu)= ﬁig(a) e~y

with respect to # between the limits x—¢f to x+cf , we get

o) du=" fa = (o)
glu)du= [du —= [gla)e™“da
X=ct X=-ct n—w

- Jdog(o) Jaue™
—=== jda gla ue
‘\/57? 00 x=¢t"
| {Assuming the changing of order of integration is permissible]

® L —io P
L ;dag-(a)[ei. }

27 o =io |,
______—i_ T _?_(_9_) ~io(x-ct) _ -ia(x+ct) »
;-8 el R L 12

Using (10), (11) & (12), equation (9) becomes

X+t

u(x, t)z—;—[f(x +et)+ f(x -ct)]-t»%:- j g(u)du
x=ct -
1.12 Unit Summary : S
" Many linear boundary value and initial value problems in Applied Mathematics, Physics and Engineering
science, can be effectively solved by the help of Fourier Transform, Fourier Cosine and sine transform.
These transforms are very useful for solving differential or integral equations for méinly two reasons,
Firsily, these equations are replaced by simple algebric equations, which enables us to find the solution of the
' transform function. The solution of the given equation is then obtained in the original variables by inverting the
transform solution. Secondly, the transform solution combined with the convolution theorem provides an
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elegant representation of the solution for the boundary value and initial value problems.
1.13. Exercises :
1. Find the Fourier sine transform of f(x), if

0, 0<x<a

f(x)=4x, asx<bh
0, x>b

2 Using Parseval’s relation for the Fourier cosine transforms of

{1,0<x<x

g(x)=e-ax‘f(x)= 0) x>;U

‘ T sinAa 1-e ]
Show that ;[a(a’ﬂx’) da=%[ e :I
3. Ifa>0, b is any real or complex, show that

7 e—axz—mdx - _‘J_._E.. eb}a/
0 a

4.  Prove the following relation
@, 2 w0
j [P (o) dov = £| F(x)dx

5.  Using the method of Integral Transform, solve the following potchtial problem in the semi-infinite strip’
described by "

Pu
PDE : 5?‘*5)7=0, 0<x<‘oo,0<y<a
BCS: . u(x, 0)= f(x)

u(x, 00)=0

u(x, y)=0, 0<y<a 0<x<o

ou )
and 5; tends to zero as x — .

6.  Find the temperature u at time # and at a distance x from one end of a semi-infinite rod satisfying the
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equation
PDE : ?—"--kaz" 0<x<eo
ot o’
"BCS:  ulx, 0)=f(x), 0<x<ow
u(0,.t) =

u, U -0 as x—0.
7. Compute the displacement u (x, ¢) of an infinite string using the method of Fourier transform given that
the string is initially at rest and that the initial displacement is f(x), —0 < x <0

Ans: 1 Fola)= % [a cos(aa);b (:os(ozb)+ gm(éa)‘;sin(aa)J
i)=Y, [1Q)& in“;f’l—f—"--gl— sin(at) sin(ax) dot
(of el ]
6 u(x. f)- Idaf a){ W g }

7. u(x, t)=%[f(x+“)+f(?““)] |
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2.11 Unit Summary

2.12 Exercises
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2.1 Introduction ;

The Hankel Transform involving Bessel functions the Kernel arises naturally in the discussion of axisymmetric

problems formulated in cylindrical polar co-ordinates. This module_deals with the definition and basic operational
proporties of the Hankel Transform. A large number of axisymmetric problems in cylindrical polar co-ordinates
aiv s:lved with the help of the Hankel Transform.
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2.2 Objectives : _

The Hankel Transform are extremely useful in solving a v ety of partial differential equations in cylindrical
polar co-ordinates. Also for the PDE when the variables are finite range, we can apply the finite Hankel Transform
to solve it

Keywords :
Hankel Transform, Bessel Funcuon, Fxmte Hankel Transfoxm, Heaviside Unit Step function.
2.3 Definition of Hankel Transforms :

Hankel Transform of order n of a function fr), 0<r<ow, denoted by
B} = Fe)=[rf(rW.(ar), n> 4
0 :
where J, (ar) is the Besse! function of order » and argument o . Also J,(r) is defined by
w ("'l)k r 2k
Tulr)= T
kao KT (n+k+1\2
2.4 Inversion Formula of Hankel Transforms :

Ifthe integral | /(7)dr is absolutely convergentand fi (i-) is contiriuous in the neighbourhood of r, then
0 S

fr)= Ia Ju(ar)F,(o)da
where F,(a) is the Hankel Transform of ordern of the function f1 (r)

Theorem : If the integral ] f(r)dr is absolutely convergent and f(r) is continuous in the neighbourhood of
0

r, then flr)= }'a Fy(a)Jp(or)da
when Fj(c) is the Hankel Transform of order 0 of the function (7).

Proof:Wecanwnte f(r)= (\}x +y) g(x, )(say) )
where x=rcos8, y=rsin®, 0<r<ow, 050<2m.

the two dimensional Fourier transform (k, /) of the function g(x, y) is
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gkl =§LTT g(x,y) €™ Vax dy

I_anZn

T=— J I flr)e™= 8y 0

2“ r=06=0

where = k2 + 7 and 8, = tan™(}{). Here we have taken the line joining (0, 0)and (, ) in the xy-
plane asthe initial line. '

= 51—'( r) 2nJ (ocr)dr Smce_{e" 00 =2 J,(A)
0

Therefore g(k, I) rf [rf(r) Jo(ou-)dr Fy(a) )
By fourier ihifersion theorem we get,

glxy )"2—*1 T2k "("Wy)dkd’

—30 =00

2

1 9 o cos{$—
"2 £o¢-o ole)e ¢ *‘)ondad‘; [using (2)]

Put k =a cos d), !=asin o, k2 +12 =a?, o=tan™'(%)
and0<a<w, 0SH<2m

-2-1- T o(a) dat j-*“"““"""dq;
o=l

$=0

1 © . ’ y ; n —ih cosO
=— [aFp(a)da 2n Jy(-or) since | e “7°dD =2m Jy(-A)
27 om0 | : 0 o

= :j:a. Fyla) Jo(—ﬁr)da

where the line joining (0, 0) and the point (x, y) in kl-plane has been taken as initial | $ne
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k=a cos ¢, I=asind.

Since by (1), f(r) = g(x,y)and Jo(-A) = Jy(A) the ove relation gives,

f(r~)=1°m<a) Jolar)de.

* whichis an inversion formula of Hankel transform.
We can oonclude that the Hankel transform has its own inverse '

2.5 Hankel Transform of Derivatives :
Basically Hankel transforms of derivatives is needed for solvmg Physical & Mechanical problems or in

broad sense boundary value problems.

£ af rdf nt ] e N )
x. Prove that H, ~2—— f ¢t =~a’F,(a), provided both (i) f'(r) and (i) rf(r) tend to
dr? Y r2 I

zeroas r >0 and ¥ > .

Solu Now H, {dr ——_--—-—§—f(r)}

- :;:J,, (o). {1-.‘-"-[r i)f(r)} dr - Zf-;f (r)rJu(ar) dr

=2°J,,(ar){ ()T st ) o

Integrating by parts twice and using the conditions (i) & (it) we find

=[J"(ar)r-§-f( ) J( ))( 4 (’)}1 f(r Jo(ar)dr
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o d o 2
=0-fadilar)rLar- [ 1(r) s (or)ar Using i)
0 0 o

n2

[f(r)arJ' (ar)) +If — [or2(ar)] dr - T«—f(r).! (ar) dr,

r

= 0+Tf(r)%[wJ5(@ | dr - I—'g—f(r) J,(ar)dr.

© o) 0,2
= [(-1) r[a2 - ;}—]Jn(ar) f(r)dr - {; = F(r)J,(ar)dr

[

= -o? {) ’.'f (# M, (ar)dr ‘ since gr—— {ar J,:(ur)} = —r(az - ——;}Jn (o)

=-a’Fy(a)

In particula’; cases forn=0andn=1, we have

Ho{ég(r;,”’;)r(r)}=-&2Ho{f(r>}=,—a%(a) and

a4 (r L)1) 0} =20} =)

Result : i{rJ'(r)}=—r g (r)
art"’ "

r

d*x 1 dx n?
Pmof The Bessel equation is Y ——t- e + - x=0

Since J,(7) is the solution of Bessel equation, so,

a3 1d n? .
:;;'2"..’"(0()+~‘—-—-Jn(r)+(l~'-;-2")jn(r}= 0

rdr

Directorate of Distance Education 47



Hankel Transforms .

=12 L2, 12200

rdr r
2 .
= 5; {r ii%)} = —-r(l - %]J,, (r)  (Proved)
Ex.: Find the zero-order Hankel Transform of the following functions.
@ & @ Ha-r H(r) = Heaviside it fubction = ¥ 720
— -1), H(r) = Heavisi ion = .
’ 7= TR 0, r<o,

. ]
Selu.: (a) Let us denote the zero-order Hankel Transform of given function is

r

Ho{e } or F,(0.) and defined by

H, {-—-——} = Eo(0)= [Sordy(ardr = e (ar)ar

@ 2.2 4 4
= Je -t L
0 (1)*2%  (2°2

o0 2 4

~r @ o
=f:i- - 'az 5 [rie~dr+ o [rhe " dr—..,
o (1)2%0 () 2% o
a2 at4

=] + -
(1?22 (2)%2*

2
] 3
=l-m—tzat-

8
=(1+a2}?, o <1.
|

(b)  Letusdenote the zero-order Hankel Transform of given function is .

Ho{H(a-r)}= IJo(o‘v) r H{a-r) dr )
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, a-rz0

SinceH(a—r)={0 a-r <0
'~ i, rs<a
- 0, r>a

Using above, equation (1) becaimes

Hy{H(a-r)}= ZJo(ar) Lrdr+ EJo(w) r0dr= ZJo(ar) rdr

= [ Jo(t)—5t Putor =t
0 [¢4
aa 2 4

=--’—2-j:[1-i-+-’-—~ }dz

a‘ o 4 64

N A “
T s | e e s i et e

oll2 16 664 0

2 16 . 6x64
_a z.ee,_i_mﬁ_l_(sz)s_
alz 22 232) 7
a
=] .
. 1("“)

. -
Ex.: Find Hj{—

r
Solu.: By definition of 1st order Hankel Transform we have

e {_F e” -
.Hl{ ; }-gJ;{ar)-;—-.rdr -
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Jefrael. e ],

RN

1
o

a
2 2%
(a* +a?)

Solu.; By the definition of zero-order Hankel Transform we have

Ex.: Show that Ho{e““’ } = , a>0

Hie}= Tre“"’ o(or)dr
0
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_1 i _ a ___a
d [H(E)T datea) ()’
a

Ex.: Prove that Hn{;lj f(r )} = %[F,,_!(a) + F;u-l(“)]: (n=0)

Solu.: By definition of nth order Hankel Transform we have

A1)} = Toar) s
= E-J—"(;E-r—z rf(r)dr

—°f°°"' [ @)+ S ()| ()

[Smce by recurrence relation of Bessel function J,,, I(r) +J,_(r)= Z'rﬁ Julr )]
o o . w0
o (o)) + o)

- _29‘;[}«;‘+,(a)+ﬁ;,-l(°°)]

2.6 Hankel Transform of Derivatives of Funcﬁoﬁ :
Ex: Provethat H,{f'(r)} = ——[(n DE, (@)~ (n+1)F,, ()]

provided f(r) is such that Lz ;f (r)=0 and It #f(r) =0 hold.

Fe0

Solu.: By the definition of n-otder Hankel Transform we have,

H{ f"(r)} = ]:J,,(ar) rf(r) dr |

[):f ACAIN j f (r) {rJ (ar)}dr
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- ..jzf(r) {‘:In(w)+WJf:(w)} dr, (1) [Since, rf(r)>0, asr >0 & r—> o]

0

We know that from the recurrence relation
2n
Joi ()= Tu (1) =2,(r) & J,.,(r)+J,.\(r) = —J(r)

Using the above relations in (1)

7)== 10| o) T} et (e}
] oo alor O~ o s forhr Ol

== [(n=1) Fyas (o) = 1+ 1) By ()]

n

When n =1, the above result indicates,

H{f'(r)} = -t {7 (r)}

n+l

Ex.: Prove that H,, {r"H(a - r)} = La Jper(aer)
Solu.: Hn{”"ﬁ (a- r)} = [r'r.J,(or) H(a—r) dr
0 L

= ?r”*l.],,(ar).l.a!"r + }Or"*']J,,(ar).Odr
0 _ - a

1, r<a
0, r>a

j‘ ,,H(ar)" 1 1 (ar)z 1 [ar)4
= Ey o [ L _fer) g
4 2/(n (n+1)I\2) 2Um+2)\ 2

a
frig, (ocr) dr,a>0 sinc H(a-r) = {
0

52 : : Directorate of Distance Education



Hankel Transforms

o aZn+2 o

‘* an+l (ﬂ)nﬂ ! _ 1 (g&)m“:,“_i 1 (ﬂ)ww—
e (\2) () (m2)\ 2 20n+3)\ 2 ) 7

A

an+l

o p Jnﬂ(ao“)

2.7 The Parseval’s Relation for Hankel Transform :
If H,{f(r}} = F(e) and H,{g(r)} = G(o:) then

Z’r F(r)glr)dr = :I:a Fla) G(o)do:

.

- © ® o ' ’
Proof : We have 5 a Fa) G(o)do. = {) a F(o)d !{ Jular) rg(r)dr
[By the definition of inverse Hankel Transform]

=Z’r o(r) era F(a)J, (or)dr

] B
= ({ rg(r)dr f(r) [Again by the definition of inverse Hankel Transform]

: > zaF(a) G(ot)dot = Z‘rf (r)&lr)dr (proved)

2.8 Example of Partial Differential Equatior on Hankel,’l‘i'avnéform :
Ex.: Find the solution of the following problem of free symmetric vibration of a stretched membrane of
infinite extent.

6) tr 0)=70)  (©) ur. 0)=20)
where u(r, f) is the transverse displacement of the membrane.
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Solu.: The given differential equation is

gu, o -573=0, 0sr<w )

u 1ou 1 du
H{ oM 2 10Ul
"{ar’ ror c*or }

© a2

2% 16u 1 %8%
:I(ar +— &)’Jo(a’)df‘?'!é?’-]o(w)d’=0

_ 1 dz *
::':-azuo(a) "o ‘f) u(r,t) r Jo(or)dr=0
2
Smcef (-‘2——- Lo Zru) Ja(ar)d( = -o’%{a):
. | —
::azuo(a)+~5-—2-zlo(a,t)=0 ¥))

where #(at, ) is the Hankel transform of u(r, £).
Here we assume that the function u(r, £) is such that

r—i—?—)Oasr-—)Oandr—)oo.

Taking Hankel transform initial conditions (b) & (c) we get,
th(0,0) = fo(t) @)
d_ - o
& ‘ét‘ua,(("’o) = Zol1) @
where fo(a) & Bo(c) are Hankel transforms of /() & g{r) respectively.
Now the solution of equation of (1) is
#o(a,t)= Acos (act)+ Bsin (act) ‘ (%)

where A & B are two constants, i.e., they are independent of 2
Put =0, in(5) and using (3) & (4) we get .
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A= fola) & B=g-’()~)gﬁ.

Therefore, the solution for ﬁo(a, 1) givenby (5) becomes.
wh(a.t) = fo(a) cos (act)+ gO( ) sin (oct) ©6)

Taking inversion formula of Hankel of (6) we get the desired éo_luﬁon of the problem.

y(r, t)= Zﬁo(a, tyaJy(or)do = :}1 fo(a)cos (ace)+ i@a(—g—) sin (owt)] o .{o(qr) do.

= }o fola) cos(aét) o Jy{owr)da + ?gg(ﬁ_)_ sin (aet) o Jo(or)do
0 0 &€ B

= JaJo(or) cos{oet)da {}" 7() ‘r_‘Jo‘(ar)dr} L7 szn(acx) {Trg(r)Jo(dr) dr} |
0 v - Lo €o °o

2.9 Finite Hankel Transform :

Definition and Inversion Formula : . : P

The finite Hankel Transform of order n of a function f(r), 0< 7 < denoted by H, ; [ £(r)) or Fuloes),
isdefined by

Ho 0] = o) = [

whérg a; is the root of the transcendental equation J,(ac, ) = 0. Obviously J,(x) being the B%séi
ﬁmctionof’brdern and argument x. ” ;, S

_The inversion formula for finite Hankel Transform is stated in the following theorem w1thout any proof
Theovem Iff(r) satisfies Dirichelet's condition in (0,2) and if its finite Hankel transform of order nis given by

f,.(a:) I rf (r)J (rat;) ar

where o, is aroot of the transcendental equation J, (ac;) = 0, then at any point of the interval (0,q) at
which the function f(x) is continuous :
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2 J,, (ra,)
= "?Z 7 "5
i [ '(aa, )]
where the sum is taken over all positive roots of the equation J,,(act;) = 0.

2,10 Finite Hankel Transform of Derivatives and Examples :

42 2 :
1d
Ex.: Find out the Finite Hankel Transform of el df +- ;1[; - 5/ where f(r) is a function of r defined in

the interval (0, @), restricting 7 to the case 2 0.

2 25 2
Solu :- Now Hm[dr{ l_f‘_’f._._”z f] [r [d +l‘_1f.-"2 f} - (rou, )dr

rdr »r art rar
a 2 a 2
=;r9’—-{-1(m,)dr+; J, (o) dr - j%rf(r).l,,(ra,-)dr 1)
o dar or

2

Now  freLopanktr= | L] -T2 pr o)t L

= —?i {r J,(ree;)} df (r). Since J,(acr;) -0
0 ar

p-

~ Sl 0)] +[ S s

b

=—-:{Jn(ra )+ra, Ji(ro }f(r)] +Id2{"-1 ro,)}f (dr)

= -aa, J}{ac, )1 (a) +j Srne)ie

since J,(ao;)=0, n20

Agin [ 1, () = [0V -1 £ 5 U}
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@ d
= -&[) f —‘}r—-{Jn(ra,-)} dr )
Since J,(aw;) =0, n20,
Using (2) & (3), (1) becomes,

["’f Ja }-aa J(ae, )£ a)+ j Ll oy }f

H
‘ ar rdr r

n, i

,?fg—{Jn(ra,)} dr —j—’!-z-rf(r).],,(ra,-) dr
o @ or

If("){d z{’J ra,; } {J ("0! )}'"—" Jdr aor.,J"(aa,)f( )

- [ ) 2 )= )|~ 1) o
-T2A 2] e np)t Lo - Lo )] o -a, o) 10

where p=ro,

 =-aq, Ji(aa,) f(a)- afj‘rf(r)‘ln(ra,.) d’."

{since Bessel function of order n satisfies the equation

= —a0, J!(aw,) f (@) - a2 f,(a,) %Jn(p)*%,f!;%(p){l-—;;)J,.(p)=0}

. Hence we have derived the relation
d’f 1df n* ' 7 ‘
H [____[_,*,.__I__.... ]:-—-aa,J,;(aa,)f(a).-"'alzf;:(ai)
- which is valid for » > 0.

