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, ' PART-I
Paper-VII Group-B
' ‘ Module No. - 73
Electromagnetic Theory
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 73.8.2. Electric Field due to a Doublet ’
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(J 73.13. References
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{3 73.1. Introduction :

Electromagnetic theory is related to the microscopic study of the behaviour of charges in motion and their
interaction with matter. In this subject, the aim is to summarise various laws of electrostatics and magnetostatics
aIuhg with a few mathematical concepts. |

Vector analysis is a powerful mathematical machinery devised to handle the actual physical processes easily
and rapidly. The equations of electrodynamics become more concise if written in vector notation and physical
2ordent becomes more clear. |

The fundamental problem, electromagnetic theory hopes to solve is this : we have some electric charges
G..4.q5-- (letus call them source charges); what force do they exert on another charge Q (let us call this as test
charge)? This positions of the source charges are given (as a function of time); the trajectory of the test particle is
to be calculated. The solution to this problem is facilitated by the principle of superposition, which states that the
interaction between any to charges is cozﬁpletely unaffected by the presence of others. Force on a test charge can
I»¢ found using Coulomb’s law. Idea of potential and field play an important role in eleétromagnetic theory.

Electric field £ is a very special kind of vector ﬁlﬁction, whose curl is always zero. As V x £ = 0, the line
imtegral of E around any closed loop is zero (that follows from Stoke’s_ theorem). Because the line integral is
independent of path, we can define a function

o(r)=-[ E-di

Here, ¢ depends only or 7 and is called the electric potential.

The relation between E and ¢ is

E=-V¢

Like force, potential obeys the superposition principle.

The elgctrostatic problems can be solved by the following methods :

(i) The method of electrical images. ‘

(i) The method involving superposition of fictitious charge.

(iii) The method of separation of variables (Laplace and Poisson’s equations).

O Poisson’s equation :

Directorate of Distance Education
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Module No. 73 : Electromagnetic Theory

...............................................................................................

O Laplace’s equation :
Vig=0
‘173.2. Objectlves '
After going through this module we shall be able to know the following mattters
O Potentials and conservative force. -
O Potential and field due to adipole; dlpole-dxpole interaction.
O 'Method of images.

O Maxwell’s stress tensor.

| 1 73.3. Some Basic Equations :
¢ VECTORDERIVATIVES

O Cartesian. J] = dxi +dy j+dzk dr=dxdyds

a¢ a¢ " _a_¢
Gradient : V¢ = ax By -+ %
Divergence : V-4 = aaA E;iy + aafi |
(34, 04,). (94, 04). (34, o4
Curl: AN ke’ i 3
wrl: Vx A= (ay > }+( 0z Ox )”{ dx dy)
2 2
Laplacian : V¢ = a ¢ g ¢+8 4
ay 0z

O Spherical. di = dr 7 +r d0 0+ rsin@dg ¢; dr =r’sinfdrd6dg

Gradient : V¢-a¢“ 13¢ é+ 194 ;

or ra@ rsm98¢¢

1 04,
rsind d¢

Divergence: V-A= _Lé@_( Ar)+ J (s1n6‘A9)+

rsin@ 0@

2
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oo d ,],

qul. VxA= rsma[aé’( nEA) M}r
1 1 24 9 - 1] 9 . ] -
:[“‘“me‘a';"‘a‘;'< A )]“‘;[5;(”’9)”35]?’

: 193(,3 1__9_»9?:) 1
Laplacian : V¢—r E)r( ar] r sinﬂaﬁ(smgaﬁ .*-rzsinzeaqb2

O Cylindrical. gl = ds§+sdp @ + dz 2, dr = sdsdp dz

g . 1 a¢ a¢ .
vo=2%3
Gradient : V¢ 2 s a¢ az 995
-_190 104, 04,
Divergence : V- A=—~—(s4, )+ -—2+—=

s 0s sa¢ 0z

Curl: V.j=]~ . _ o4 i“.,_ r 2% |G| (54 _.___.s_l‘
§ A [S 8¢ az_ g {az as:] S[ (S é) z

o ¢ ¢ F¢
Laplacian : v = Y ¥
plactan - v'g sas( as) 8¢2+Bz2

"¢ VECTOR IDENTITIES
O Triple Products
(1) A(BxC)=B-(CxA)=C(AxE)
) 2x(§xé)=1§(2-é)-é(j-z§)

O Product Rules
@) V(&)=s(Vg)+2(V/)

@) V(4-B)=4x(VxB)+Bx(VxA)+(4-v)B+(B-v)4
() v |

(6) v

4 : . Directorate of Distance Education



Module No. 73 : Electromagnetic T héory

................................................................................................