Directorate of Distance Education 57



Hankel Transforms

For the particular case n=0, the above relation becomes
drz

=aw J(aa)f(@)~affole) ~ - siwe Ji(aw,)=-J(a0,)
Ex.: Solve the following problem of conduction of heat in an infinite circular cylinder

2
H, :[’d”“{”"‘“g”] = =aa, J;(aa,)f(a) a’l-fo(a'i)

(i) W{at)=0 (it)) u(r,0)= £(r), 0<r Sa
Solution : The given differential equation is

u_(Pu 1ou - |
o el v | 1) .0sr<a

a \a' ro
Taking ﬁnite Hankel Transform of order zero of the given equation (1) with respecttor,

(&) 25) st

¢

d — , g
L= zt-{uo(a,. )} = A[—aa, Ji(aa,) u(a, t)—afuo(a,,t)]
[Apply Hankel Transform of zeroth order] |

d_ ' =
= ;-',‘{"O(ai»‘)} = "‘3-‘13 (1) sinceu (a,)=0
d_ 2 r :
ﬁz"o(“v‘)ﬂ“mt (1) =0 )
where 7(a.;,¢) denotes the finite Hankel Transform of order zero or the function u(r, #) and o being the
root of the equation Jy(ax) =0 inx. ‘ ,
Also taking finite Hankel Transform of order zero of the initial condition (iii) we get,
t(a;0)= fola,) 3)

~ where fy(a,) isthe finite Hankel Transform of order zero of the functions r).

Now the solution of equation (2) is
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T (o) = 42> - @
where A is a constant, i.e., independent oft. Put 1=0in (4)
(0, 0)=4 = fofa), Using(®)
Therefore the solution for #{a;,7) given by (4) becomes

A Eﬂ(aiot) "";‘jo(“‘ )e—M?‘ | ’ ®)
Taking invé;éionof thisaccording to the finite inversion formula, we get,

aal_J ("0‘1)
U r, 7 j}) f
( Z @, e i "

2 o Jolroy) gt

= Iff(r)f ("Oh)d’
| a*’ [J,(aa,)] (6).

Substituting for f,(ct;) according to the definition and using the relation Ji(x)==J,(x).

’ 2 u
Ex.: Solve the equation -gr—ii+-l—%ru—+gz— =0, 0<r <o, 220

Boundary conditions are u = u, (constant) where 2 = 0. 0<r<1.

%4 _ o, wherez=0,r> 1.
oz

sin a

Given thazj )da=-2~ 0sr<l

K.
and [Jo(or) sin ada =0, r>1 - .
¢

Solu.: The given equation is _6_2_y_+__+__= , 1)
or* ra .

: Taking-Hankel Transform of zeroth order w.r to rtothe givéﬁ equation, we get

0w 10u o*u
H, =0
H"{aﬁ r <3r}+ {az }
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m—azﬁo(a,z)+§—%(a,;)= 0 )
where 'ﬁo(a,é) = lif:u(r, z)r Jo(ar)dr
Now the solution of differential equation (2) is
#,(a,z) = de® + Be™ : o €))
To exist the above solution #(ct, z) must vanish as z tends to infinity. Therefore #,(, z) mustalso vanish
asztendstoinfinity, : 4=0.
Tl&n equation (3) reduces to #{a,z) = Be™™ o C))
where Bisindependent of z, i.e., Bis a function of c only.

Now by inversion formula, we have
u(r,z) = [Ty(a, z) o Jo(ar)da = [ Be™ o Jo(owr )doe (5)
0 0

“Now applying the boundary conditions we have from (5), whenz=0,

u(r.0)= [aBJy(ar)doa=uy, 0<r<l, (6)
0 . ‘

and [iu(_ér;,_z)) = j—a’BJ;,(ar) da=0, r>1, ™)
Z 2=0 0 .

Comparing (6) & (7) with the given integralsi.e.,

sin o

da=7, 0sr<l1
o

cf"o(‘i“" )
0

o} .
& [Jolor) sin ada=0, r>1
0

We have B = 24 sza , ‘ ®
. T o
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Now putting the value of B in (5), we get the required solution

2uo sm o
1

u(r,z)= o Jo(ar) e“do

0

o

2 }"sm o .z
. n o

Jo(ar) do.
2.11 Uhit Summary :
Attheend of the discussion, the gist of this module are depicted as follows :
@  Wehave scenthatawide variety of physical problems solved by the Hankel Transform.
@) Some realistic problems.in PDE with finite range of integration can be solved by Finite Hankel
Transform. -

2.12 Exercisés

1.  Showthat Ho{:} é— by using the fact that the Hankel Transform is its own inverse.

ol
2. Provethat A, {r”e"z} = 20;_' e A

—ar
3. Provethat Ho{e l= 7 a>0
r

4. Provethat H,{f(ar) ='-1-i-1«;,(%), a>0
a .

(a-a), a>0, H(r)is heaviside step function.

an
5.  Showthat H,,{}{ Juer(ar )} = prs

6.  Solvethe following problem of free sjnnnetric vibration of a stretched circular membrane

3211 10u 1 &
: 10w 2980, 0sr<
PDE ar2 iR <r<a
Bes: u(a,t)=0

Wr0)=£()
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2u(r0)= ()

where u(r, /) is the transverse displacement of the membrane.

olu ; ir, ‘g' 0( ) CostcQL uyiu ua,; jqu
S? L ulr,t) = 5z e} S( zf)f S(u)o( f)d

ca’ §[~}] (zt(;?;i sm(:?’t) guet ol )du}

2.13 References :

1. Lokenath Debnath, Integral Transforms and their Applications, CRC Press, New York, Londan,
Tokyo, 1995.
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3.1 Introduction : .
Most of the physical problems are generated by ordinary or partial differential equations with appropiate
u:iti~1 or boundary conditions. Generally these problems are formulated as initial value problems, boundary
vaiu:: problems for applied and engineering sciences in realistic sense. The laplace transform methodd is
particularly useful for finding solutions of these problems. The method is very effective for the solution of the
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Laplace Transforms

response of a hnear system governed by an ordmaxy differential equation.
3.2 Objectives :

A large number of realistic problems in sciences and Engineering mvolve the solution of linear ordinary
and partial differential equaiions. The Laplace Transform technique is one of the powerful tools for solving
- realistic problems involving PDE or ODE, particularly initial or boundary value problems, It reduces the
solution of PDE to the solution of ODE and then to the solution of an algebric equation. This method has a
particular advantage a in finding the solution of an initial value problem or boundary value problem, without
finding the general solution and then using the given IC or BC for evaluating arbitany constants.

Keywords: . »
Laplace Transform, Perodic Function, Inverse Laplace Transform, Convolution Theorem, Complex

Inversion Formula. - .

3.3 Definition of the Laplace Transform :

Let (1) be a function of 7 specified for# 2 0. Then the laplace transform of Af) is denoted by L{ [ (t)} or
: F(p)andxs defined by the mtegralasfollows : ‘

L{f(t)} F(p)= I err, M

pmvxdedtheunegralemsts Letusassume ﬁxatthc parameterp:scomplexand consequentlythe laplace transform
of A1) i.e., F(p)isafunction ofoomplex variable p. .
3.4 Sufficient Conditions For Exnstence of Laplace 'n-ansforms :

Aclass of functions(0), for which their Laplace Transform L{f (1)} or Fp)exists, satisfying the fouowmg
properties | o -
1. f(¢)issectionally continuous function on every finite interval of # for > 0.

2. f(fisafunction of exponential order yast— o, ie., !e""' f (r)’ <M or [ (1) < Me"" , where Mis
areal constants and y also positive constant.

Example on exponential order:

Ex-1 fr)=#isof exponential orderyas ¢ — o, since ltzl =1? <e* forallt>0.

Ex2 f(f)=¢" isnotofexponential ordersince le“"é's" = e~ canbe made larger than any given

constant by increasing ?.
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(T2 1]

Intuitively, functions of exponentiai order cannot “grow” in absolute value more rapidly than Meast
increases. In practice, however, this is no restriction since Mand y can be as large as desired. Bounded functions,
such as Sin at or Cos at, are of exponential order.

* Theorem 1: Ifareal-valued function /{¢) of real variable is sectionally continuons in any finite interval of fand is

of exponential order O(e“) at t — 0 when 7 > 0, then the integral {) e P f(t)dt converges in the domain Real

(p)>7v.

Proof : Since /(1) is of exponential order O(e‘” ) at ¢ — 0, there exist two real positive constants 4/ and y such

s A <
£ (1) s Me™

'Ihérefon;,

Feon g Tt
0 0

\f (e, p = x+iy

@€
< je—xt
0

eV i Me" dt

IA

[c o) .

M| e Vgt since ’e"-”l =1
0

which existsif x >7 i.e..Real (p)>7.

Hence the integral [e 7' f(t)d! existsin the domainReal (p) >y .
0

3.5 Laplace Transform of derivatives :

Theorem 2 : If f{f) is continuous and is of exponential order O(e" ) at t — oo and f(r) is piecewise

continuous in any finite interval of £, then the laplace transform of f"(r) exists for Real (p) >y andis givenby

L1 ()} = pF(p)- £ (o)

Proof : According to the definition of laplace transform we can write,

o 7
L{f (0} = {f’(f)e"”d‘ =L G)erd M
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provided the limit exists.

Since f'(¢) is piecewise continuous in any tinite interval of £, the finite intcrval (0, T) can be broken up into a finite
number of sub-intervals in each of which £() is continuous. Let there be n such subintervals and (5.1, b,) be
the r-th subinterval where b, =0and b =T. '
Therefore, we can write

P f(r)dt=Yy" ]:f'(t)e“”"dt

rs|

€ Sy 3

(ad}

n ’ ' br . . .
= z{[e“P‘ f (:)JZ + pb ff()e? dt}
r—1

r=1 r—§

=3[P 7, -0)-e P (6, +0)) 4+ p% T 1) e

r= - r=l b, ,
SN Lo
=e P f(T)- £(0)+ pf f(t)e Pt )
0

Since fi#) is continuous, f(b, ~0) = f(b, +0)= f(5,)
Now

= (1) = (2, p=x iy

< Me" = Me M 5005 T > o,
if x>y ie.,Real (p)>v.
Therefore, TLt e T f(T) =0 forReal (p)> 7. 3)

~»00 ) )

Also since f{f) is continuous and is of exponential order O(ey‘ ) at 7 —» o0, its Laplace transform exists for Real

(p)> v ,and so the following limit exists and is equal to F{p).
;
Pt =F '
L £ f(t)e (P) forReal (p)>y @)
2. the use of (2), the equation (1) can be written as
L{f’(i)} = 'I{Z’i’e"ﬂ'f(r) - f(0)+p 7££°jf(t)e"”dt.
. 0

66 Directorate of Distance Education



oo Laplace Transforms

t98dorusassy s .

= pF(p)~f0), using (3) & (4) for Real (p) >7,

Hence the theorem.
Generalising the above idea of the theorem we can obtained the Laplace transform of the #-th derivative of
the function is given in the following theorem.
Theorem 3 : If the (7—1)th derivative of a function A7) is continuous, its n-th derivative is piecewise continuous

in any finite interval of rand £(9), £*(¢), ... /""" () are each of exponential order O(ew ) at f -» oo, thenthe
Laplace Transform of f™(1) exists for Real (p) >y andis given by

where F(p) is ﬂie Laplace Transform of f{¥).
3.6 Some Important Properties of Laplace Transform :

1. Linearity Property : If L{f,(t)}= F.(p), which exists for Real (p)>7y,,7 =1,2, ..., n then
LIC A (1) + Cofa(t)+. 4 Cofn()} = CR(P) + B ()4 +CoFy(p)  which  exists  for Real
(p)>max(y, 725e..n¥,,) and C, C,, ..., C, are n constants.

Proof : Now we have

[+ 9]
which exists in the common region of existence of the integrals [e™# f,(¢)dr . This common region is the
0

domain at complex p-plane given by Real (p) > max(Yy, Yaseeeees¥n)-
2. Change of Scale Property :

If L{f(r)} = F(p), whichexists for Real () >, then for any real positive o, L{ f(aur)} = —01: Flplat)

Proof : Since the Laplace Transform of f (1) exists for Real (p) > v, the function f{¥) is of exponential order
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O(e"' ) at 1 —» oo . This implies that there exists a positive constant M such that

1/ () M

Now replacing ¢ by o we get | f (o) < Me™.

’:}j floe)e P dr

7 ~(x+iv)t T oAt -t g Al ~(x-ay )}
< [ flat)e dt<M[e"™e ™ dt=M]e at
0 0 0

which exists for x > yo orReal (p) > yo..

Hence the laplace transform of /(o) exists for Real (p)> e
Now L{f(ot)}= [e™# f(ar)dt, putat=p
0

© ..E;; -——B
=le = f0); dB-——fe « f(B)dp ( fa)

by o« _.p.l
since we have F(p)= [ f(t)e™"dr then F(p/a)= e @ f(t)ar.
0 0

3. Shifting Property :

If L{7(t)}} = F(p), which exists for Real (p)>y, then for any complex constant a, we have

L{e” f(1)} = F(p~a), which exists for Real (p)>y + Real (a).

. Proof’; Since the laplace transform of /(#) exists for Real (p) > v, the function f(#) is of exponential order O(e" )

at 1 — o . This implies that there exists a positive constant M such that ] f (r)l < Me",

x+zy “ f

Nowlet g{r)= ¢ f(¢) then ,g\’)l

eat”f
< le"“’MeW puta=x+iy
o) < e

Tty implies that g(7) is of exponential order O(e (xer)e ) So its Japlace transform exists for Real (p) >y + Real (a).
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-------

Now L{e‘”f(t)} j'e"p' (e )dt‘-je (P4 £(1)dt = F(p-a)

since we have F(p)=°)'of(!)e‘p'dt then F(p-a)= T (P=2) £ (1)t
0 0

4. Translation Property :
If L{ f (t)} = F(p), which exists for Real (p)>7, and H({) is the unit step function, then for o> 0,

L{f(t-a)H(t-a)} = e”7* F(p) whichexist for Real (p)>.
Proof : Since the laplace transform of f(¢) exists for Real (p) >, the function f(f) is of exponential order O(ey' )
at 1 - co . This implies that there exists a positive constant M such that | f (t)! < Me", Replacing tbyt-awe

have
l flt- on)t < Me' () = pe¥ere

which implies that f(f - a)H(¢ —~a) is also of exponential order O(e") att—c.

. 1, t-a>0 1, t>a
Again -)= H{t-a)=
, H(’ o) {O, t—o<( = (t oc) {O, r<a
Now L{f(t~a)H(t-o)} = jf t-o)H(t-o)e Pl

Il

Tf(t-a)H{t—o)e™dr + ] f{t - ) H(t —ct) e P'al
0 o

=°j°f(z—a). 0. e“"’dt+?f'(t—~a). 1.e Pdr
0 [
=T/(t-0)e "’dt~ff() “du, put u=1-a

= e””“?f(u)e"”"du =e P F(p).
0
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3. The Laplace Transform of an Integral :

If L{/(:)} = F(p), which exists for Real (p)>y, and g(f) = z f(u)du, .

! | 1
then Z{g(r)} = L{ | f(x)du} =3 F(p), which exists for Real (p)>Y.
. “lo
Proof: Since the laplace transform of /(¢) exists for Real (p)>, the function f(¢) is of exponential order 0(97')
at ¢ — «o . This implies that there exists a positive constant Msuch that
. . t | { {
|/ ()< Me™, and so |g(r) =f ff(u)dui < J|f (u) du< M[eTdu
‘ 0 0 0

< %ﬁ(e" - 1) s%af’ '

Hence g(f) is of same exponential orderas /(1) aﬁd so its laplace transform exists and is given by
t o —pt ! '
L{g(t)} = L{ g S (u)du} = ge P (£ S (u)du) dr

= | f(u)du °j'oe"""a't

u=0 t=y

w0 » -pt®
= du | E—

uiof(u) * [ ~p Ju

=L j. fu) e du= —;—F(p), which exists for Real (p)>1y.

0
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LY
>

) T
[Changing the Order of Integration]

{t:utow}
u:0too

6. Multiplication by t*:
- 1f L{ f(1)} = F(p), which exists for Real (p)>7, then

L{:"f(r)}=<—1)"§—f~(p)=(—-1)"F"(p).

Proof': Since the laplace transform of f(f) exists for Real (p)> v, and also assume that the lapiace transform of
1" f (¢) exists. To establish the result, we use the Mathematical Induction.

We have F(p)= ?e"”’ Sf()at |
: : 0 ,

Then by Leibnitz’s Rule for differentiating under the integral sign, we have

FRrE= e =] e d

-Jer ) a

==L{t/(1)}
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This Lfef =~ -r(p) 0

Which proves the theorem forn=1.

Now assume the results true for n=k, i.e., assume

Tl a= (' P p) @
then %}:e“”‘{t* 1) de =(-1)f %F“(p)

==l {10} at = (~1" F*"(p) byLeibnitz's Rule

- }oe—pt{tkﬂf(t)} dt =(_l)k+1Fk+l(p) 6)
0

It follows that if (2) is true, i.e., if the theorem holds for n= k, then (3) is true, i.e., the theorem holds for n
= k+1. But by (1) the theorem is true for n = 1. Hence it is true for n= 1 + 1 = 2 and n = 2+1=3, etc., and thus
for all positive integer values of n.

Example : Laplace Transforms of Some Elementary Functions :
Ex -1 : Find out the laplace transforms of following :
(@) 1 (b) t (c) ¥ (d) sin at () cos at (f) sinh at (g) cosh at (1) ", n>~1.

T
T - r_ e ? 1-e7# | 1
Ans: @) L{l}=[e™ ldr= Lt fe Pdt= Lt ‘:———J =Lt [ }=—-, p>0.
0 THw g To | —D b T p p
© T : [ =Pt Pt T
®) Lit}=[e P rdt= Lt [tePdt= Lt |[t—-l—F
0 Tog AT—-)oo i -p -p 0

[ -pT  _=pT
= It {1 ~E +——1— =-—£,,~, p>0.
T -p  p° p°| p

® T [ ~(p-ay T
L © Le*}=feP e dr= Lt [ Va= 1t | £ ——1 | Real(p)>Real ().
0 T—og T4 -—(p-—a) " p—a )
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=0 T
N - . - . \-P’ - . —pl
(d) L{sin at}= "[sm are’"dr = Lt Jsm ate™dt

T
e? g a
= Lt [pz e (~p sin at -a cos ar)]0 A Real (p)> 0

© T
= Pt -pt
(¢) L{cos at}= _‘[cos ate™™dt z_étm 0 cos at e "dt

T

e ™ . p
= [t |~—{-pcosat+asmnat)| =——7, 1(p)>
szz( p cos at+a )l S rar Real()>0

o0 p . Tea.' _e-—a( —pt
@ L{sinhat}=[sinhate Pdt= Lt [——— e "dt
. 0 T 0 2
E o T[ oy -
=— Lt j{e (p-a)r _¢ (pw)'}dt
T B .
1 gpa)t plpral 1 -1 1 a
"2 [‘(P-a)-—(ma) “2\pra peal poat N (p)>lal.
| X p
o y Teal+e-'al ot
() L{coshat}=[coshate Pdt= L J -~ e Pldt
0 —®© 9
. (p-a) | p~(pra)] g o
._zrgtwg{e Cretere)lar 7 Real (7)> ol

t) Letf(t)=t", n>-L

If-1<n <0, then f(¢)— o as t — 0". Hence f{¢) is not a piecewise continuous function in any
finite integral of ¢ and so the condition of existence of its laplace transform is not satisfied. Now we can show
that its laplace transform still exists.

Using Gamma function we have
© T'(n+1
(f) t"e"Pldt = ~—-———§),,+; ) for Real (p) >0,

Directorate of Distance Education 73



Laplace Transforms

_n!
N
Ex-2 : Find out the laplace transform of the following :
(8) " e, (b) ¢ sin bt (c) cos bt ¢* (d) t sin at () t cos at.

' |
—— for Real (p)>O.

Ans:(a) Let flf)=1"then L{f(t)} = L{f”} =
2

Then by shifting property, L{t"e"’} = _(____’?_'_)_E:T . since, L{/ () ew} = F(p-a).
p-a

(b) Let f(f) = sin bt then L{sinbt}= b - F(p)

pz + b2
Then by shifting property, we have L{ I (t)e“’} = F(p-a)

b
(p—.-a)2+b2'

= L{(sin bt )e™ } =

(©) Let f(6)= cos bt, then L{(£)} = Licos br}=—; .
T

Thenbyshiﬁingpropeﬂy,wchavc L{f(t)e“’} =F(p-a)
=L {e‘”cos bt}z-—-——(‘i-,‘,a—)-—— .
‘ (p-a) +b?

(d) Letusdefine the laplace transform of ¢ sin av,
L{t sin at}= L[Eli-{t(ew —e )}]
= 317 tL{te"‘"} - L{te™ }]

il 1 1t
2| (p-ia)’ (p+ia)

. : 1
2} [by shifting property], since L{t}=;—2—
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o
= )
(¢ +4%)
(¢) Bythe same way as described in(d), wehave L{t cos ar} = P -a

Ex-3:Find L{e™(3 cos6¢-5 sin6r)}
Solu: L{e™(3 cos 6¢5 sin 61)} = L{e™3 cos 61}~ L{e™'5 sin 6r} [byshiftingproperty]

=3L {e'z' cos 6t}~5L {e"z' sin 6t} ‘ (l) |
P 6 | |
Now L{cos 6t} = 436 & L{sin 6t} e

By the help of above and using shifting property (1) becomes
p+2 6
7 o 2
(p+2)°+36  (p+2)"+36

L{e™¥(3 cos 6t~5 sin 61)} =3

_ 3p+6-30 _ 3p-24
PP +4p+4+36 p’+4p+40

co 1—2%), (r>2%)

‘Ex-4: Find L{g(r)} where g(r) =={ 0 (t , y)
, <"/3

Solu : Let f(f)=cost

P
Flp)=
So (p) p2 +1

Now L {g(t)}=e 3 F(p) [shiﬁingproperty]

' pe—(z%)z’
- p2+1

P simt{ 1 sinat| -
EXo-U.GnventhatL{ : }-—tan (}{,),ﬁndz.{ : }
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. sinat| =
T ol 37)
3.7 Theorems : | _
Theorem 1 ; If F(p) is the laplace transform of a function f{#), which is piecewise continuons in any finite

interval of t and is of exponential order O(e" ) att—oo,then(i) Lt F(p)=0and
po

@ & PF(P)=/() itialvalue theorem]

Proof : (i) According to the definition of laplace transform we have

Fo)=Je s

Let |£(t) < Me", Therefore F(p)< ?e"f" F(t)ar
' 0
< Tl f(ear
0

< zle"(xﬂ'y)t F f( :)l dt, p=x+ zy

. [~ o]
<fe ™
0

e (et

e XeVdt

<Al[e—(x—7):r— M
SMTGAY | T forx>y.
0

~>0 as x>,

<

O— 8

Hence F(p)— 0 as x -» .
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when x — wothen p— o andso Lt F(p)=0.
P
(i) Letussuppose that f'(r) is piecewise continuous in any finite interval of 7, and given that /(1 is

continuous and of exponential O{e” ) at t — o . Then the laplace transform of f(¢) can be defined as follows:
L{f (o)} = ri(ey e at
0
e -Terera

=-f(0)+p°f:f () ePat

=~f(0)+ pF(p)

Since f(t) is piecewise continuous and of exponential order then
L{f'(t)}= Ie"”f’(:) dt—>0 as p>w.
A .
= pF(p)=f(0).
Note : If f(f) is not continuous at #= o the required result still holds, and we must have write
L(f'(0) = pF(p)- £(0*) where Lt F(r)=f (0*) exists but is not equal to £ (0).
Theorem 2 : (Final Value Theorem)
If fip)is conﬁx}upus and is of exponential order O(e" ) at t — oo and f(#) is piecewise continuous inany
finite interval of ¢, then Lt bF( p)= Lt f(t)= f()
, p® 1=,

Proof : We have L{f '(t)} = Te"" f(t)dr
0

=[O Tl ey

=~£(0)+ p}:f (1) e " at
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L{f/ ()} = -1(0)+ pF (p) M
- 0 e
-IrWaslff =r@-10 @

Nowtakingthelimit p— 0 in(1)and using (2) .
Lt L{f/(O= Lt [pF(p)-£(0
2,170} Lforto)-10)
= f(=)-1(0)= Lt pF(p)-f (0)
=°p{'_fOPF(P)=f(°°)=‘£;f(’) (Proved)
Another Important Property of laplace transform :

. p : A
Theorem : Ifa function —f—}(——)— satisfies the conditions of its laplace transform and L{ 7 (1)} = F(p), which exists

for Real (p) >y, then L{-'(-}(—Q} = j F(u)du.
. ?

Proof : Let g(t)= -’f}(—'—) = f(t)= rg(rj, taking the laplace transform of both sides and L{f(¢)} = F(p) and
L{g(t)}=G(p).

o L)} = L{r g(1)}

= F(p)= () {o(p)} - - 222
Then integrating to the limit p to co. we get ‘

i Fludu= -T2 o - [G(p)]. = G(p)- ()
P p 9P

zF (w)du=G(p)- G(co).. |
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Again pﬁtw G(p) = G(c0) = 0. (Assumingit) -
?F (u)du = G(p)= L{—f-(—i)-} |
p t

-t _ -3t
Ex-6: Find L{e te }

Solu:Let f(f)=¢' ~e™

Then L{f(t)} = F(p)= Z(e" —e"3') e‘p‘dt%—;————-.

Now we have
e”! ;-e‘3' f ( N _ 1

=[|cg(u+1)~log(u+3)]:

p
=logl-log 1+%’ =—1o pr1 = log p+3
1+%, p+3 p+1

- Ex-7:Evaluate J" e™ sintdt
o

Solu : Now L{sin 1} =
olu : Now L{sin 1} 71

then F(p) Lt sin t}= (—l)dp( ! J ( 2p 5

PP+l 7 +1)
®° 3:df —31d_F3........_...§__=..§_=—3— R
g(tsm t)e jf(t)e t=F(3) 32+1)2 mo 50 [Using(1)] -
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Laplace Transforms

3.8 Periodic Function : _
A function f(f) is said to bé periodic with period T if it satisfies f(r+ T)= f(t). In general,
f(t+nT)=f(1), forn=1,2,3,....
Property of laplace transform on Periodic Function :
Theorem : If the function f{7) has petiod 7> 0 show that

T
F(p)= T—“::'Ff 1) e Pt
© T | 2T o r
Sotu:  L{f(0)}=f(t) e Pdt=[f(t) e Pdt+ | f(t) e Pdt+ | f(r) e Pdr+ ..
| 0 0 T 27

L{f (0} = [ F()e P+ | f(t)ePdes | f(t)ePdt+ ...
0 T 2r ‘
=I|+12 +I3+ - . : ¢))

2T T 7
Now b= f()ePde=]flu+T) e au=e?T[ f(u) P du=ePTh,
: r 5 e

3T
Similarly /5= | f(t) e P'dt =721, andsoon
‘ T
Using above, equation (1) becomes
L{f(t)} = Il + e'pTII +e‘2pTI| + ‘..;
=(l+e? +e + )],

1 T,
1-e7?T ‘J)f(r)e e

T
L[ £t Pdr. @roved)

Flp)=
, So (p) l—e'pTo

Ex-8 : The function f(¢) is defined as follows :

sint, O0<t<zm
t)= :
f() {Q n<t<2x;

80 | Directorate of Distance Education



Laplace Transforms

Find L{f(t)}-
Solu : Here the function f(?) is periodiocity 2n = 7.
Then F(p)- pT J'f(t) e Pt
1 x 2%
= | sinte " "dt 0. e ”dt
T {sm e +l-—e‘2"”j e

I e Psintdt = L__{ e (=psint—cost)
1-e7% 3 1-e pr+1 ;

1 [e‘f"‘-i-l]m 1
1-e72%| p?+1 .(;‘;2.+1)(1~—~e"“”)

A0

0 n 2n 3n 4n "S5n ot

The graph of the function f(7)is of ten called a half wave rectified sine curve.

"Ex-9: Letf(t)— ( ) and g(0)=0, show that L{f(1)} = f“g (u)du.

som:  L{f()= Ie""f(‘)df fg (v )—— dt
= I g‘(t)[z e*“du}dt, a?’incez e‘”’_"'du = f;‘;-:]: = i-;:.
= ]:du ﬁ g'(t) e""'dt]
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=T (t)e wl®
p

=0

[ (_u)}og(’) e dt:’
0
= Ojodu {o +~u:j:g(t) e““’dr} , since g(0) =0

A P

. ®
ug(u)du,  where g(u)=[g(t) e™at.
. 5 .

]
S 8

\./

l

Ex-10:1f (r)= i i du, showthat L{1(£)}=( }1,)] G(u) du where G(u)= L[g(u)]

Solu : By definition of Laplace Transform we have

® o (1 ofy ‘
Fi)= Lr)= T i =l |80

*18lu) gt
[ ({)u L t}dt

= 0+-L Ig(t)-—‘r—-dt

ll

- ?glfldf (J € md“) since Te““du et
0 3 t
T u()'g(r “‘dt} = ;‘,;TG(u)du.
i P
Ex-11:1If f(f) = w-g%‘) du, showthat L{f(1)} = %fG(u) du, where G(4) = Zg(u) e vdt.
t 0

Solu : By definition L{f(t)}=Zf Ye Pdt= je"”‘[[ gl ) )dt

u=t YU

w0 V © -pt u
B CI P P O {C) Y i
u =P |,
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u:0toe
t:0tou

|

= (}{D)I g(“)ﬁe'wdq:l du, | sincez e™dg = -

-] [I g() e'*"du]dq

0
P

=( p)j Glq) dq where G(g)= a([:g(u) e “du.

0

L{?—g—g‘)du} A

' a
Ex-12 : Evaluate L { (U du} by the help of Initial Value Theorem.

o U

nt int
Sola: Let f(f)=m:z , L{Sif }=F(p).

Directorate of Distance Education
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Now we have L{sint}= —~—21—-- = L{t. -——--} s
pr+1

1
p2+l

e} =

1
+1

= () {Fp}=—
Integrating w.r. to p we get,

F(p)=—tan™ p+c, (c=Integrating Constant)

= pF(p}=cp—ptan™' p 1
Nowby Iital Value Theorem Lt pF(p)= £(0)

s Lt pF(p)= Lt p(c-tan'lp)=f(0)= Lt _S_l_}!_£=
 pw P> '

=0 ¢
: -1
. - =1
= pf,)tw p(c tan .p)
o Lt emtan p)= Lt
= p_*w(cAtan p) p_m};
= c—tan"'(e0) =0
=>c-%=0=>c=%‘

Using the value of ¢ = % in (1) we get,
PF(p)=p[5;~tan™' p|

= F(p)=%—tan”' p=tan™"( )

;{f(:)} = L{f'f}'ff} =tan”'(}))

I {} sinudu} _ F(p) - taﬁﬁl(}{") =—’§tan"’(}/p) (Ans)

o u p p
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Ex-13 : Find the laplace transform of Jy(¢) by using IVP.

Solu : The Bessel’s equation of order 7 is

PEE L (2 )0
d?  dt

d*x  dx
Putn=0, 12?+lzf-+12x=0 (order zero)

AsJ(f) is the solution of Bessel function of order zero.
2 d° d :
Lt Jolt)+— Jolt) + 1 Jplt) = 0.
L0+ 2 e+ ()

Now taking the laplace transform of above we gef,

d’ »
L{ ;o( )} L)ld }+ L{rJo(t)} = 0. | (1) by Lineatiy Prop]
Now  L{Jo(0)}=Jo(p)= ZJo(t) e Pldr,

Yo} = (DS (o)} =-0ie) @

L{d.j;;(f)} g)d.;ot(t) ..pzdt_[J (t) ¢ Pt] ...j(-p)e P‘JO( )d

= 0= Jo(0)+ p[ Jy(t) e P dr
) 0

=pJo(P)‘1_ : (3) Since Jy(0)=1
FRIAOIEYL
L~ %() =Jd J"z(’) e Pdt
dt o dt

_{M(r) ] P70 g
0

dt 0

di?t(o) +plp Jo(P)" 1] using(3)

=
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. Laplace Transforms : ‘ . o

= p*Jo(p)-p (4) Since Jo(0)=1.

. {, d;{g(’)} =L {p0(p)- Pl=-20 2(o)- P (5} +1

=1-2pJo(p)- P*%(P) ®
Using (2). (3) & (5), in (1), we get, ‘ .
{1-2p4(p)- 1’ ()} +{p Jo(P) -1} - Js(p) =0
= (p*+1)J3(p) = =p J(p)

_4Jh(p)___2p
l(p) 2p? 41

N
Inteerati _ 2. \H] _ .
grating, log[Jo ( p)] =lo c( e+ 1) , (c=Integrating Constant)

= Jy(p) = -
;}pz +1

__w \
= pJo(p) = \/P_ZE 6)
- S
pgthJo(P)“pfjm' p2+1_""' (7)
AlsobyIVP, Lt pF(p)= f(0)
p—)eo
ﬁpﬁ;PJo(P)=Jo(0)=1 | ®)

Using (8), (7) becomes c=1,

Hence from (6), p Jo(p) = f
-+l
1
= Jc(p)-"-‘ > .
pe+1
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Laplace Transfém

1

o L{Jp(0)}= \/;-2_:1'

o
Ex-14: Showthat [ Jo(t) dr =1.
- 0

Solu ; Let us define the laplace transform of - Jy(t)

ie., - L{Jo(f )}= ZJo(t) e Pldr,

= Jy(p)= ZJo(t) e Par

1

p2+l

Putp=0inboth sides

=

=1 -pi '
= gjo(t)e dt since Jo(p) = -
p°+l1

o
RE fJo(f)df = 1.
0
Ex-15: Find the laplace transform of ¢~ J(ar)

= Jo(p).

Solu : We have L{Jp(t)} =
p2 +1

L{Jo(at)}=;xl-..fo % =;}' 12 2, 2
( ) \/('7) +1 Jp +a

a

1 1
\/(p+a)2 +a? \/pz +2pa+2a2

Now  Le™Jo(an)}=Tp(p+a)=

Ex-16: Find L{rJ,(r)}
Solu : We know that J;(r) = —J,(1).
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L{J(0)}= —-L {10}
=L {Jl(t)} ==L {Jé(’)} = "‘[P Jo(P)“I] , - where Jo(p)= L{"O(’)}

4 1

=1- .
Jo(p) =
]pzﬂ since Jo(p) >

1
)

o L{eg(0)} =

3.9. Inverse Laplace Transform : 7
Definition : If the laplace transform of a function f(f) is F(p), i.e., if L{ ()} = F(p), then f(®)iscalledan

inverse laplace transform of F(p) and we write symbolically £ (£)= L[ F(p)} where L"is called the inverse
laplace transformation operator.
o s 1 ! i -5t
Ex.: Since L{e }— 245 we can write {p+5} e

The property of inverse laplace transform is same as laplace transform which described earlier, just change
L instead of L and the corresponding change. ’

i ‘ - H
Ex-17: Giventhat L 4 _fsin t, thenfind L !

) N ()

Solu:Let F(p)=—2—, f(:):'s;‘”
(*+1)

38 Directorate of Distance Education



o e g om
[Usingthe formula L(}J f(u)du= F gP)
=|f (u)dt = L-i{f_gli)_} ]
0 P |

_ j usinudu

EE

=1[-u cos u+sin u]g

“%[ sin t—1t cos t]

Property Showthatf(ff(u) }fv L"'{%(ap-)}.
et ol0)=]{[ o) v, 5(0)=0
= 8(0)=180) & e #(+)=1 /()

Differentiating w.r. to't, g'()=¢(1)= jf (u)du, (Using*)
! |

Again differentiating, w.r. tot, g”(t) = f(f),  Also g'(0)=0.
Now taking laplace transform, L{g"(1)]= Z{f (1)}

= p*L{g(t)} - pg(o)- &' (o) = F(p)

= p’L{g()}=F(p)

>“-:>L{g ,)} F(P)

Directorate of Distance Education
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Laplace Transforms

=s0-1{2)

P
tfv Y ﬂ{’)
= {[ire)or- (58} oo

tt
The result can be written L"I{F—(zg—} = [ f(t)dr?
p 00
Generalising the above result we have
F tr ot
; ‘{—(,,ﬂ}w-.-ff(r)d:"
P 00 ©

and for L"'{F—(g‘z-’—)} = _l[}'wjvf(u)du dv dw.
p 000
* Ex-18: Evaluate L'l{(;f]‘)';;} ‘

1 .
Solu:Let F(p)=——=>f(t)=sint
po+1

Now L‘l{f—(ipl}=j} S (u)du dv
p 00
.L—l _________!_____ =t(v . ' 4 )dv
= {(p2+1)p2} (I] Jsin udu
=2[—cos u]:; dv=£(1—-cos v)dv=[v-sin v]; =t-sint. (Ans)

222 Giventhat L {3sm :}: P
(1607 +1) 2

Ex-19: Evaluate !
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\_tsint

O

Solu:Let F(p)= —PFr,
u (p) (p2+1)2

Giventhat L {F(p)} = £(1).

= L{F(ap)} =Y, /(%) -

L{-(-——‘-’-’i—m} - (o) sl = )

p*+1)

N 4p tsin(4%)  tsin(%)
= L ! = =
Puta=4, {(16],2 +1)2} 2.4 2.16

= —328__{_ () sin (%).
R CRI

. - 6p-4
Ex-20: Find Z{—22=% |
Find {p2—4p+20}

Solu: L! -—-§£-15--} _p S8l ) pm2 Lgpm) L L
. {P2-4p+20> (p-—2)2+l6 (p—2)2+42 ¥ (p—2)2+42 ®

- -2 .
Now * ]{35%7%35} eeon 4. @

—-—2-9—-—5-, L {'ez' cos 4:}:—————’:2——

since Licos 4t} =
{ ‘} po+4 (p-2)*+42

: : -4 2 . '=
Again L{sin 4t} ot L{e sin 41} —-—4————(p_2)2+ 5

=% sin 4t =4L"! —L
(p-2+ 4|
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Laplace Transforms .