0 Vx(fA?).-.f(Vx.Z)—Zx(vj)
® Vx(ixB)=(B-v)i-(4-v)B+4(v-B)-B(v )

2 Second Derivatives

© V- (vx4)=0
(10) Vx(Vf)=0
i1y Vx(Vxd)=v(v-4)-v4
¢ FUNDAMENTAL THEOREMS
O Gradient Theorem : | (V/)-dl = f(b)- f (a)
D Divergence Theorem (Causs’s Theorem) : I(V . ;I)dr = <§> A-ds.

73 Curl Theorem (Stoke’s Theorem) : J (V X ,71}» ds = (ﬁ/—i -dl

+ BASIC EQUATIONS OF ELECTRODYNAMICS

D Maxwell’s Equations

In general _ In matter :
(Y E=— 2
- op ( V-D:pf
VXE=-——Q§ V E::—-.—af-
{ ot { ot
V-B=0 V-B=0
&VxﬁzyoJ"%-ﬂoeo%}f— | VxH=J +%—?—

O Auxiliary Fields

Definitions :

D=, E+P

Il=—B-M

1
Hy

Directorate of Distance Education
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o
ot’
O Lorentz forcelaw F = q (E +¥ X 5)

O Potentials £ = -V¢ - B=Vx4

D Energy, Momentum, and Power

velffe et mlor
Energy . U-—2—~f(eo E +;—‘;B Jdr

Momentum : P =¢, f (E‘ X §)d'f

Poynting vector : N = 1 ( E x E)
Hy

Larmor formula : W = ﬁ‘?..qzaz
67c

+ FUNDAMENTAL CONSTANTS

€,=8.85x107"*C*/ Nm* (permitivity of of free space)

' Yo =4n X107 N/ A (permeability of free space)
¢=3.00x10°m/s (speed of light in vacuum)
e=1.60x10"°C ' (charge of'the electron)
m=9.11x10""kg (mass of the electron)

¢ SPHERICALAND CYLINDRICAL COORDINATES

O Spherical
fx—:rsinecosqz) ‘ % =sinfcos@# +cosfcosp b —sing
y=rsin@cosgd j»=sinﬁsin¢r’+cos€sin¢é-—cos¢¢3
{Z:rcosa ’ 2=cos@F—sin0é
r=Jxtt )i+’ o F=sinBcos@ X +sin@sing p+cosO 3
9=tan“( x2+y2/z) é=cos&cos¢£+cos@sin(bj/—sineé
¢ =tan™ (y/x) ¢;=-sin¢fc+cos¢}7

5- _ Directorate of Distance Education



Module No. 73 : Electromagnetic Theory

................................................................................................

2 Cylindrical
[ x=sc0os¢@ ((i=cosps-singg
{ y=ssing ‘ 4 j'1=sin¢.§-cos¢¢?
(Z7¢ | z2=2

((s=x?+ ( §=cosgx—singp

~

{ ¢p=tan"(y/x) { §=~singx+cosgy
LZ;‘Z ‘

z

N
]

0 73.4. Conservative Force
A force is said to be conservative if the work done by it in moving a charged particle from one point

to another point depends only on these points >and not on the path followed.

The region in which a charged particle experiences a conservative force is called a conservative force
field. The central force is the example of a conservative force. It is mentioned that, if a force act on a charged
particle in such a way that it is always directed towards or away from a point and its magnitude depends only upon
the distance () from the point, then the force is called a central force. Gravitational, electrostatic, elastic forces
are central forces and hence conservative forces. ’ ‘

()  For conservative forces, the work donc around any closed path is zero.