2
e sin 4t .
. 4 =L {(p-—2)2+ 42} ©)

. - . | 2t .
Using (2) & (3), (1) becomes, L™ —2—6£4— =6.¢% cos 4t+-8-—e‘——sin 4t
p‘—-4p+20 4

=2¢%(3cos 4t+sin 4t) Ans.
3.10 Convolution Theorem : '
If L{£(1)} = F(p) and L{g(t)} = G(p), which exist respectively in the domains Real (p)>¥, and Real
(P)>7y,, then L{$(r)} = F(p)G(p) whichexist inthe domain Real (p)>max(y,, v,), where (¢) is the convolution

of the two functions £(¢) and g(f) defixed by ¢(¢) = ,l[ f(x)e(t - = Jl'(t -1)g(t)dr.
. 0 0 B

Proof ; Since the laplace transform of /1) énd g{r) are both exists for Real (p) > v, and Real (p) > v,. Therefore

() and g(¥) are of exponential orders O(e"“) and Ofe'¥ ) respectively at ¢ — oo, and there exists two

 positive constants M, and M, such that | £(1)] < My, |g(r)] s M,e™

Now ]¢(t X <

j f (")g(’ ~t)dt| < j lf (t)"g(t z ’C){dz s’j Me""* M, o270 e
e(Y)'Yz)t -1

‘ ¢
< My Mye™ [0 gr = M, Mye??
0 (v1-712)

Vit _ Y2t
e’ —¢
SMM,

Yi1-72

MIMZ eyt

= Me"
h’l ‘72|

Ify,>y,ory,>7,, then I¢(t)| <

' M,
where M = M2 and y = max(y},y,)
fri =72l

Therefore laplace transform of ¢(¢) exists in the domain Real (p)> y = max(y,,y, ) andis given by
© T
L{¢(t)} = [(r) e P'dt = -
()=o) ™at = Lt o) "'ds
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= Lt }e""dt j.f(':)g(t -t)dt

1w =0

To®rnp =t

T T '
= Lt [ dv [dte P g(t-7)f(7) [changing the Order of Integration]

T T ‘
= s | Sk [ePgle— )

1= =t

T T-t
= Lt | f(x)ds | P glu)du

a0 u=0

t:ttoT
t:0t0oT

T  T-x _‘
= It [ e P f(t)dr [ e P glu)du

To® 120 u=0

= ‘Ze'm S (t)dtZe‘P“g(u)du = F(p)G(p). [As T - co, then T -1 — o]

<. L{§(t)} = F(p)G(p). (Proved)
The above result can be written in the form

4(1)= L{F(p) G(p)}.
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!

Ex-21: Evaluate | Jy(1)Jo(r — 1)dr.
0
t

Solu: Let f(#)= ] Jo(<) Jo(t - %) .

L{FO}= L) ofe =)

= L{Jo()}L{Uo(e)} [y convolution theorem]

1 1 '
= . . 1
JpP+1 fprer  Since L{Jy(0)} = p2+1

1

= }Jo(t) Jo(t—T)dv=sin 1. (Ans)
0

Ex-22: Find L ____p_i_
(o7 +2%)

Solu: {.P 2}={ P 1 2}=F(p)G(P)-'

(p2+a2) p*+a® pP+a

Now F(p)= 2P 2.f(t)=cos at
p°+a

1
p2+02 }

1 .
W= t
&lr) ~sin a

G(p)=

p2+a

Nox. "‘—'{“('"J“;)?I = LY{F(p)G(p)} = (}) f(Dglt-v)dr
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= jfcos(ar) i— sinfa(r - )}dt

=L eos (av) sinfa(r - ).

4 t ‘
1 [cos (ar)(sin at cos at-cos at sin av)dr
a9

=

sin at ! cosatt, .
= [2¢cos* ardr - [2sin at cos avdr
2a 0 2a Q

_ sin at [H_ sin Zat]' cos at [ —cos 2art ]’

2a 2a |, 2a 2a |

_ sin at (Hsin Zat)_cos at(l—-cos ZatJ '
2a 2a 2a 2a

_tsinat + sin® at cos at '~ cos at sin® at _tsinat
2a 2a* 20 a 2a

(Ans.)

t
Ex-23 : Evaluate [ Jo(t)/,(f - T)dt
0

Solu : We know by convolution theorem L{$(¢)} = F(p)G(p)

'

p2+1

Here (1) = 2J0(1)J, (t=)dt, F(p)= L{Jo(t)} =

G(p)= L{J,()} =~ L{J5()}
=~{pJ(p)-1]

=1-—L

"\/pz +1

Usiﬁg the above values,

L{Jy(t Wit - t)dr = 1- = -
0 o(tMi{t= ) \]p2+1{ J;—:2+1] VP +1 PP+l

Directorate of Distance Education
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t - 1 J20 1 -1)__ P
= [Jo(r) Syt - t)dr= LT e - =L =L {
0 Jpr+l P+l N P+l

-

= Jo(t)—cos t.

{
£ Jo(t) Jy(t ~ t)dr = Jy(t)~cos . (Ans.)

2
- -4 ,
Ex-24:Find L ‘{ o l)?; - 3)} . (Problem on Partial Fractions of Laplace Transform)
: 2 ol
Solu : We have p-4 A4, B € W

+
(p+1{p-2)p-3) p+1 p-2 p-3
Multiply both sides of (1) by p+1 and let p —» -1, then

2p° -4
A= It —2 % __-
p—-1(p-2)(p-3) %

Multiply both sides of (1) by p—2 and let p — 2, then

2p2—4
B= Lt 2P =% __
2(p+)(p-3) 3

Multiply both sides of (1) by p—3 and let p—» 3, then

) 2p2~—4
C= It —= " =1
r3{p+1)(p-2) ?

Ths L—l{( i 1)3:;( p- 3)} =.L‘1{%§f} +,L‘I{%} ' L_!{;Z—z—i}

= (1" = () + ().

E - L_; 3p+1
x-28 : Find (p- l)(p2 + 1)

3p+1 - A4 Bp+C
2. 3
(p-l)(p +1) p-1 p“+1

Solu: (1)  Multiply both sidesbyp—1andlet p—1
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vvvvvvvv

Ip+1

=2 and same way B=-2,C =1
241

then A= Lt
p-i p

S sper | [ 2] af-2p+1
(p-l)(p +1) p-l pe+1

= —‘{_2_ L“*__?Zg'ﬁ_ + 17 —-5-1--« =2¢"! ~2cos t+sin t.
p-1 1p°+1 po+l :

3.11 Complex Inversion Formula: (Bmmwich’s Integral Formula) :
If F(p)=L{/ (1)} then L™{F(p)} isgivenby

1 Y +iwo ,
f(’):‘z‘;l‘. jF(p)e"dp for t>0

y i
=Qfort<0
vhere v is a real constant is choosen in such a way that p = lies to the right of all the sungularities of F{p)e?’.

This is known as complex inversion formula or Bromwich’s Integral Formula.

- 1
Preof : To evaluate 1) let us consider the contour 5,4 F(P)e”'dp - @)
. . L4 g

where ¢ i= the contoxr is given by the figure. Then contour ¢ is composed of the line A8 and they are BJKLA by
I of acircle of large radius R having its centre at the origin O.

y Imp
I\'

K o 7 X Real(p)
A
' ' y~iT

Figure
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-

§F(p)ep’dp==RLt (J’ +j'] F(p)eP'dp
K O\ 4B T

v+HT

= RIJ[ | F(p)e'dp+| F(p)e”‘dp}
“FON y—iT r

o §F(p)ePdp= Lt Y}”F(p)e’”dp=y}mﬁ’(p)e"’dp

¢ 0y _iT : y—i0

: y +io0
Now 27/ ¥ Residues of F(p)e” atthe polesof F(p)= | F(p)e”'dp
' y-io

Y +ieo
=2niXR= | F(p)eP'dp
Y-io
] YH®

=ER=>— [ F(p)erdp=f(t).
Ty mjoo

1 ¥ +ico
=/0)= EEY_L,\F (P)e”'dp=Z R (Proved)

Ex-26 : Evaluate L"{ } by using the method of residues.

2
(p+1fp-2)
Solu : According to Complex Inversion formula, we have

Y +io Pt
rt l st = L  —dp
(p+N(p-2)"] 2Mylie(p+1)p-2)
»t

1 | ePldp . e
=— = 2, residues of ——————-atpolesp=-~landp=2.
2nic(p+i)fp-2)° (p+1Xp-2)".

Now, residue at simple pole p=-1is

e” 1 -
Lt (p+1f——s b=
P (e 1)p-2)) 9
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and residue at double pole p=2 is

1d e
sz-l?—;r; (p ){( +1Yp-2)? }]

~ (Pt ‘ NPt _ Pt
= Lt i —E—)= Lt t(p+l)e 2 2 =ltep'-—le”'.
p2dp\p+l]) P2 (p+1) 3 9
| N 1 1, 1.2 15
‘ g S S— EResuiucs~—e +—te* ——e
Then {(,,+1)(,, “o) } 9" 73" o (Ans)

Ex-27 : Evaluate L"{ (e l)ip 1)2 } by using the method-of residues.

Solu : According to Complex Inversion formula, we have

‘L'!{ D _ 1 .y+iuo epf dp_-_- 1 e’”dp
(p+1 (p-1?] 28y o (p+1)(p-1)F  20ic(p+1)(p-1)°

o :
. e
= % residues of s 1)3(p - 1)2 atpolesp=-I& p=2.

Now, residue at p=—1 is

tiff[(” o 2 )z}

L
po>-12dp (p+1)'(p-1

l d2 pepl l wt ’ 2
Lt '-—-'i'[ 2}=Ee (I-Zf)

and residueatp=11is o
1d 2 pe” d| pe” 1,

Lt e -1 = Lt =~ =g (2f—1

f""“dp[(p )(p+1)3(p-1)2 po1dp|(p-1)° | 16 -

. ~1 p _ . '-i RN -
Then L {(p+1)3(p_1)2}—2R831dues_163 (1 2% )+15e(2t 1), (Ans)
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Some Special Functions :
t
1. The Error functionis defined as erf(t) = 2 f e”“zdu.
To
2. The Complementary Error function is defined as erf ¢(r) = 1—erf (t)
1= fe a2 e
=l-—= U= —= u.
’ \/. To f t
3. The unit Impulse function or Dirac Delta function :

Y, 0<r<e
0, t>e

Consider the function F,(f) = {

where e> 0,
Itis geometrically evident that as e> 0, the height of the rectangular shaded region increases indefinitely

e 4]
and the width decreases in such a way that the areais always equal to 1 i.e., [ Fe(t)dt =1
0

In the limifing sense i.e., Lto F (1) is equal to 8(r) and is called the unit impulse function or Dirac Delta
€->

function and its properties are

1 J8(e)de=1
0
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2 }(r)c(r)dmc(o),

o0
3. £ 8(t ~a)G(t)dr = G(a), for any continuous function G(s).

3.12 Applications of Laplace Transform to Ordinary and Partial Differential Equations :

Using the laplace transform, the problems of solving ordinary and partial differential equations, can be
reduced to algebric and ordinary differential equations respectively, which are easier to solve than solving the
original ones.

A. ODE with Constant Coeﬁicien& :
Ex-28 : Find the solution of the equation

Yy =3y +2y= 4e2’ where y = (f). subject to the conditions y(O) =-3, y'(0)=5.

Solu: Let L{y(t)}=7(p

Giventhat y” -3y’ +2y = 4e2‘
Taking Laplace Transform of above we get,

L{y"(r)} -3L{y(e)}+2L{y(1)} =4 L{e*}

= P5(2)-(0)- ¥ 0)-{e5(0) O]+ 23(p) =4~
4

= p"5(p)+3p=5-3p7(p)+ A3+ 27(p) = - =

4

-3p+14
p-2 i

=(p*-3p+2)5(p) =

N A 4 + N S
:y(p)"(p-z ” 14)(172—31’4-2) ((P I M),(P“’)(”’z)

o3P +20p-24_ 7 4 4
(p-1)p-2)° P‘PZ(PZ)

Now tuking inverse laplace transform of above we get,
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‘UP"} L {pj1}+[ {p42}_*fl{2pj2)2}

= Y1) =-Te! +4e% + 4t
which is the required solution,
Ex-29: Solve y*(z)+a’y(r) = f(1), y{0) =1, y"(0)= -2.
Solu: Let L{y(r)} = 5(p)
Given tha‘c () +atu() = £(2).
Taking Laplace Transform of above wié get,
L{y"(1)}+ Z.{a2 y(r)} = L{f (1)}
= P Ap) - p/(0)- y'(0) +a"5(p) = Flp), whete F(p)= L{f(¢)}, (say)
= p’y(p)- p+2+a%5(p) = F(p)

:;*?(_p][pz +a2]=(p——2}+F(p).

. p=2 1
= +F{p).
= ¥(p) [y (r) Prd

Now taking inverse laplace transform of above we get

cbi-el g3} st

‘ 2 a i
=2 [ 2,1 +LUF -
el g i)

2sin at

=> y{t) = cos af -

{
e }' S(<)sin {a{t - t)}dr. [by convolution theorem],
a ai’ "

which is the required solution.
B. ODE with Variable Coefficients ;

Ex-30: Solve ty"(1}+ y/(r}+ 41y(t} = 0, subject to the conditions ¥0)=3, y'(0)=0
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Solu: Let L{){t)} = ¥(p).
Giventhat &"(t)+ y'(f) +41/(t) = 0.
Now taking the laplace transform of above, we get,

Ly O+ L{y O} + L{an ()} =0

== [P H)- 0y O+ [p3(e)- 20 -4 T 5(p) =0

=-27%(p) -p g;?(p) +y(0)+ pﬁ(p)ﬂ(o)*‘*f:;i(z’) =0

=>(p2+4)%3"(p)+p3*'(£)=0

- _ d¥(p)

SNt AL S S
7(p)

p2 +4

1 o
Integrating we get, log 7(p) + > log(p” +4) = loge. [c=Integration Constant]

= y(p)= "\[;_z'c:_:

Taking the inverse laplace transform of above we get,

M3} = L”{ \/;25;;}

= y(t) =cJ,(2t),since J,(t)= L"{ :

1
VPP +1

To find the value of ¢, we use }{0) = 3,

s Y0)=3=cJ,(20)=cJ,(0)= cl since J(0)=1,y(0)=3
- D=3

=~ () =3J,(2)

which is the required solution.

} and is the Besse! function of order zero.
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Ex-31:Solve &"(t)+2y'(1)+0(t) =0, y(0+) =1, y(n) = 0.

Solu : Let L{ y(t)} =3(p),
Giventhat &y"(¢)+2y'(t) + (t) =0.
Now taking the laplace transform of above we get,

Uy} L2y (O} + Lo} =0

= -2 [55(6) - p0) - (0] +2{p5(p) -0} - 5(p) =0

dp

= ~2p¥(p)- p* %?(p)w(o)**2p7(p)~2y(0)-%?(p) =0.

= (o +1) 2 5(2)+3(0) =0

dy(p) 1

A =0

dp p2 +1
Integrating, we get,

¥(p)+tan~' p= A, A=Integration constant.

= J(p)= A—tan”' p M

Since ¥{p)= }:y(t)e'p'dt

H()=0,
Put p = in(1) we have, 3()= 4 —tan"'(e0)
=>0=4-7
= A=

So from(1), ¥(p) =% ~tan”' p= “m—l(%)

)= ()}

sin t

= y(r)=

104

. which is the required solution.
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C. Simultaneous ODE

Ex-~32. Solve
& 2x-3y
at Subject to x(0) =8, (0) =3.
Y -2x
a7

Solu : Let L{x(t)} =%(p). L{y(t)} = 7(p)-

dx

Giventhat —-=2x-3y ‘ » | M
dy .
a | N

Now taking laplace transform of (1) & (2) we get,

) 21(0)-3200) = pr(a)-+(0)=250)- 3502

= (p-2)%(p)+37(p) =8 e
Y21 = 1p}-20{s}= 53(0)-0)=5(p)-25(0) |
=2%(p)+(p-1)7(p)=3 OF
Solving (3) & (4) we get
8 3" | :
g o
2 p-1 o

; '

3(p) = 2 3 - 3p-22  3p-22 5 2

‘P'Z 3‘1 p2u3p-—4 (p+l)(p-,-4), p+l p-4 ©
2 p- . '

Now iaking laplace transform of (5) & (6) we get,

Directorate of Distance Education 145



Laplace Transforms

L {#(p)} = L”{;S;-l-} + L"{;—i—“-} = x(r) = S~ +3¢™

2
s
it
B!
-~
N4
®
&

D. Partial Differential Equations :

Ex-33. A Semi-infinite solid x> 0 is initially at temperature zero. At time =0, a constant temperature u, > 0 is
applied and maintained at the face x = 0. Find the temperature at any point of the solid at any later time > 0.
Solu : The boundary - value problem for the determination of the temperature #(x, f) at any point x and any time

ou  u

tis —=k—s x>0,t>0. (1)

u(x,0)=0,u(0, N=u, [u(x t)] < M, This last condition expresses the requirement that the temperature
isbounded v x, 7.
Taking laplace transform of (1) we get, w.r. to, t.

{4}

2 ® ‘
= pit(x, p)-u(x,0) =k -g;—z-it’(x. p) where #(x,p)= i[)u(x,t)e"" dt

2 . N .
=>-£%ﬁ(x, p)—-:—’ﬁ(x, p)=0,since u(x,0)=0, @
Ao #0.p)= L{u(o,t)}=?u(0,t)e"”dt=7uoe""dr=3‘}-f— 3)
: 0 0 .
and #(x, p) is required to be bounded.
Solving (2) we find, |
i(x,p)= c,e‘j”_/"-Jr +0e %r o @
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Since #(x, p) isbounded as x — w0 , thenequation is also bounded and for this ¢, =0.
Ve

Putx =0 in above, #(0, p) = ¢,

o d{x,p)=cye

Using (3), we have from above, €2 = X

p
- Equation (5) becomes, #(x, p) = -‘;—:e"[(;/‘-’—)'

Now taking inverse laplace transform of above we get,

P

5 (%) ;
= ulx,) = erfe{ 7,5) = 4 -7 ,!e"“’”

1

3.13 Unit Summary : .
At the end of the discussion, whole unit is summarised as follows :
1. The laplace transform have been used to solve the PDE with initial or boundary value problems.
2. The laplace transform have been used to solve the ODE with initial or boundary value problems,
3. Thelaplace transform have been utilized to solve certain definite integrals.

3.14 Exercises : | -

Fx- 1 Find L{3t4-213+4e“3’ —2sin 5t+3cos 2:}

PR S
2. Find L {Wp3(p2+l)}

e g1 1
3. Find L {m(pﬂ)(pzﬂ)}

T
4. Find [sin v cos (t=t)dr
0
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1

e*; cos 24t le ?
5. L7 = then find L™'{—=
Jo|  Am Jp
6. Find L™ by using the method of residues
2
Eik
el pt+b
7. Find L {logj ——1t, a>0, b>0
p+a
8. Solve y(t)-3y"(1)+ 3y/(1)-y = %', #0) =1, ¥/(0) =0, y7(0) = 2. -
. . . Ou 2 u : . .
9. ' Find the solution of the equation -é;-=a pwL x>0,t>0, which remains bounded for x > 0, and
obeys the following initial and boundary conditions, #(x,0) =0, #(0,¢)= 1 (¢).
7 12 4 10 3p 2
s, —w-—p+ - + . .. 2. —+cost-1
Ans: p5 p“ p+3 p5+25 p2+4 2
3, —%sin_t—cos t+e™. ‘ , 4. -;—sin t.

| cos 2Jat ‘ o 1 :

. : —{sin t—1t cos t).

5. T , 6. 2( )

e* e o R XY
. m—— . t)=e —~tle ———4——,
7 "B | 8 Wt)=¢e —te T

2 .
e
} f(‘t) e 4a2(l_t)d’t.

u(x, 1) = —
9. , -.20'\/-1?0(1_..1)%
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4.1 Introduction : '
This module deals with as Integral equation where the unknown function is presence under the Integral

signs. Integral equation occur naturally in many fields of Mechanics and Mathematical Physics. They also arise
as representatio'n formulas for the solutions of differential equations. Indeed, a differential equation can be
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replaced by an Integral equation which incorporates its boundary conditions. As such, each solution of the
Integral equation automatically satisfies these boundary conditions. Integral equations also from one of the most
useful tools in many branches of pure analysis, such as the theories of functional analysis and stochastic
process.

4.2 Objectives :

The main objective of this unit is defined as : (1) Many physical problemé which are usually solved by
differential equation methods can be solved more effectively by Integral equation method.

(2) Some problems around in many applied fields, particularly in Applied Mathemetics, Theoretical
Mechanics and Mathematical Physics can be solved only by an Integral equation methods and that kmd of
problem can not be solved by standard methods of dlfferennal equations.

Keywords :
Fredholm Integral Equation, Volterra Integral Equation, Abel Integral Equation, Fredholm A!tcmauve,
Eigen Value & Eigen Vector.
4.3 Definition of Integral Equation : | ,
An integral equation is an equation in which an unknown function appears under one or more integral
. sign.
Example :

Y@ =L@ +A [k

T t 1 T { Unknown function |

- ~] Y 3 Parameter (Real or Complex) # 0 behaves
{Known funciion Keme like as an eigen value in Linear Algebra

The most general form of an integral equation is
b(x) .
H(x) y(x)= f{x)+2 jk(x, ) y(t) at (1)
where h(x), f(x), k(x, t) are given function and },, a are-constant, b either constant or variable
function of x, and y(x) is the unknown function. The function k(x, ¢) iscalled the Kemel, a <x < b, a<t <b.

Lineéar and non linear Integral equations :

Linear Integral Equation :
An lhtegral equation is called linear if only linear operanons are performed in it upon the unknown

function.
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Example : 1. f(x)=]k(x,'r)y(t) dt

2. Yx)=f(x)+ },j k(x, £)y(t) dt

Non Lincar Integral Equation : _
An integral equation which is non-linear is known as a non-linear integral equation.

Example: y(x) '--jk(x, t) [y(t)]2 dt

4.4 Classification of Integral Equations :

1. Fredholm Integral Equation

2. Volterra Integral Equation.
1. Fredholm Integral Equation :

When the upper limit of an integral equation (1) is constant i.e., b(x) = b, then the integral equation is
said to be Fredholm Integral Equation

b

Example: A(x) y(x) = f(x)+A[ k(x, tyy(r)dt

Volterra Integral Equation :
When the upper limit of an integral equation (1) is x, i.., b(x)=x, then the integral equation is said
to be Volterra Integral Equation ' '

Example : h(x) y(x)=f (x) + KTK(x, 1) y(¢) at |

Integral Equation of 1st Kind : .
If an integral equation, the function to be determined appears only under the integral sign, then the
integral equation is said to be of Ist kind.

Hence, when h(x) = 0, the integral equation (1) reduces to
8(x) ‘ o

0= f(x)+d [k(x, )y(r)dt

This integral equation is called integral equation of 1st kind.
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Fredholm Integral Equation of 1st Kind :
b
A linear integral equation of the form f(x)+ kf k(x, t)y(¢) dt =0, is known as Fredholm Integral

equation of 1st kind.
Volterra Integral Equation of 1st Kind :

X

A linear integral equation of the form f(x)+A f k(x, t)y(r) dt = 0, is known as Volterra Integral

eélua.tion of 1st kind.
integral Equation of 2nd Kind : .

If an integral equation, the function to be determined appears under the integral sign as well as outside
also, then it is said to be of an Integral Equation of 2nd kind.

Hence when A(x) =1, the integral equation (1) reduces to

b(x)

(x)= f(x)+M fk(x, Hy(t) dt

This integral equation is called integral equation of 2nd kind.
Fredholm Integral Equation of 2nd Kind :

. b
A linear integral equation of the form y(x)= f(x) + lf k(x, t)y(t) dt is known as Fredholm Integral

a

equation of 2nd kind.
Volterra Integral Equation of 2nd Kind :

A linear integral equation of the form 3(x) = f(x)+A I k(x, t}y(t) dt is known as Volterra Integral

Equation of 2nd kind.
Homogeneous Integral Equation : )
. b(x)
An integral equation of the form [i.e., put f(x)=0, h(x)=1in (1) JE] y(x)=A fk(x, 1)y(t) dt is

known homogeneous integral equation.
tiomogeneous Fredholm Integral Equation of 2nd Kind ;

b
An integral equation of the form y(x) = kgf, k(x, t)y(t) dt is known as homogeneous Fredholm Integral
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equation of 2nd kind.
Homogeneous Volterra Integral equation of 2nd Kind :

An integral equation of the form y(x)= XJ k(x, t)y(r) dt is known as Homogeneous Volterra Integral

a

equation of 2nd kind.

Non Homogeneous Integral equation .
b(x)

An integral equation of the form [i.e., put A(x)=1 in JE (1)) y(x)= f(x)+A jk(.x, )y(t) dr s

known as Non Homogeneous Integral equation.
Non Homogeneous Fredholm Integral equation of 2nd Kind :

: )
An integral equation of the form y{(x)= f(x)+ k!k(x, 1)¥(¢) dt is known as Non Homogeneous

Fredholm Integral equation of 2nd kind. ’
Non homogen¢ous Volterra Integral equation of 2nd Kind :

. % ’ ;
An integral equation of the form ¥(¥)=/(x)+AJK(x, 1)¥(r) d is known as Non homogeneous
a

Volterra Integral equation of 2nd kind.
Integral equation of 3rd Kind : .

When #(x)# 0 in /E (1), then integral equation is kno‘wn}as Integral equation of 3rd kind :
Singular Integral Equation : ' |

An integral equation is said to be Singular Integral equation when one or both the limits of integration
become infinite or when the kernel has a singularity within the range of integration at one or more poisnts.

Example 1 : ¥(x)=/(x)+2 Jet ¥t} dt

1
(x-1)

2: f(x):}‘ y(t)dt, 0<a <1
0

o

4.5 Different Kinds of Kernels :
1. Difference Kernel : If the kernel depends on the difference (x — £), then the kernel is said to
he difference kemnel. ‘ Lo
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Example 1 : Kemnel k(x, t)=

(-1
24 y(x)r-f(x)-mj cos(x~1) (1) di

2. Symmetric Kernels : A complex valued function k(x, ) is called symmetric if k(x, 1) = &' (¢, x)
where k*(t, x) denotes the conjugate of k(x, ¢). And for a real symmtrié kernel k(x, 1)=k(t, x). -
Example 1 : Kemel k(x, 1) =sin(x +1)
2: Kemel k(x, {)= xt +x**
3.  Separable or Degenerate Kernel : A kemel k(x, t)is said to be separable or degenerate if

it can be expressed as the sum of a finite number of terms, each of which is the product of a function of x

“only and a function of t only, i.e., k(x, #)= zn:a,(x) b(t)

=1
Example 1. Kernel k(x, t}=3xt, but k(x, ¢)=e" is not separable.
4.6 Solution of an Integral Equaﬁon :
Def.: Consider the linear integral eqilations

(x) Wx)= +7\.jk(x, y(t dt o ™

and  H(x) x) = f(x)+xjk(x, ) e) d ™

A solution of the integral equation (*) or (**) is a function y(x), which, when substituted into the
equation, reduces it to an identity (with respect to x). -

Ex.: 1. Show that the function y(x)=(1+x’ )2 is a solution of the Volterra integral equation

W)= -l e,

1+x ol«t»x

5 | .
Solu.: Given integral equation is y(x)==_l lz”f d

+x° plex? M) e M
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Alsoglven, Hx)= (l +x2)% '

From (2), y(:)=(1+:2)f% f

@

€)

Now, RHS.of (1) =

1+t)ydt, using (3)

1+;2-_1+x2£(1+tz)%

]

1 1. %1
= -— l k —(ﬂc fumngt "k
1+x° ]+x2'! )
o
o 1 1[@+r)*
T lax 14222 Y X
N (‘”’)'ﬂl}_
T o14x? 142 K }é 2
1 1 ) 1
- — 1- = . =y(x)=L.H.S
3
1+x% l+x (sz)}é (sz)%

Hence y(x)= (l + xz)‘% is a solution of given integral equation. -

4.7 Applieations to Ordinary Differential Equations :

2
Ex. 1:

Solu.: LetuswntetlngvemOD ‘;;i‘

toxw r tox.
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d’y
Reduce the ODE. —‘-i-x-— =4¥(x) to an Integral Equation.

Integral Equations

- by (2)

2y
=Ay(x) = F(x) (say). Now integrating to above within the limits a
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£{8)-fros
- 2]
= %w’(d)ﬁzf'@)dc

= % =, L F(g)dg+C, ‘. [Let y'(a) = C, =Const.]

Again integrating to above w. 7. to x within the limits a to x. we get

j%f—)m.—: j‘é(g) d+Cx+Ca, . Let:f: F(5)ds=G(x)
G '

=] 7 F(:)mclx;cz

C=at=q

? y(t)dtdc_',+Cx+C ......... *)

t=a
. '
x ? x x ' N
Now ! ; y(t)dtd?;: Jy(t) ded‘ ‘ :
{=at=a t=q =t ‘ 4
[Changing the Order of Integration] ' | Vi
I(x t)y(t)dt : f=a . S
. i )
- Using above in (*) we get i
Hx)= .J\tﬁx r)y(t)dt+Cx+C E=a =% >
" Ex3" Reduce the following BVP to an IE (x)=-M(x) boltox

with boundary conditions y(0)=0, (1) =0.
Solw: The ODE is y”(x)=-A y(x).
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Now let us write y"(x)=-Ay(x)= f(x) (say)
Now integrating the above equation within the limits 0 to x, we get,

[y"(x) de =] £(6) dt

0 0

= y'(x)-y(0)= Ef () d5

= y'(x)=C, +If (;) ag [Let ¥'(0)=C,]

> Y()=Cr ), Lot F)= ]SO i )

Aggain integrating the above equation within the same limits

fy'(x)de = [ C e+ [ F(E)
0 0 0

A \

= W) AO)=Cr+ | [/ sing ey

&=0/=0

= yx)=Cx+ j' j'f(t)dédt |

1=04=t

[Changing the Order of Integration] m 0)
_ X Gittox
= y(x)=C,x+t.!0f(f)(x") o £:0tox
= J'(x)-’C.x*K:!:J’(f) (x-r)de () since £(1)=-2(r)

Again y(1)=0, so put x = 1 in above and using y (1) = 0 we gt

y ())=0=C, ~AJy(r) (1-1)
0 N

1 .
= C1=7\.({y(t) (1-t)ar @

1 X .
Using (2), (1) becomes, ¥(x)=x A [ y(¢) (1=£)de =2 [ y(¢) (x = 1)t
0 . 0
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= y(x)=Ax z(l--t) Ye)dt + 3 [(1=1) () dit - xz ) (e )t

A f(x—xt—xw)y(z) dt + Ax f(l-i)y{t) dt
0 x

= y(x)=4

O i

{1-x) () di +2 }‘x (1-0) (1) di

=2 jk(x, 1) (1) dt

0

where the kernel k(x, 7) is given by

t(1-x), 0<t<x
K 1)= {x (1-1), xst<1
d’y
Ex.-4 : Reduce the following problem to an IE, 57t ¥(x)=cosx with y(0)=0, (0)=0
: d? .
Solu.: The ODE is Zx% + y(x) = cosx

Integrating the above w. r. to x within the limits 0 to x we get,

I% dx-{-zy(t) dt =‘Icos(; a5
= ¥(x)-5(0)=~[ (&) de+ [oost g /4

= y'(x)= -f WG) d6 +sinx

Again integrating w. . to ¢, 0 to x.

j Y (x)dbe =~ I jy(t)dt dg+fsinz dt

Ln0 1=0 0

= y(x,)»— (0)=- j' ¥(t) j.d(; _é't +[~cost]]

=0 Gu

[Changing the Order of Integration]
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X

= y(x)=- j (x- t)‘ H(t) dit +(1~cosx)

=0

X

= y(x)= [(t~x)(r) dt +(1-cosx)

1=0

= y(x)= jk x, t)dt+f(x)

t=0
where S(x)=1-cosx,
k(x, £)=1~-x,

. ) |
Ex.-5 : Reduce the BVP % =Ay(x); a<x<b with boundary conditions y(a)=0 and y(b}=0 to the

IE in the form y(x) = A.j. k(x, £)y(¢) at |

d2
Solu.: Integrating the equatxon E;!- A y(x) thh respect to x between the limit a to x we get,

t A A
x g2y
ade?

¥(x)-y'(a)= xzy(c;) &

L i = H yE) 45

= V() =C+AIMOL,  Lar y(a)=C,

Again integrating w. 7. to x between the limits  to x we get ' Ve >
v i C=a E=x
y(x)-—y(a)=C(x-—a)+7xj?y(t)dtd§ : E=ttox
aa t=atox
= x)=Clx-a)+A [y(r) [dg de since y(@) =0
1=a Omt
x ) : .
= y(x)=Clx-a)+A[y{t) (x-r)dr (1)  [Changing the Order of Integration]
a .
Given y(b) = 0, ‘ ‘
119
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. (b)=0=C(b-a)+ Al (1) (b-1) dt

Usiné the value of C in (1)-we get

) o~ oA JGs-)5() a

y(X)'=7~(__b 2

(axb)[ (b—r)x- a)y(t)dt+j(x a)(b —1)y(t)dt + ]( ~b)(x - t)y(t)dt} .

-

J (bt~ xt —ab +alfax-bf~al+bt)y(t)dt + I(x—-a)(b— t)y(t)dt]

N
b
;;&—I; jb x) (t-a) y(t)dt+f x-a)(b-1) y(t)dt:]

Wx)= xj k(x, £)y(t)at

a-
. where k(x, )= (
| (-a)(b-1) <i<h
(a-b)
dzy . . A o *
Ex.- 6: Reduce the BVP —éxf;+xxy=l,in 0 < x < 1 with boundary conditions »(0)=0, y(/)=1,toanIE
and find Kernel. |
. d’y

Solution : The ODE Zx—g+7\xy=1 ¢))

Now integrating w. 7. to x to (1) to the limits 0 to x, we get

i” mmy(c)dc; x

X
= y'(x)- y’(0)+7~{) cHe)dg=x
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=»y'(x)+x§c;y(c)dc=x+0, O

Again integrating w. ». to x between the limits 0 to x.

Hx)-y(0)+ '/\.fdg ?ty (ar= -gi +Cx

= y(x) + 7“ f A C.j ‘d‘; pt) dt == + Cx [Chahging the Order of Integration]
t A

= y(x)+lj'(x—t)ty(t)dt=£2——+0x @)
0

Putx =/, and y(/) = 1

{ 2
1+M(l-—t)ty(t)dt=%+(‘l
0

2 ! .
= C=G-%}+Aj(1-r)ty(r)dt (0 0) L=x
o E:ttox
Using above, equation (2) becomes t:0tox

1

y(x)+kj(x—t)t;'(.r)dt=§-2i+x(7—-121) mi(mpy(:)m

= yx)= —lj(x ~1)ty (t)dt + ),Ix(l —t)ty(t)ds + ké.x(l —t)ty(t)at +—'§-2— + x(-;--— —Izi)

0

=>y(x)=5;+x[—;~—§)+k](x/ 1% 4 xl - x{)ty(.')dt+lj'x(l ~ 1)t (t) at

__.xz 1 2 X 2 d
_—E-+x(7~—2—J+k(j)(xl-—t ).'y(t) dt +7L£x(l—l)ly(t) dt

]

y(x)=f(x)+ l_[ k(x, 1)y (r) dt

where f(x)::fz—z—-{r (}1-_.1._) k(x, £)= {(xl I)f 0<st<x

(1-t),x<t<l
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2

d
. Ex.- 7: Reduce General BVP -d%+4(x)%+3(x)y= g(x) with boundary conditions

y(a) = Cl, y'(a) = C2 to an IE and find Kernel

d? '
Solu.:  The general 2nd order ODE is E;%: + A(x)%"r B(x)y = g(*) 1

Now integrating (1) w. . to x to the limit a to x, we get

x 42, X X x
2 Y+ ] AQ(Q) d+] BOE) =] 2(0) &

= ¥(£)-y(a)+[4Q) WO -] 460 2+ [ BOC) az=Js0) ac

= y'<x)—c2+A(x>y<x>—A(a>y(a)+Z[B() 4]0 = ;g«;)

Again integrating w. 7 to x within the limits a to x to the above, we get .

)~ (a)=C,(x-a)+] Q) QM ~C Ala)-a)+ | HB()- 40)] (o)

- ?dﬁﬂd:

C=at=a

{=at=a

[Changing the Order of Integration]

S
- 5)- G, ~Cy(x-a)-Co(aYe-a)+ [ A : ¥,
+j Jdt;[B £)- A(1)] (1) dt = jg(t ) dt jdc
tug {=t =g L=t :
t=a > >
= y(x):Cl +CIA(a)‘(x-—a)+C2(x-a)+ij-t)g(r)dt
LA + 30 0] (e 0 .
(0. 0) G=a G=x
= y(x)=f(x)+fk(x; 1) y(t) dt f c{zttc:;:c
where  f(x)=C, +C, 4(a) (x-a)+C,(x- a)+](x _1)glt) dt

122
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~and Kernel, k(x, t)= A(’)*[B(’)" A'(t)] (x~1)
Therefore the reduced integral equation {2) is of Volterra Integral equation of 2nd kind.

4.8 Solution of Integral Equations :
Resolvent Kernel Method or Neumann Series Solution :

Let us consider the VIE of 2nd kind given by

u(x) = f(x)+7LJ: Kx, o) u(t)de X0

Our main interest to find the solution of (1).