$F-dr=0
@) The conservative force is the negative gradient of potential energy.
F=-VU Us=Potential energy.

Potential energy (U) of a particle atapoint 7 is defined as the amount of work done by an applied force
in moving the charged particle from infinity to that point. | | ‘

(iii) The curlof a conservative force vanishes

CurlF=0

(v) The total energy of a particle remains constant in a conservative force field.

Directorate of Distance Education



- . (3
Functional Analysis
....................................................................................................................................

¢ Conservation Laws ;

Conservation laws are very powerful tools for solving the problems in physical sciences. A member of
conservation laws are known to us; familiar examples are the laws of conservation of energy, linear momentum,
angular momentum, charge etc. These laws are usually the consequence of some underlying symmetry in the
universe. _ |

The adyantages of the conservation laws are :

({) Conservation laws do not depend on the details of the trajectory of aparticle and often, on the details
of the force involved. Hence, these laws enable us to state very useful and geheral consequences of
equation of motion.

(i) These laws have been used in the science of elementary particles (electron, proton, meson etc.) even
when the forces involved are not known, On the basis of these laws, some new elementary particles
have also been predicted. ‘

@) Conservation laws are the most striking physical facts whfch have been used in the tacklihg of new and
not understood problems. |

(iv) Some times conservation laws predict with certainty that a particular phenomena will not occur :

Example : y-ray photon cannot create ‘electron-positron pair’ in vacuum. A y-ray photon of energy Ay

possesses a momennirn{ﬁz}, Incase, if the pair iaroduction in possible, then the momentum Lid must be shared
7/ C c

. AN
inequal amounts by electron and positron. Now the total energy of the pairis 2+/ myc* + pc’ = 2\/ mac’ + ("2%) c

= /4;;,30“ + (hy)z which is greater than #y. This violates the law of conservation of energy and hence pair
production by ay-ray photon is impossible in vacuum.
() Aconservation law may be used conveniently in solving the problems for the motion of a particle, even

if we know the force involved exactly.

For solving a problem, first we use the conservation laws and if there remains anything to the problem, we

make use of other methods of calculations.

8 v Directorate of Distance Education
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................................................................................................

Q 73.5. Potential Energy of a System of Charges :
The potential energy of a system of two particles is usually defined as the amount of workdone by an external

agent to assemble the system, starting from infinite separation. Thus if there are two charges ¢, and ¢, at adistance

T, apart, then the electrostatic potential energy of the systein is,

F" 49 4 - 9% [ F=-3%_ _ Coulomb (conservative) force.

Up==["Fdr=- cdr = =
; a o« 4re,r 4 €, 1, dmey

Now, let we bring a third charge ¢, from infinity at a position P, whose distance from the charge g, is r, and

from the charge ¢, is r,,. The amount of work done i.e. the increaée inthe P.E. of the system is
=- : F,-dr where E, isthe Coulomb-force on g,
Asthe electrical interactions are additive, so we can write,
F=Fy+Fy

o [ Fedr=-[F, dr-[FydF

.l -

sy ry

499 I~ 9.9, dr
YArne, T lame,r

DY + 224
dme,r, 4rme,r,

= l"ﬂ + (].23
.. P.E. of the system of three charges.

-9 + R + 4,495
dre,n, dme,n, 4ne,r,

= Uaz + U|s,+ Uy
.. For a system of n charges

99, .
U=% 22
Z472’60 r,

r#)
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»

r=p j=n=1 qq .
o, U= —_—td
; J=1 4r éo 7y

o U=l§§_4

24 Hane,r,
J®
(3 73.6. Electric Potential
The potential of an electric field at a point is defined as the amount of work done in moving a unit

charge from infinity to that point. In other words, the eleciric potential is the potential energy of a unit

'  charge placed at that point. Potential is assumed to be zero at infinity.
Ui{r o, e - —
. Potential. # = ~—§—) = L E.dr= fr E-dr

where U(r) is the potential energy of charge g at the concemed point and E the intensity of electric field at
the satne point.