Let us assume the following series form of #(x) and is defined as
u(x) = up(x) + Au (x) + 12u2~ (x)+ l3u3 (3. + A (x)+... )
Using (2), (1) becomes,

o tg(x)+ Ay (x) + Koy (x) + Moty (x) .= f(x) + A.j k(x, 1) [uo(t) + Ay (1) + Ny (1) + k3u3(t)+...] dt

Equating like powers of 3 , we get

“uy(x)=1(x) | o 3)
()= [ k(x, 1) ) @
4 (x) = Ik(x, t) ul(t)dt . )
() = [k, 1), ,(¢)ar ©)
Now from (3) & (4) we get
u(x)= [ ke, 0700 = [R(x, 1) (0 7

assume that k(x, 1) = k(x, )
Using (7), (5) becomes,

Directorate of Distance Education . 123



Integral Equations

ty(x) = f k(x, f)[f ki(r, C)f(c:)di; at

Ce=u
w()= |11 {Ikx, k(r,a)dr € @
Lua t=f

Let kz(x, C) *j k(x t) k, (t, Q)dt [Assuming the Cbanging of Order of Integration]
g Ea & i 0

© w(x)=[1(Q) k(x, §)
-In the similar way we can derived

ey (% ¢ _[ k(x, y) k,(v 1) dy pl A

v

That is, we get the series of Kernel as foilows

g [=a v > t
k(x, )=k(x, t) : . -
t)=_‘k(x,y)k,~(y, t) dy | é%:g:;
Ky (%, l):fk(x, y) ko(ys 1) ay

. The solution is given by
u(x) = u, (x) +Au (x) + quz(x) + 7\.3u3(x)+...+2."u (x)+..

= f(x)+xjk,(x, Nf () + k’jkz(;c, ¢)f(t)dt + ?G f ky(x, £)1(t)dr
+...+7c'jk,,(x, 1)/ (#)dt+...
= f(x)+ kj'[k, + Ak, + A7k, +...+7L”"fk,+...] f(t)at

= S5+ A BNk, )1 (0)

a n=0
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= u(x) = f(x)+ kjf(x, tA)f() d.l

or, u(x ) +ij(x, t A.)f(t)

where I"(x, t A) or R(x, t; A) is called the Resolvent Kemel and the infinite series is also converges.
: Solutlon of Fredhqlm Integral equation with the help of Resolvent Kernel :

b .
Let u(x) = f(x)+A[ k(x, £) u{t) dt = (1) be given Fredholm integral equation. Let &,(x, f)be the
iterated Kernel and let R(x, t; ?x,) be the Resolvent Kernel of '(1), Then we have

R(x, t; A)= ik" ka(x, 6 | )

=0 . .
Suppose the sum of infinite series (2) existsand so R(x, #; A)can be obtained in the closed form. Then,
the required solution of (1) is given by

u(x)=f(x +ij % 6N dt
Ex 8 Solve the Integral Equation
u(x)= f(x)+ M e’ u(t) dt

Solu.: Here k(x, t)=e¢""' =k (x, )

we know that &,,,(x, 1) = J-k(% )k (v, t) dy

X

ky(x, t)= jk(x, Vk(y, t)dy= }e“’ e 'dy= j‘g_‘"dy =(x-t) "

!

X

ky(x, 1)= Jk(x, y)ky(y, t) dy= je"’(y-t) e 'dy =j(y~t) e 'dy= ~2—1—!(x~-t)z e

!

(%, )= jk(x, s ) dy= fe“" - t) e ldy= 2'Ie"" dy:%(xnt)se""

The solutlon of the given equation is

u(x)= £(x) +x[r X0 x)f(z)d:
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- where I'(x, £; A) = Zl"km(x, 1)
n=0
= ky(x, £)+ Mk, (x, 1)+ A0k (x, )+ Xk, (x, 1)+ ...
. 2 3
x~1 X \X=1) (x"’) x-
="' +he '(x‘—t)+x’-(——5?2—e ’+7\.3—§§-—-—e “+ .

= el(x-t) = e(lﬂ-)(x—l)

- u(x)= £ () + MO £ (1) a
Ex.: 9. Solve the integral equation #(x) = (1+x)+ lf(x —t) u(t) dt
Solu, : Here K(x, £)=(x-t)=K (x ) x

Also we know that kpi(x, )= f k(x, y)k.(», 4,‘) dy

)=f(-5) bl by

X

a?(xf ») (y-:)‘;zy;[_xm(xn)l;-!;}

t

ky(x, 1) = I (w)k(y, Ndy

SN S,
=[x=2) 5 5t

(x-iy
(2n+1)!

k..(x, )=

The Resoluent Kemnel I'(x, #; A) Zx' ,,,(y,

n=0
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=k (x, 1)+ My (3, 1)+ WKy (x, 1)+

,..—=(x—-t)+7t.(x“')3 +A? (X“f-f')é-f- .

3l 5!
The solution is given by

| u(x)s(l+x)+ljr(x, 6 A)(1+1) dt

=(1+x)+xﬂ(x—~t)+l(~- 3’1 1) +A (xS!') ] (1+1) dr

Now ’I‘(x-wt) (.1~+1) dt =}x(1+t) dt~?t(1+r) dt
0 0 0

jﬁ—'—):(lw)dt §1~j' - +-_[tx t)’dr~-—-—-+-—i
0 0

6 x?

X v
(x - t)dt+——~jt x-t)dt= TR T

1
(1+:)dr--s-

Oh--,k

» xz 3 2 ‘ xs‘ 3 x6 x1
Hence u(x) = (1+x)+?~(-2~!~+ 3')-»&(4! S'] + N\ 6!+7! +

If we assume ), = 1, then the solution becomes

2 % x" X R
=(1 LA Y L.
) (“‘)*( 3') (4s*sr)+(6s+7:)+

=e*
Ex.: 10, Solve the mtegral equation by Resolvent kernel Method

u(x)= -’-é-+-i‘])xt y(r) at

Sy

1
& . ¢ Given that “(x)"""s”' {, y(r) at

N!-‘
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Comparing above with u(x)= f(x)+ A.J' k(x, t)u(t) dt
0

We get, /() =26’£, k(x, £)=xt, A =4

So, k(x, t)=xt=k(x t)

Also we know that ,.,(%, )= jk(x, y) kv, £) dy
(s 1)= [ K(x, ) ki, 0) dy = [ () (31) by = xt[%—] ==
. 1 1 Ele L 2
b(s )= [ ) k(o 0 = () (5 dy=xr[—’—;~]0v=(§~) »
, 1y o
Therefore, in general, k,.,(x, ¢) =(-3—) xt

R(x, t; 3)= g Nk, (x, 1)= ”Z;(%)"(—;-)”xi
T
== xt[l+(~é}+(%)z + }= xt l__l% = (—g—)xt

Finally, the required solution of given integral equation is given by

Wx)= f(x)+Ar j R(x, t; L) f(t)d:

- Now, the Resolvent Kernel R(x, #; &) is given by

5 116 5¢ x 1.1,
Xl=r—t—{—xt —dt =—+—x[t*dt
Ax)=% 2057 % 2"
JSx 11
6 273

5 y{(x) = x is the required solution.
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4.9 Solution of Integral Equation by Laplace Transform :

Solution Technique of Difference Type Kemel involving in Integral Equation :

When an integral equations involves the difference type kernel then we use the laplace transfon'n
technique or more accurately define the convolution theorem on laplace transform. So we define the convolution
and convolution theorem.

Convolution : If f(r) and g(¢) be two functions of :;, then the convolution f*g is defined as
rrg=1 1)l =) s
T »
=[7(t-v)g(s) & |
Convolution Theorem : If F(p) is the Laplace transform of f(t) and G(p) is the Laplace transform of

#(0) then F(p) G(p)= L{+g}= L] f(2)s(t <) s

H

---L(f)f(f—f)g(T)a‘r

Ex.: 11. Solve y(x)=f (x)+ikj'k(x, t)u(t)ds in which the kernel k(x, 1) is of difference type say

k(x; t)=k(x-t)

Solu.: Here u(x)= f(x)+ lj' k(x, t)u(r) d( | | )]
= ulx)= f(x)+ ?»j k(x—¢)u(t) dt o @)
Let,
L{u(x)}=U (p
L{fx)}=F ! ) | ()

L {k(x)}= K( p)
j: x—t)u(t) dt

L{k» u} = LI k(x-¢)u(t) dat
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X

= K(p) U(p) = L] Kx=1)uls) @

Taking Laplace Transform of (2), L. {wx)}=L{r(x)}+ A.,l.j k(x~1)u(t) at

Using (3) & (4), we get, U(p) = F(p)+A K(p) U(p)
= [1-AKk(p)] U(p)= F(p)

= U(p)=F(p)/[1-2K(p)]. [1-AK(p)=0]
Taking inverse Lappace transform of above, we get,

£ ()= L“I{Y”%}

-1)_Fl o
= u(x)=L l{?—'}%ﬁi} is the required solution.
Ex.: 12. Use LT to solve the integral equation |

u(x)= f(x)+ &ze“‘ ~ u(e) ar

Solu,: Given that u(x) = f(x)+ A~ u(t) dt )

Comparing with u(x) = f(x)+ 3\.} k(x, ) u(t) dt , we get |

k(x, t)=¢"" = k(x~1); so k(x)=e"
- Taking LT of (1) we get,

L{u(x)}= L {f(x)}+2 Lze”* ) di

= U(p)= F(p)+A LJ K(x=1)ult) .

let L {u(x)}= if(p) & L{f(x)} . F(p) }
= U(p)=F(p)+*K(p) U(p), using éonvolut%on fheorem of LT& L {k(x)}= X(p)
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Since k(x)=e* then L{k(x)} =1 {e" } = Teﬂ’ e Pdx = .;.1,_1_
X -

U(pft-AK(p)]= F

= Ulp)= () __(p~-1)
ve)- 1xpl “o-r-) )

Taking inverse Laplace transform of above, we get

= L“'{U(p)}“f"'{pf;}-lp(p )}

— )F( p)} =L {F(p)}+ L"f‘ {.Z‘ff.(ﬁ).}

, A
‘ < [ L
= ulx)=L {(Hp»kwl

p=Ar=1
> )= 1y (L]
p=Ai=1
ABy convolution theorem L~ 1{——&2)—-} = L {G } where G( p)= 1
| p-r-1 | p=h=1
I 1 o pl1¥A) ¥
Now g ()= L {G(p)}=L" {W(ux)} e

L"‘{ F(p)}= ff(t glx~ r)dwff() o(#0) (==

)= 1) A £ AN

which is the tequired solution
Ex.: 13 Solve the Integral equanon by Laplace transform technique.

u(3) 5= (5=1) )l
o
‘Solu.: Here the kernel k(x, f)=x=¢=4k(x~t) and k(x)=x.

Given that u(x)=x wZ(x = ) u(r)dt (1)
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Taking Laplace transform of (1), we get

L{ue)} = L{x}- L] (r—0) () = L{s} - LIk(x — 1) ult)a

= U(p)=£3-~1<(p) U(p)

where L {u(x)}=U(p)
L {k(x)}=K(p)

& L [K(z=1)ult)ds = K(p) U(p)

1
= Ulp)=———
P+ 1)
1
i+ p2
Taking inverse Laplace transform of above we get

L"{U(p)}:L”{ ! }

1+p2

= Up)=

= u(x)=sinx is the required solution.
4.10 Method of Successive Approximations :

The method of Successive Approximations for Solving Volterra Integral equation of 2nd
kind : :

Let the integral equation s u(x) = /(x)+ A (x, #) u(f)dt (1). Let f(x) be continuous in [0, ] and
0
K(x, t) be continuous for 0S xsa, 0<t<x.

We start with some functions #_ (x) continuous in [0, a] Replacing u () on RH.S. of (1) by uo(x) :

we oblain

w(x)= fx)+ ?x,j k(x, t) u,(t)dr @)
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U (x) given by (2) is itself continous in [0, a]. Proceeding likewise we arrive at a sequence of functions

uy(x), u,(x), ..., un(;c),

where 1,(x) = £(x)+ A k(x, 1) u,.,(¢) dr -

0
In view of continuity of f(x) snd k(x, 1), the sequence {un (x)} converges, as 1 —» o t0 obtain the

solution u(x) of given integral equation (1), i.e., u(x) = nﬁz;o un(x) )

Ex.: 14 Using the method of successive approximétion ot solve ﬁxe VIE of 2nd kind u(x) = x - Z(x ~1) u(t) dt,
assuming u (x) -0. .

Solu.: Given that u{x)=x - z(x ~f)ult)dr and u(x)=0.

) X
We know that u (x)=x-[(x~1)u, _(r)dr
0

Putn=1,2,3, ..., successively, we get %{x)= x-—j(x-t) uy(t) dt =x—-f_(x-t) Odt=x
0 o

1 x 2 BT
u (x)=x—f(x~t)u(t)dt:x—j(x-t)tdt-:x«. Mo
: 0 ! 0 2 3 o
x3 xJ 3
=x--i—~+~—3—=x-—§—'~
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_ 3y
TR
and so on,
In general, we have -
x’ x* =1 x
(#) == Fp g gp D) (Znal)
The required solution u(x) of (1) is given by .
| - X o1ty pet_x2!
= i.e. IS SN S I N .
M= Lo, (3) L, ux)= x5 577t ) G
| => #(x)=sinx

Ex.: 15 Usmg the method of successive approximation to solve the VIE of 2nd kind #(x) =1+ [ u(t)dl ,

assuming u;(¢) =0,

‘Solu: Given that u(x) = L+ Ju(r)dt (1) and 4,(1)=0
0

]
we know that u, (x)=1+[u__ (f)dr
0

Putn=1, 2, 3, ..., respectively, we get

X
u(x)=1+[0dr =1
' 0

X
uy(x)=1+1dr=1+x

0

~ 27 2
u3(x)al+2(l+t)dtal+[t+f§~l==1+x+%~

£ ok I f pY
ug(x)a1+£u3(t)dm1+!(1+t+?)drﬁl+[t+?+§wl

x: P -
A TREY
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2 3 ]
. and 30 on. In general, we have 4,(x)= 1+x+--—+ 3'4- . +%'
A
The required solution u(x) of ( 1) is given by
. x w2 ¥ x"
u(x)anﬁgu( ) 1+x+*§?+~§*'-+w+ +*;'!-+ .‘..

=i
= ux )ae isthe required solution.
Ex.. 16 Using the method of successive approximations to solve the VIE of 2nd kind

u(x)al+£(xwt) u(t)dt | assuming uo(x)ﬁli.' o - ;
| £
Solu: Given that u(x)=1+[(x~1) u(r)dt , and 4 (x)=1.
; - : h

wekndwthatu(x) 1+](x -t)u_ (*)at

Putn=1,23,.. respectively, we get

I D IR IOl WY -
Ui + ~t).1dt=1- o e | 2 1 e - o
H\x)= g(" ) ddt=14|xt 5 14 x 5 14-2 |

u,(x)= 1+j(x t) (1+det= 1+I[x+~§iwtw§»]df

ot L x x
(%) j )( *41)”" NPT
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and so on. In general, we have

x2 x4 xG x)n

u,,(x)= l+‘-2-!-+"zi"§"~g!-+ e +-(~é—;5-!'

The required solution #{x) of (1) is given by

x? x* xS 2

2
u(x)-—-nétnu,,(x):l-c- 2_!_+Z!-_+-6—!'+ +W+

= cosh(x)

~. u(x)=cosh(x) is the required solution.
Solution Technique of VIE of 1st Kind by Laplace Transform :
Let us assume that VIE of 1st Kind.

f(x)=’~I Kx, 1)) di M

where k(x, £)=k(x—1)
Let us define L {/(x)}=F(p), L {k(x)} = K(p), L {u(x)} =U(p)
Now taking laplace transform of (1) we have,

1 f(x)}-—-A.LIk(x, £) (i)

F(p)=*K(p) U(p), [by convolution theorem]

F(p)
AK(p)
Now taking inverse Laplace transform of above, we get..

This is the solution

= U(p)=

E:.: 17 Solve the [E sinx =A[e*™ u(r)dt
]
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Solu.: Given that sinx = lj e’ u(t)dt M
1] R
Taking Laplace transform of (1) we get,

L {sinx}=2Lfe*" u(r)dr
0

1 1 | 1
=> =l + U A H X [ ——
P+l p-l (p) by convolution theorem & L{e } PaCE
1 p-1
= U(p)=—
1{ p 1
= U = | i ———
(7) k(p2+1 p2+1.)

Taking inverse Laplacé transform of above, we get, -
- 1o p ) 1 ,uf 1
v == ~=I

vl =3 {p2+1} ) {pz+l}

= u(x)= %[cosx ~ sinx]

which is the required solution.
Conversation of VIE of 1st Kind to VIE of 2nd Kind :
Let us assume the VIE of 1st kind,
f(x)= 7\.] k(x, t)u(t) dt A (1)
B (]

Now equation (1) can be reduced to a VIE of Second kind when k(x, x) = 0. Differentiating w. . to
x to (1), we get ' C

d);ix) _ x{ ak(;, 1) ()t + x.%.k(x, %) ,;(x), [Using Leibnitz fmma]

= "’ZS‘) = xl akE;, J u(t)dt + hk(x, x) u(x)

Dividiug both sides by A k(x, x) and we get,

Directorate of Distance Education 137



Integral Equations

= u(x)= 1 q’f(x) x)f@k X, t)u(

Me(x, x) dx Mk(x, Ox
= ux)= F(x)+ (I,G(x, r) W) dt @
1 df(x) , Glx, 1) =~ 1 Ok(x, t)

where F (x) = M ( ) »
Equation (2) represents the VIE of 2nd kind.

k(x, x) ox
Ex. 18 ¢ Reduce the following IE sinx = Ie"" u(t)dt to an IE of 2nd kind and then solve it.
, ]

Solu. Given that sinx = [e* u()dt . - (1) o
0

Comparing (1) with f(x) = kjk(x, t)u(t) dt we get

f(x)=sinx, k(x, t)=e"', A =1,

Also k(x, x)=e** =e® =120,

Hence the VIE of 1st kind (1) can be reduced to VIE of 2nd kind.
Differentiating w. 7 to x to the (1) we get, |

w(smx }a(g;’) (t)d:+l e u(x)

, :
= 008X = fe“’ u(t)dt + u(x)
'}

¥

= u(x)= c08x — je"'“' u(t)ar Q)
0

This is the VIE of 2nd kind.
For solving the equation (2), we take the Laplace transform of both sides,

L {(x)} = L {cosx}- L }j:e ot d
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= U(p)=;£-;—l-l‘jk,(x—-t) u(t)dt © where k(x~1)=e" = k(x, 1)
0 , ,

s |
= U(}?hm-"lf,(p) U(P) by convolution theorem]

= U(p)‘[l-bK]'(p)]',-_;;zﬁ:i}.

- 1. | ‘ o 1
Vo) =2 TR (p) L{k(x}=L{e}= K(p)=——
P 1
= V) (#* +l)( l)
el
PP+l p2+1 P+l
-] 2 - -l '_’}“ = - ‘
u(x)=L"'{U(p)}=1L {p +l} L {p’+1} cosx - sinx,

Ex. 19; Reduce the VIE of 1st kind x = Icos(x ~t)u(t) dt 10 an VIE of the 2nd kind and then solve it.
0 ' ' )

Solu.: Given that x = jcos(x ~t)u(t) dt (1) which is VIE of 1st kind.
. [} .

&

Companing with /' (x) = A.J"k(x, 1) u(r) dt, we get f(x)=x, k(x, t)= cos (x-1), A=1

[
Also k(x, x)=cos (x~x), cosO=1%0"
Hence the VIE of 1st kind (1) can be reduced to VIE of 2nd kind,
Differentiating w. r to x to the equation (1) we get

| -.(..2 J’ {cosx t dt+l% cos(x - x) u(x)

2 1= [{-sin(x=1)} s) dt + ()
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= u(x)=1+ ‘Zsin(x-t) u(t) dr | )

This is VIE of 2nd kind. .
For solving the equation (2), we take the Laplace transform-of both sides,

L{u(x)} =L{1}+L isin(x-t) () d

- U(p)=—;;+ij,(x, ulf)de,  k(x, t)=sin(x-1)

= U (P)"';“”Kl(l’) U(p) by convolution theorem and L {u(x)} =U(p)
P T2k () - since, L{k(x)}=Ki(p)
= U(p)=; 11 | ince. L {si = K (p)=—
1-p2+1 since, {s.lrx.7c}--pz+1 : il
1 p2+1
= Ulp)=—
(°) p )V

n!
n+l
P

= 1+=— | since L {x"}=

which is the required solution.
4.11 Generalised ABEI’s Integral Famula :

1
(x-1) o

X
Ex.: 20 The Abel’s integral formula is f(x) = | #(t) dt, 0<a <1. The integral equation is VIE,
0
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.......... Integral Equations

15t kind, singularity as well as difference type kemel. Our main interest to find the solution of given integral
equation,

Solu.: Given that 1 (x) = j(» 7}% or )

Multiplying by to (1) and then integrating w. 7. to x between the limit 0 to u.

!
(u__x)l—a |
PRI ST S 10N

Lo(u—x)™ - )™ Lo(x-0)°

= Iy(t)[if_ . L - dX]dl )

{by Changing the Order of Integration]
- Now inner integral of R. H. S. of (2)

u l ' . A
dx . - A
L (=)™ (x=0)* put v=2=7
_ j (t-u) dv Wu—t)=u-x
1 i) plamnf e = xmumv-r)
e x—=t=(u=1)=v(u-1) A 1,
o(1-v)* ¥!I™® (1) =(u-1) (1-v) 0 i
. when x=t¢ v=1 {:0tou
= ({vahl(l“")_adv x=u,v=0 x:ttou
- oy L@)r(i-a) Tle)ll-a) =
Bl o) = ) = ) o) 0!
S . f = |
- From (2), { - dx-’ j (o) 1) dt == (Om) j’ He) de
- _!y(t) dy e smiom J-( {(33)1~q
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Differentiating with respect to ¥
sin(an) _Sx)
@“‘ RCEITE
sm(om) d
n I ( U l-a

change utot, inabove, = y(r) = ing:m ; f[

4.12 Solution of Non'homogeneous Fredholm Integral Equation of 2nd kind having its Kernel
Separable:

x)/(t-x)" “]dx is the required solution.

Let us consider non homogeneous FIE of 2nd kind with separable Kernel

Sx)+ kf k(x, 1) A1) at )
where k(x, )= Za, | )]

s0 /x)s f(xuj[za.x)b, ) t) dt

AR

= f(x )+’~ E a(x)lb(')y( yat
w,f(x)‘i-l.;c, a,(x) 3)
where C, = /(1) y(r) i | @

Multiplying (3) by b, (x) and integrating with tespect to x between the limit ¢ and 5,
[

I (%) y(x) dx = Ib x)f dx+KZC,Ia,, bx)de  (5)

a

Denote £ b(x)f(x) d = f, | (©)
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b ' '
and [b(x)a (x)dx=a, 0]

Using (4), (6) and (7) we get from (5), ‘

Cx =f',+l.§,aik Ck, i=12,.,n

. 1
Ex.: 21. Solve the FIE ¥(x)=x+Af (xt2 +x2t) y(e) ar
0
1 L
Solu.: Given that y(x)=x+Af (x12 + x2t) )t ’ )
~ 0
1
Comparing with y(x)= f(x)+ XJ k(x, £)y(¢) dr , we get
o -

F(x)=x, k{x, {)=xt* +x¢ = Za,.(x) b(r)

Ca(x)=x, a(x)=x", b ()=17, br)=t
Also we know that ' '

a, ==zbi(x) a,(x)dr
1 t,
a, =£bl(x) a,(x) dx =£x xde=Y,

9

"
R R

) bx(x) az(x) dx= :Exzxz dx = A

%1 ibz(x) “l(x)dx=(})xxdx= Y

[b,(x) a,(x) s = fxa? ds =},
0 0

%y

Also we know that C,. = j: + ?«,Z‘.aik Ck
. k
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a4y Ay
C J
! ! a, a a
/. a On 1
A 2
where C=|, " |, F=|""|, 4=
C £ .
n n
_an, an, ann_J

Now f, =lj,bi(x) f(x) dx
o f] a()l;bl(x)f(x) cbc-:(})xzxdxz}ﬁ

1 i
f2=(j)()2.(x)f(x)dx=(j)x.xdx‘=)é
L [[-Ad]C=F
= (1“;"“11) Ci-ha,C, =1
~and ~?»a2-2C1‘+(1-ka22) G =1
W (=34 C -0/ G = 4 }
(=A3) C+(1-1/4) C, = %

) _ . 60+ A . C = 80
Solving above we get, & = w2’ 2 20- 120032

Hence the solution can be expressed‘in the form
Ax)=f(x)+AZC, a(x)

=X+ k{C]al (x)+C,a, (x)}

60+A)x 80x?
.y(x)fx 240(42072—_78 ST TRy
which is the required solution
Homogeneous FIE with Separable Kernel :
~ Let us consider homogeneous FIE with separable kernel
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b

Hx) =2 k(x, )y(0) d

a

where k(x, t):Za,(x) b{1)
Using (2) in (1), we have y(x)= Kj(z a(x) b,-(t)) ) ar

b
=A Xa(x) [b(t)y(t) dt
H a
A5G q(
b
where C =[b()y(r) dt
Multiplying (3) by b,(x)and then integrating w. ». to x between a to »

18 (s)(s) &=, (x) £, a, (s}

a

b ' b
= C; = A%Ck;{b’(x) ak(x) dx=x Ek:ck aik , where aik =£bi(x) ak(x) dx

= (1 —XA) C=0.
where / is the identity matrix of order n,
ran Ay 4y, |
G
c Ay Gy v a4y,
C= :2 R A= :
Cﬂ
_anl anZ e ann_:

(M

@

€

@

From the theory of system of linear equation, we can conclude that if [7-2 Al # O then the only solution
to the homogeneous equation (5) is the trivial solution i.e., C = ¢ and therefore by using (3) we get the

solution to the homogeneous FIE (1) as the trivial solution y (x)=0.

On the otherhand when |7 - A4| = 0, then (5) and hence the integral equation (1) have infinite number

of solution.
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4.13 FREDHOLM ALTERNATIVE :

| ) A
It is homogeneous IE 1(x) = A[ k(x, £)(¥) dt (1) has only the trivial solution y(x)=0, then the

. b
corresponding non homogeneous IE y(x) = f(x)+ kj k(x, £)y(t) at (2) always has one and only

one solution.
On the contrany, if the homogencous IE (1) has some non-trivial [i. e, |I-A]= O] solution then the
non homogeneous IE (2) has either no solution or an infinity of solution depending upon the function f (x).

4.14 EIGEN VALUE AND EIGEN VECTOR :
For the homogeneous FIE with degenerate Kernel k(x, ¢) is givefi by«

b
Hx)= 7\'] k(x, £) y(¢) at (1) the parameter A ( 0) for which (1) does not have a trivial solution

is called the eigen value or characteristic value of the [E (1). The non trivial solution y (x)# 0, corresponding
to the eigen value is called the eigen function of the IE (1).

Ex.: 22. Solve the Integral Equation y (x)= 7»_"(00s2 x cos2t +cos3x cos’t) y{t) dt
. 0 o

n

Solu.: The given equation is ¥ (x)= KJ‘ (0082 x cos2t+ 0083{@%1 t)d 3
: 0

2
In this case & (x, 1) =cos® x cos2t +cos3x cos’t = Y- a,(x) b (1) .
. T i=]

<. a,(x)=cos’ x, a,(x) = cos3x, b(t) = cos2t, bz(t«)--; cos’t

X

a, = !b(.(x) a,(x) dx = Icost cos’ xdx =%,
; )

L

by(x) a)(x) dx = jcos’ x cos’ xdx=0
0 \

ap =

vo A &

a, = | b,(x) a,(x) dx = '[cos’ x cos’ xde=0
0 0

ay = sz(x) a,(x) dx = Icos’a’x cos’ xdx = %
0 0
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The sohnfﬁon is yx)= )V[C.]al(:;). + Cz“z("‘)]

v
v
\’.

. 1-Ad=0

1-2% 0
0 1-A%

fh =8 b, =Y,
v [ Sle o
0 1-a%lc,| |o
= (1-A3) €, =0 @
and (1-47%) C, =0 ®)
Case I : ‘l=k!(=%)

@) gives, 0.C =0
= Cl=C (say)

=A[C,cos’ x + C,cos3x]

=0=>x=%; A

@) gves, %cz-éo
=G0 for ASA =Y,
o for A=A, y=y(x)=A, Ccos’x=4, C cos’ x
Hx)=Acos’x for 4=2C
Case Il : =2, =5
@gives = (-1)C;=0
= (=0
@) gives, (1-5;3) C, =0
= C,=C(say) for A=4,=¥%
& y=y(x)=21,C cos3x=Bcosdx  for B=2,C.

| Ex.: 23 Show that the integral equiaﬁoﬁ'g(s)zf(s)+){,?‘sin(§+t)g'(t)dl possesses no solution for f(s)= s,
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but that it possesses infinitely many solutions when f(s) =

2n

Solu.: Given g(s)= f(s)+ % Isin(s +1)g(t) dt

0

g(s)=f(s)+ % T(sins cost +coss sint) g(¢) dt

2x 2x
(s) f(s +(%) smsjcost g(t) dt-kggs—'y-jsintg(t) dt (1)
[} n ]
= g(s)= £(s)+ C sins C, coss 2
T T
2z .
where C, = jasr g(t) at €)]
o .
& G = jSlntg t)dt @)
We now discuss two particular cases as mentioned in the problem
Case 1: Let f(s)=s. Then (2) reduces to
C;sins  C,coss
= +
gls)=s 4=+ | )
C;sint  C,cost
From (5), g(f)=1+— ::n 2 ©)

T

27 R
- Using (6), (3) becomes, C, = J' cost (: + C imt + C, ;osr) dt
. J

= (= fr costdt+ fZSmt costdt+ G, chos tdr

' 2z ’ _ 2 . »
= C =[t sinx]z" - jsin:d: +Q[MJ +—C—2-[t+ smzt}

= C, =+[cost])" + 26;“{ ;+;]+%[27!+0 0]

::>Cl=C2
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= € -C,=0 | ™
Again using (6), (4) becomgs
C smt» .5 cost) &t

2x
G=] sint(t +
A T "

25 C 2x C 2
-G, = [t sintde + % [2sin’ t dt +=2 [2sint cost dt
: ° 2ny 2n g

= C,=-2n+C +0
= C,-C,=2n (8)
The system of equations (7) & (8) is inconsistent and so it possesses no solution.
Hence C; & C, cannot be determined and so (5) shows that the given integral equation possesses no
solution when f(s)=s. |
Case II : Let f(s)=1. Then (2) reduces to

C sins C,coss
g(s) =1+ + ?n : )
fiom g(x)=1+qim’+czz°s‘ | (10)

Using  (10), (3) becomes

2n

C = JOOSf(l'\" Csint G, cost) &t

o \ n T

2n C 2x C 23 .
= Icostdt + —L JIZ costsintdt—i--?-jl cos’ t dt
0 2n 2n

2x . 2%
= [sine" +£L[._ cosZt] .G [t+ s1n2t]

ol 2 ), 2ml 2
' C
=0+0+—2[2n+0
=0+0+-2[2x+0]
= C,~C,=0 - (11).

Again using (10), (4) becomes

2x P -
G = fsint(l+ G sin? + G cost) dt
5 n n

Directorate of Distance Education 49



Integral Equations

= (=G, (12)

From (1) & (12) we see that C, =C, = C’ (say). Here C” is an arbitany constant, Thus the system

(11) - (12) has infinite number of solutions C, = C” and C, = C”. Putting these values in (9), the required

4
solution of given integral equation is g(s) =1+ % (sins +coss)=> g(s) = 1+ C(sins + coss) whete C = cy

is another arbitany constant. Since C is an arbitary constant. We have infinitely many solutions of (1) when

f(s)=1.

4.15 Unit Summary : The gist of the unit is depicted as follows :

(D) After converting an initial value or a boundary vaiue problérn to an integral equation, it can be solve

by shorter methods of solving integral equation,

(I) Most of the difficult problems in Mechanics and Mathematical Physics can be converted in an

integral equation and obtained the solution in very lucid way.

4.16 Exercises :

150

Reduce the problems to an Integral Equation :

92 13 3(2)= 12} ¥(0) =0, ¥(0) =1

Reduce the problems to an Integral Equation :

2

d
“5+y=1(x) 0<x<n, with 5{0)=0, x)=0

Solve by Resolvent Kernel Method

A== 1(x-1)2le)

1
Consider y(x)=1+X[(1-3xt)y{r) dt
| 0

Eyaluate the Resolvent Kemel. For what values of ), the solution does not exist. Obtain the
solution of the given Integral Equation.

1 o
Solve the following Integral Equation y(x)=1+2](x+¢)y(¢) d¢t by the method of successive
0

approximation to third order with initial 4pproximation ¥, (x)=1,
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6. Solve the Integral equations by Laplace transform technique
. !
yx)= x+2Icos (x=1)y(r) at
. ¢

7.  Solve the integral equation,

- ’WM* <a<x<b<nm
f(x)_‘[(cost cosx)*’ 0 ber.
Answers :
L )= R ;k(x, I, where, FE) =1+ [(x=0f ()
& k(x, )=t-x
2 ;(x)=p(x)+xzk(x, Oy, where F(x):Z(x—t) ylyd -2 z(x-:) (1) de
_ (#)m-x), t<x
& K>, ’)“{(%)(n-:), t>x
3. y(x)=sinx

4. R(x,5; )= Z—éxy[l-i-k—-%xl—lit(x-bg——kxﬂ

for [A| > 2, the solution will not exist, and

4+20(2-3x)
422

S )= 1o M )+ 2+ 1)+ R ()

6. yx)=2¢"(x-1)+2+x

x y(’)=(}/);[jmw~“81nuf(u)du } a<t<b

{cosu—cost)*

the solution, y(x )= , for [3]>2.

4.17 References / Suggested further Readings : ‘
1. B.L. Moiseiwitsch; Integral Equations, Longman Mathematical Texts, London & New York.

2. Ram P. Kanwal; Linear Integral Equations, 2nd Edition, Birkhiiuser, Boston, Berlin, 1997.
+.  George Yankovsky, Problems and Exercises in Integral Equations, Mir Publishers, Moscow, 1971,
4. L. G Petrovsky, Lectures on the theory of Integral Equations, Mir Publishers, Moscow, 197],
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Ordinary Differential Equations of Sturm Liouville type and Green's Function

M.Sc. Coursein
Applied Mathematics with Oceanology
| ' and
Computer Programming

_ Part-1I _
Paper- VIII - Group-A
Module No. 89

5 : Ordinary Differential Equations of Sturm Liouville type and Green's Function

Structure
-5.1  Introduction
- 5.2 Objectives
5.3  Ordinary Differential Equations of Surm Liouville Type
5.3.1 Some Definitions
5.3.2 Properties of Sturm Liouville Type
5.3.3 Orthogonality of characteristic functions and some theorems
5.3.4 Exercises’ ‘
5.3.5 References
5.4  Green's Function
- 5.4.1 Definition
5.4.2 Some Theorems and Examples
5.4.3 Exercises
5.4.5 References
5.5  Unit Summary
5.1 Introduction :

In this module, we have consider two different type of problems consisting of ordinary differential
equation of sturm liouville type and Green's function and divided into two sections. In the first section, we shall
consider a special kind of boundary value problem known as sturm-liouville problem and in the last section,
we shall discuss how to find Green's function involving ordinary differential equation subject to boundary
corn¥tions or initial conditions.

5.2 Objectives @ -
The problem of an ordinary differential equations of sturm liouville type have introduced us to several
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Ordinary Differential Equations of Sturm Liouville type and Green's Function

~ important concepts including characteristic (eigen) value and characteristic (eigen) function and orthogonality.
These concepts are frequently employed in the applications of differential equations to Applied Mathematics
and Engineering. Also the Green's function are useful in the application of differential equation to Applied

Mathematics and Engineering,
53 Key words : ‘ _
Sturm Liouville Type, Orthoganality, Characteristic Function, Green's Function.
5.3 Ordinary Differential Equations of Stunﬁ Liouville Type :
5.3.1 Some Definitions :

Definition 1 : ‘
We consider a boundary-value problem which consists of
1.~ asecond-order homogeneous linear differential equation of the form

%[p(x)%]+[q(X)+N(x)]y =0 )
where p, ¢ and r are real functions such that p has a continuous.derivative, ¢ and r are
continuous, and p(x)>0 and r(x)>0, for all x on a real interval g < x <b, and A is a parameter independent
of x; and |
2. - two supplementary conditions

4 Ha)+ 4y'(a)= 0} -
Biy(b)+ Byy'(b)=0

" where 4, 4,, B; and B, are real constants such that 4, and 4, are not both zero and B

©

and B, are not both zero.

This type of boundary value problem is called a Sturm-Liouville problem or Sturm-Liouville System
or Regular Sturm-Liouville System. o |
Definition 2 :

We consider a boundary-value problem which consists of

1. asecond-order homogeneous linear differential equation of the form

d dy
?d—x—[p(x) ;}—} +‘[q(x) + lr(x)]y =0 )
~ where p, g and r are real functions such that p has a continuous derivative, ¢ and r are
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continuous, and p(x)>0 and r(x)>0, for all x on a real interval a < x <& and A is a parameter independent
of x; and
2. three supplementary conditions with periodic end conditions,

pla)=p(b)
‘y(a)::y(b) ey
y'(a)=y'() - -
This type of boundary-value problem is called a Periodic Sturm-Liouville problem.
Example 1
The boundary-value problem
d| dy 2 4.3 | -
Z[x;&—]+[2x +Ax ]y=0 . G
with conditions
3y(1)+4y'(1)=0
5%(2)-3y'(2) =0
is a sturm-liouville problem (Regular). The differential equation (5) is of the formi (1), where p(x) =
%, g(x)=2x* and r(x)=x’. The conditions (6) are of the form (2), where a=1,b=2 4, =3,

(6)

Az =4 B] =5 and .82 =-3.
Example 2 :

The boundary-value problem

d’y CAPANS
?dx—‘z—-}'z‘fy:() or, Ex—[la]-l-ly:O (N

with conditions

p(-m}= p(r), since b(x)=1 |

y(-)=y(n) | ®

y(-m)=y(z) |

is a sturm-liouville problem (Periodic). The differential equation (7) is of the form (3), where
p(x)=1, ¢(x)=0 and r(x}=1 The conditions (8) are of the form (4), where g =—n, b==.
Chisracteristic (Eigen) Values and Characteristic (Eigen) Functions |
Definition 3 : Consider the Sturm-Liouville pmblem (Regular & Periodic of the differential equation [(l) and
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same as (3)] and the supplementary conditions [(2) or (3)]. The values of the parameter A in '( 1)} for which
there exist nontrivial solutions of the problem are called the characteristic (eigen) values of the problem. The
corresponding nontrivial solutions themselves are called the characteristic (eigen) functions of the problem.