The intensity ata distance 7 from a charge Qis defined as

E=—2"_
Are, r
L 9F = q
LP=— —-dr= .
¢ L4ﬂ'€0r3 dre,r

This is the expression of the potential at a point  due to a point charge g.

Invoking the superposition principle, the potential ofa collection of charges is,

1 v4
ri= 2L

For a continuous distribution,
‘ N 9'1

¢(r)=

dme,d r
Inparticular, for a volume charge, it is,

5(r) 1 J-p(r’)dz"

r

10 . : Directorate of Distance Education



...........................................................................................

Here, 0 =volume density of charge.
Field E(r j P)z o

The potentials of line and surface charges are

1 J'/l(r’)dl' g 1 J-(r’)dsl

an
4 € r an € r

A-line charge density; o-surface density of chafges.

Example : Find the potential of a uniformly

Module No. 73 :

Electromagngtz’c Theory

- charged spherical shell of radius R.
Solution : We know, potential

1 ods
#(r)= dme,” r

where o=surface density of charge.

Let us set the point » on the z-axis and use the
law of cosines to express r in terms of the polar angle
o’;

2= R*+2Z%-2Rzcos 6’

An element of surface area on this sphere is

R*sin@'d@'d¢’, so
' J R*sing’d@'d¢’
\/ +22 ~2Rzcos8’

dre, ¢

sin @’

=4rR'c
‘[JR2+z ~2Rzcos8’

= Zﬂde(é JR? + 22 —2chos€']

Directorate of Distance Education
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» 2nRo
Z

For points outside the sphere zjs greater than R and hence /( R-2) = (z- R); for points inside the

sphere, \[(R-z)} =(R~-z).
s

(«/R2 +z2‘+ 2Rz ~JR + 22 -2Rz)

Ro
¢(Z)=25 z[(R+z z- R)J" * outside. -
0
Ro
~2) |=— ! inside.
€
0
Interms of the total charge on the shell, g = 47R’0;¢(2) = 2 ”";o p (or, in general ¢(r ) = ”io ; for

points outside the sphere and for points inside.)

q
4z e, R
Q 73.7. Electrostatic Boundary Conditions :

There are three fundamental quantities of electrostatics : p, £ and ¢. The formulas interrelating the above

mentioned quantities are shown in the following fig.

12 Directorate of Distance Education
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The boundary conditions in electrostatics are :

1. The tangential component of E is always continuous across the interface. i.e.
' E =FE
- : g
" The normal component of E is in discontinuous by an amount <. atany boundary.
0
2. The potential is continuous across any boundary i.e.

¢ =9
However the gradient of ¢ inherits the discontinuity in E: since E=-V¢

O . .. . .
& E, -E, =—n; 7 istheunitvector perpendicular to the surface.

EO
o, V§-Vg,= i
E0
9 _9¢ __ o

or,
on on &,

d . : . '
where ?g = ¢-n— denotes the normal derivative of ¢, that is, the rate of change in the direction

perpendicular to the surface.

Q73.8. Electric Dipole or Electric Doublet :
¢ The electric dipole (or electric doubet or electric bipole) . A combination of two equal and opposite

point charges —e and +e, such that distance 3l between them is infinitely

small and e infinitely great such that e. 81 is finite, is called an electric
doublet.

¢ Strength of a doublet : The strength of an electric doublet is
defined as the limiting value of the product e 81 such that when e — oo,
e. 8l is finite.

The strength of a doublet is usua;lly called the moment of the doublet

and is denoted by . In fact the moment of a dipole is vector m whose —e > 8 < e

L4

Directorate of Distance Education 13
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magnitude is m i.e. m = e 8/. The axis of the doublet is in the sense along the ﬁﬁe joining the negative charge to the

positive charge.