Importint Note :
The boundary value problem is said to be homogeneous if both the differential equation and the

boundary conditions are homogeneous [i.e., the tight side of equations are vanish]. Otherwise the problem is
non homogeneous. '
5.3.2 Properties of Sturm Liouville Type :
Property 1: .

The eigen values of a sturm-liouville problem are all real and nonnegative.
Property 2 :

The eigen values of a sturm-liouville problem can be arranged to form a strictly increasing infinite
sequence that is, 0<A; <A, <33 <..., Furthermore, A, > 0as p >0 |

Property 3 :
For each eigen value of a sturm-liouville problem, there exists one and only orie linearly independent

eigen function. '
Property 4 :
The set of eigen functions {¢1(x), ¢2(x)} of a sturm-liouville problem satisfies the relation

b )
Jr{x) 9, (x) ¢ (x)dx =0 for n= m, where r(x) is continuous and positive on [a, b].
a

Example 3 :

Find the eigen values and eigen functions of

Y'+hy =0, y(0)=0, y(I)=0.

Show that the above boundary value problem is a sturm-liouville problem. Also verify that the four
properties for the sturm-liouville problem.

Solu : Let y = ce™ (c # 0) be the trial solution of the given diff. equation. Then the arbitary equation

ism®+A=0. We consider the cases A =0, A <0 and ), > 0 separately, since they lead to different solutions.
Casel: ), =0 : Thesolutionis ¥y = ¢, *¢,%. Applying the boundary conditions, we obtain ¢, =¢, = 0,
whi:" sesults in the trivial solution.
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<k ~=kx

Case2: ). <0 : Thesolutionis y = c,e +e,e , where — A and /), are positive. Applying
- the boundary conditions, we obtain ¢ +cé =0, cle':‘/:I + cze“m =0 | |
1 1 _J= -
Here | J-x euﬁ =eVH —e

which is never zero for any value of }, < (. Hence, =6, = 0 and y = 0 which is also trivial.

Case 3 : ), >0 : The solution is ¢, sin JAx+ ¢, €08 «/Ax . Applying the boundary conditions, we
obtain c, =0 and ¢y sin J}C: 0. Note that gjn § =0 if and only if @ =y, where n=0, +1, £2, .... '
Further more, if § > 0, then 7 must be positive. To satisfy the boundary conditions, ¢, = 0 and either ¢ = 0

or sin VA =0. This last equation is equivalent to VA =nn where n= 1,23, ..., the choice ¢ = 0 results
in the trivial solution, the choice /A = nn results in the nontrivial solution y, = ¢, sin (nmx). Here the notation
¢, signifies that the arbitary constant ¢ can be different for different values of n.

Collecting the result of all three cases, we conclude that the eigen values are kn =n’n? and the
corresponding eigen functions are y, =¢, sin (nmx), forn=1,2,3, ...
The given differential equation can be expressed in the form

%[ .%]4-[04—1).]}::0 which has the same form of (1) ie, sturm-liouville problem. Also

p(x)=1, g(x)=0 and r(x)=1. Here both p(x) and r(x) are positive and continuous everywhere, in
particular on [0, 1]. |

Hence the given boundary-value problem is a sturm-liouville problem.
Verification of Properties :

We have that the eigen values .are 7\,” =n*n? and the corresponding eigen functions are
y,(x)=c, sin (nnx), for n=1,2,3, .... The eigen values are obviously real and nonnegative, and they can
be ordered as 7»1 =72 <7\.2 =4n? < 7»3 =9n% <., ie., eigenvalues form a strictly increasing infinite

sequence. Each eigen value has a single linearly independent eigen function ¢, (x)=sin nnx associated
w'h it. Finally, since sin (nmx) sin (mnx)=:21—cos (n-m)mx—%cos (n+m)n we have for n¥m and

r(x)=1.
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thgn jr(x) ¢,(x) ¢,,(x)dx = _i-sin (nmx) sin (mnx) dx

:..—jB—cos (n —-"m)nx---;—cos (n+m)nx]ab;

atl.

=[—2—(—;_——”-1—); sin {n—m)mx ~
- ={. ‘

5.33 Orthogonality of Characteristic Functions and Some Theorems :

Orthogonality of Characteristic Functions :

Definition 4 :

Let {¢’n} ,n=1273 .. be an infinite set of functions defined on the interval a < x <b. The set

sin (n+ m)mc:[

2(n+m)n

{tbn} is called an orthogonal system with respect to the weight function » on a < x <& if every two distinct

functions of the set are orthogonal with respect to 7 on a < x <4. That is, set {4)"} is orthogonal with respect

b .
toron asx<b,if [¢ (x)¢ (x)r(x)dx=0,for m#n.
a .

Example 4 ;
Consider the infinite set of functions {d)n} , where ¢,(x)=sin nx, (n=1, 2, 3, ...), on the interval
0<x<n.The set {d)n} is an orthogonal system with respect to the weight function having the constant value

1 on the interval < x < 7, for

| f(sin mx) (siﬁ nx)dx = [Siz(ff = ',3){: B Sir;&l:?j: }

[

=0, form#n.

Theorem 1 : _ ~
Let the coefficients p(x), ¢(x) and (x) in the starm-liouville system be continuous in [a, b]. Let the

eig-n functions ¢j and ¢k corresponding to lj and A , be continuously differentable. Then ¢j and d)k are
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orthogonal with respect to the weight function r(x) in [a, b].
Proof : :
We have the sturm-liouville system

L) 2|+ [als)+ 1)y =0 oo

~ Since ¢ ; and ¢, are the eigen functions of (1) corresponding to the eigen values 7“; and A,
respectively, thus we have

. o
?Z‘c P‘%‘}*[‘“’“f’] ¢;=0 @
4af

o
Multiplying to the equation (2) by ¢k and to the equation (3) by ¢) and then subtracting we get,

‘H [9+27] 65 =0 3)

¢ — [P‘b] [q+r)”j]¢j¢k :;[PM [q""'xk]‘bj‘bk:o
zr(kj——}'k)d)jd)k =g, — [P¢k] [P‘bj]

=2 (po0)- (410 )]

Now integrating to the above with respect to x within the limitsato b

b , b
(A, =2) [4, drde=[p 0,00 - b0,

(1, =s) 4, burds = o6, (8) 8(5)-6;(6) 6)]

~p(a)[o,(a) 64(a)~4}(a) 0,(8)] @

Now the supplementary conditions of SL system are -
Abla)+ Ad@=0 ©)
B, (b)+ B,4;(6) =0 | ©)

158 ' Directorate of Distance Education



Ordinary Differential Equations of Sturm Liouville type and Green's Function

& A (a)+ 4/(a)=0 . )
B@k(b) + Be%!(b) =0 . ' @
Multiplying to the equation (6) by $, (5) and to the equation (8) by ¢j (b) and then subtracting,
assuming 32 # 0, we have ‘
B[4(6) 60)-40) o,(8)] =0 .
= 4(8) 8.(8)-0((5) ,(5) =0 o) |
Similarly from (5) & (7) multiply by d’k (a) & ibj. (a) respectively and then sﬁbtracting, aésuming
4, #0, we have
4@ (@)-HE) o]=0
= [b(@) b(a)-9(b) ,(a)]=0 (10)
Using (9) and (10) in (4) we have
b ' - :
. (%‘“Ak) £¢j¢k’d""“‘0 ' -y

Since ?»J. and A " are distinct eigen values, their difference A I A s 0, therefore from (11) we get

‘?¢f¢krdx =0 = ?ij(x) ¢k(x) r(x)dx =0

which shows that ¢j and 9, are orthogonal with respect to the weight function r(x).

Hence the theorem.
Theorem 2 ;
I d),(x) and tbz(x) are any two solutions of the sturm-liouville equation on [a, 5], then

o b
o, 05

p(x)W[x;6,,4,] = Constant, where W is the wronskian and W(x;$,,¢,)=

Proof: _
Since 4’1 and ¢2 are the solutions of SL equation then

. a .
—%—[p(x) —;ti}+[q+7tr]¢1=0 : - ')
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- d do, ;
& '&;[P(x) E‘}*[Q‘Pl’] $,=0 @
Multiplying to the equation (1) by ¢2 and that of equation (2) by ¢1 and then subtracting, we get,

' dl doy| _, A |
=>¢ldx[pdx] ¢2dx[pdx] 0

= L {(pa)o~(pi)0:] =0

Integrating above w.r. to x to the limits a to x, we éet,
[dl(p4;)0 ~(pd)d:] = 0
= p(¥) (x) &(x) - P(x) $(x) &u(x) = (a) (@) h(a) - Pa) () &,(c)
= p(x) [43(x) ()~ #(x) &(x)] = Pa)s(a) ti(a)~ &i(a) ()]
= p(x) W [x; ¢, ¢,]= Constant.
Theorem 3 : , ,

The eigen function of the poriodic sturmJiouville_ system in [a, b] are orthogonal with respect to the -

weight function r(x) in [a, b].
Proof : We have the periodic sturm-liouville system

;i;[p(x)%}r[q(x)w(x)]y =0 | )

Since <|>J_ and ¢k are the eigen functions of (1) corresponding to the eigen values 7“,' and A,

respectively, thus we have
d[ db;] : |
};‘- p-—(zx—j— +[q+2,jr]¢jF0 V)
df db;] -
& %—"pj%"—f[qﬂkr] ¢ =0 | 3)
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- Multiplying to the equation (2) by ¢k and to the equation (3) by ¢ 7 and then subtracting we get,

b ]+ la ] 6 -4, L [41)- [+ 0] 08, =0

= (b, =0) 48 =, Sob]~ 4[]

= Z(ot,%)-(rt; )]

Now integrating to the above with respect to x within the limits a to 5

b \
(A'J' —Ay ) f b,y rdx = [P‘bj‘t’i — PO ]a

(3, =) J4 s = 03, (115)- 81610 0)]

~p(a)]d,(a)bi(a)-4)(a)b(a)] @)
Now the supplementany conditions of pen'odic SL system are
Pla)=p(b) | - ©)
ad $(a)=,(b) o
/(a)=4/0) ©
and ¢, (a)=¢,(5)]
9, (@)=¢/(») 0

© Using (5), (6) & (7) in (4), we get
b ’ .
(’“f - A'k) ;fq’jq’k" (x)dx =0 | -
Since Kj and A , are distinct characteristic values, their difference )»j -2 0 * 0. Therefore we must
have ‘

b
J4,8,7(s)ee =0
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Hence ¢J. and ¢, are orthogonal with respect to 7(x) on a<x<5.
Theorem 4 : | '

All the eigen values of a regular sturm-liouville system with #(x) > 0, are real.
Preof :

We have thg sturm-liouville system

de'[p(x)%]+[q(x)+}\r(x)]y=0 " o

Since ¢j and ¢, are the eigen functions of (1) corresponding to the eigen values 7\-j and A,

respectively, thus we have
d[ db;] '
P Ll +a+nyr]e;=0 A o

dl _dp;]
& g_p—%f[q%krhﬁﬂ 3)

Multiplying to the eﬁuation (2) by ‘bk and to the equation (3) by 4>j and then subtracting we get.
b0 la+ ] 0 -, SIpI-la 40 o =0
= Ao, *h) b =8 L p81)- b [P0
) .
=< l(ot0)~(ot0.)]

Now integrating to the above with respect to x within the limits a to b

1) [ =[ b - P ]

(h;-2) j 4 drds = p (6)[4;(a)0i (6) - 4;(0)0 )]

e b@ne] @
Now the supplementary conditions of SL system are _
Ad,(a)+ A4)(a) =0 | )
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B,(b)+ B,gj(b) = 0 ©)
&  Ad(a)+ 49i(a)=0 ™
6]

Bae(8)+ B4i(b) =0 |
Multiplying to the equation (6) by 9, (%) and to the equation (8) by ¢j (%) and then ::su'btracting
assumingqg2 # 0, we have
B,[4](5) 4 (6)- 4:(6) ¢,8)] = 0
= () 0:(6)—9:(b) $,(6)=0 ®)
‘Again multiplying to the equation (5) by ¢, (a) and by ¢, (a) to the equation (7) respectively and then
subtracting and assuming 4, # 0, we have
Az[‘b;(") ¢, (a)-9;(5) 4’1(“)] =0
= ¢;(a) 4.(a)-9/(5) §,(a) = 0
Using (9) & (10) in (4) we have,
b ’ : .
(kj—ikk)‘fz¢j¢krdx=0 ; (“)

Let us assume that xj = o +if corresponding to ¢ ), =ut iv. Then as the coefficients of SL equation

(10)

are real, the complex conjugate of A ; is also an eigen value.
Thus, there exists an eigen function «bk =y—iv =$j corresponding to the eigen value lk =0 ~if =_ij.
Using above conditions, in equation (11) we get

[(o+iB) (@~ iB)] :f(wv) (=) (e} =0

= 2ip If’(uz + v") r(x)# =0

Since r(x) is positive and ;2 .2 is positive.
Therefore B must be equal to zero.
Hence eigen values of regular SL system are real.
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5.3.4 Exercises
Ex-1.: Find the characteristic values and characteristic functions of the sturm-liouville problem
—%[x%]+ %y =0; y'(1)=0, y’(ez") =0,
~ Also verify that the four properties for the sturm-liouville problem.
Ex-2.: Find the eigen values and eigen functions of
Y +iy=0, ¥(0)=0, y'(x) =0.
Also verify that the four properties for the sturm-liouville problem.
Ex-3.; Verify the properties for following sturm-liouville problem. .

() +[x21ae ]y =0; y(D+2y(D)=0,
' ‘y(2)-3y'(2)=0-
Answers ¢ '
19,2

aneey

Ex. 1: Charactenstlcvalues 0; ’ ’4: 4 "Tt -

Characteriétic function : €5 ‘cos(#.lgé-{), c, cos(lnx), s cos@— lnx),...,
Ex. 2 : Characteristic values : A, = (n~—2—) n=123,.

‘Characteristic functions : ¥, = C, Sn:(n“‘%)xsn =12,3,..

5.3.5 References

1. Shepley L. Ross; Differential Equations, 3td Edition, 2004, New York.

2. Richard Bronson; Differential Equations, 2nd Edition, 1994, New York.

3. Birkhoff, G and GC. Rota, Ordinary Differential Equations, 3rd Edition, 1978, New York.

. 5.4 GREEN’S FUNCTION
5.4.1 Definition ¢ ‘
Suppose we have a differential equation of order n (linear homogeneous) :

)= p ()" + 2, + . +p,(x)y=0 ®
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where the functions £o(x). 7,(x). ....'p,(¥) are continuous on [a, 5] , p,(x)#0 on [4, 8] and the
boundary conditions are ¥, (y) =0, k=12 .,n @
whete 7 (y) =0, (a)+a0y/(@)+ ... +al™ " D(a)+p, y(5)
+B0y )+ ... +p D N(p) @

where the linear forms V], Vé, . v iny(a), y'(a), y"a), y(b), y’(b). s Y7 D(B) are
lincarly independent.

We assume that the homogeneous boundary value problem (1) — (2.1) has only a tr1v1al solution |

Hx)=0.
Deﬁmhon 3
* Green’s function of the boundaly‘value problem (1)~ (2.1) is the funcuon G(x, &) constructed for

any point ;, g < G <b, and having the following four properties :
1, G(x, ¢) is continuous and has conunuous derivatives with respect to x up to order (7-2)

inclusive for a S x <b. - :
2. Ms(n-Dth denvatlve with respect to x at the point x={ hasa d:scontmmty of the first kind,

. | 1
the jump being equal to (35, ke,

[F"G(x,c_,) &'G(x,8) _ 1
' " :'x-c\»o -[ o L-;-o —m e
3. Ineach of theintervals [, ¢) and (5, &] the funtion G(x, £), considered as  function of ,
is a solution of equation (1) : L(G)=0 ) ‘ @ '
4. Gx, ¢) satisfies the boundary conditions (2): |
 Vi(G)=0, (k=12 .., ) | ®
5.4.2 Some theorems and Examples :

Theorem 1:
If the boundary - value problem (1) (2.1) has only the trivial solution y(x) 0, then the operation

L has one and only one Green’s function G(x, §).

Directorate of Distance Education 165



Ordinary Differential Equations of Sturm Liouville Yype and Green's Function

Proof : Let ¥,(x), ¥,(%), .., ¥ (%) be linearly independent solutions of the equation L{y)=0. Then by
virtue of property (3), the unknown function G(x, ) must have the following representation on the intervals
[a, &) and (G, 8] :

G, €)= api(x)+ @y (x)+ .. 48,p,(x), forasx<§
’ bi(x) +b2y2(x) + by, (x) for<x<b

~where @), @,, ..., @, b, b), ... b_are some functions of ¢,
Again by virtue of property (1), the continuity of the fanction G(x, &) and of its first (-2) derivatives
with respect to x at the point x ={ yields the relation

. lJ’I(C)+ 2 (C;)+...+b Y, (C)] [ ay,(6)+a,7, G+ +a "yn(c;)]
Ibwf@+bzys<c>+---+»ny;<c>1 o)+ a0 0, @1=

5, yl 2)(§)+ y("“z)(§)+...4b"y,(,”;2)(4)] [ ay 1n K (€)+a2 (- 2)(§)+...+an y'('"“z)(g)] =0
and by the property (2), the condition (3) takes the form ‘
[ ly’(" Ne)+s, yg"'l)(g)-i-...+b"’y’(:'l)(C)] [ a " l)(C)+a2 (n- ')(c:)+ +a y(" l)(C)] = T

Let us put Ck(g)zbk(g)-ak(c),‘k.-:l, 2, ..., n; then we get a system of linear equations in ¢,(£):

3

en(8)+ey, (Q)"'-"'*‘Cn}fn €)=0 ‘
ei(§)+ ey G+ 4e,yi(6) =0

clylhz)(§)+cz "“”(C)*' T+, ynn_Z)(€)= 1
A e e e G =

The determinant of system of hnear equation (6) is equal to the value of the Wronskiam
- --W(yl,yz, yn) at the point x = ¢ and is non zero, because ¥, ¥, ---» J, are linearly independent, and
it fullows that ‘

166 | . Directorate of Distance Educaﬁon



Ordinary Differential Equations of Sturm Liouville type and Green's Function

ne)  »nl) . x©
@) 2@ .. »n©

Dl (I (4 I "‘“”(c)
W) ) . W)

For this reéson, the system (6) possess a unique solution for ¢;, k=1, 2, ..., n. To determine the
functions a, (€) and b,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>