1 73.8.1. Potential of the field produced by a small doublet :

Let us consider an electric doublet 4B composed of two point charges —e at 4 and +e at B where AB=8land

}}g})eﬁ =m. TakePasorigin and PA = 7; then the scalar potential at P dueto—e at 4 and +eatB. -

A 1 e e e
=2 [*”*-]: (
| ne,LPA PB] 4re,

| e e | e
Rt et
ne,|. PA PB)| A4ze,
e [, .1
= increase m-—-ﬁ'omAtoB}
dre, | r
_ e
4re, |
e [—= 1
= dl-grad,| ~
dme, | gra’,,(r)] el

Proééedingto limitas 6 — 0, we have

. e = 1
o =limgre 5 V(7]

) =__ﬁ...vp(l)
4r €, r;

—— '7?'._-1-2
- 47reo(r r)

14

differential of 1 w.r.t. the coordinate of 4keeping Pasﬁxed}
r

(- dg = drgradg)

( V" = mr"'.'zr')

Directorate of Distance Education
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................................................................................................

= m-r -(-—r““zr) h PA
ame, r . where » = P4
_ mcos
dre,rt

Note, If there are a number of doublets then the poetntial at P due to all these doublets is

2 m

—— (i i
=2 4re,r’

=1

~Example : Define an electric dipole. Show that the two electric dipoles of moments m ,m, centred at
the same point are equivale}zt to a single dipole at this point of moment m +m,.
Hint. Since with the vector law of addition
AP iy F () F

Pdre,r drmeyr

drre, r

hence the result.

173.8.2. Electric field duc to a doublet. Let the electric doublet be situated at the origin; then the electric field

vector E at Pis given by :

[V,,(ﬁp?):fﬁl
(e F)=(F-V)m+ (e V)F +F x(Vxm)+mx (VXF)

=0+ {m]? . V} ¥ + 0+ 0 (suppose the axis of doublet is along z -axis; " m = mk )

J/ ~
=m; ()

Directorate of Distance Education 15
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=m§=ﬁ'z].

o 3(m-
Therefore £ - : [_'."3_4. (ms r) ro“
. dme, | r oo

Camponeht of electric field along r and 8. Let £_and E be the component of electric field along the

radius vector and in the direction of 6 increasing; then

a¢ o mcos@ | 2mcosé
Erz-'-'—:-—-—-—— 3 = 3

or or\dzme,r’ ) 4zmeyr

¢ 9 [ mcos@ msin@
Ee=-- =— > 1= 3.

rdg rofldze,r dreyr

.;i“he resultant field is= \/[(Er )2 +(&, )2:'

. m
dreyr

5 J{1+3c0s? 8).

The direction of the resultant with radius vector

(5o ()

The differential equations of lines of force are given by

dr rde

E, E,
) dr 2cos6@do
ie, =

r sin@

which on integration yields
v logr =2logsinf+loge
cisarbitrary constant.

r=csin’ 6,

C173.8.3. Potential energy of an electric doublet in a given field : -
Let the doublet be placed in a given electrostatic field E; if ¢ is the potential of the field at 4, then the

potential at B mustbe ¢ + dg.

16 Directorate of Distance Education



........ et eesnssne: MOGUle No. 73 Electroniignetic Theory
o p+dp=9+A4B-(V,p)
where the potential energy of a doublet is the amount of work done against the field in placing the doublet in
the assigned position.
But work done = change in to potential. Therefore the poetntial energy must be given by :

W=-ep+e(p+4B-V ¢)
=eAB-V ¢
=m-V,p. (- AB=0m)
=k, ( E= -‘~grad¢)
E being the intensity of the field at 4.

(3 73.8.4, Mutual potential energy of two doubltets (when the doublets are non-coplanar) : I)ipole-

Dipole interaction : .

Let /m and 7’ be the moments of two doublets and r the distance + \ e,
between their cenres Oand O, let@and €’ be the angles which the line o /o
Jjoining their centres makes with positi\)e direction of axes of doublets and 7N\
e the angle between the axes of doublets. | p, / \
The potential energy of the doublet nr’, , / \\
W = —m’(thefield due to mat O’ oK \e\e_
( ) 9Re____C \_
.1 m 3(m-F) -om o+
=-m: gt
dne, | r r
_ 1 fmew 3(mF) (R -F) ,
4” EQ r3 rS ............... (l )
_ 1 [mm'cose 3(mrcos@)(m’rcosd’)
©dme,| P r
L =COS € — gm:n cos@cosb’
dre,r ro
- mm’
= cos € ~3cos@cos @’ . :
4 €, r3 ( ) | T e (2)

Directorate of Distance Education _ T ' 17
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Note. The potential energy of s when placed in the field of i’ is obtained by interchanging i and
m, we see that the result remains unaltered. ] ‘

When the doublets are coplanar, i.e. when the axes of the two doublets lie in the same plane,

€= (6" - 9) from the given figure.

We then have W =

4:; = [cos(6’—8)-3cosBcosd” ]
0

mm’

aryr— [sin@sing’-2cosGcos ']
ot

 [173.8.5. Couple exerted by one doublet on another doublet.
| Let us first find acouple ina field Eduetoa doﬁblet. If E be the intensity offieldat 4, then E+ dE will be
the intensity of the field at B. o '
The force on the charge —e = —¢k,
The force on the charge +e = +¢(E + é‘E).
=e[E+Z§-(VAE)]
Therefore the resultant force on the doublet is
F= —eE‘-i-e[E + {ZE - (VAE)}]
=¢[4B-(V,E)]. |
If the doublet is free to rotate in the field £, the forces —eE at 4 and +eF at B constitute a couple G of
moment = (force) (perpendicular distance between forces) = (4B sin 6) (eE) |

- ()<t
=eABXE
=X E,
whose axis is petpendicular to # and £ both. pre oE
Therefore the couple exerted by 7’ on » 0 .
= % x(field dueto 7’) . ' >E
= iAx| — i”3—+3('”5”)? | eE<'—-~‘J__e |
dre, |1 r

18 Directorate of Distance Education



Module No. 73 : Electromagnetic Theory :

----------------------------------------------------------------------------------------------

.1 [3(5:&)_ ﬁ]
= X L F
dre,| r r
1 [3(AxF)(m'-F) (mxA')
4r g, r’ r

-_.mx47te0 r’ r
1 [3(AxFYA F) (Axa)
4z e, r r

Q73.8.6. Force exerted‘by a doublet on another doublet :

Here we shall calculate force exerted by doublet 72 on #’ . Let £ be the required force. If 7’ undergoes

asmall displacement §» in which the axis of doublet remains paralle] to itself, then the work done in this displacement

must be equal to the increase in the potential energy of m’".

. 1 | mAr _ _Am-F
HenceF‘5r=—§W=—§4ﬂeo[ ; _3(m,,.)( s):i

Since m and " are constant vectors, we have

ﬁ'3;=3(ﬁ.ﬁ’2§r+3(m.5r)(m -r)+3(:n r)( é’r)+ 15 (57 (5 7) 5
dme,r 4z e, r

1 [3;;,.,;{ 1S (A7) (7). 3m(m 7), 3 mf)]s—r

Tame,| ard r 7’ r’
( F-37=rdr)
Since 57 is arbitrary, we have
o L [3005) 1S 3000) 37
F= /
47:60[ r’ ] P mt s
19
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The above expression shows that 7 has three components along #,m and ' which are

U [3(mr) _15(5-7)(5 7)), 305 -F)m 3(h-F)i
ire, s ’ Tdre,r  dzme,

o r

respectively.
Example. If the law of force betwee;: the charges e and e, was e,e,/r", show that the potential due to
charge e would be e/4n €, {(n -1 )r"" } and the potential due to an electric dipole of moment m would
be (mxi)/dme, r!

Solution : The law of force between two chargese and e,

F=_2%
4w e, r"
.~ The law of force between the charge ¢ and aunit charge will be
dre, r"
Nowif ¢ is the required potential,

=-§£=4ﬂ €, 2,
* or r

¢ =f:n -——--f-—-dr.

dre, r"

e
Tdme, (n-1)rm

We know that when the law of force is 1/72, the potential at any point due to a doublet 7

_ mF
dre,r

_om F
dre,r’ \r

Therefore when the law of force is 1/7" , the potential at any point due to a doublet must be
e /)
“\4r € r J\r
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=m.

4re, r"

) 73.9. Method of Images :
The method of electrical images was first explained by Lord Kelvin. This method gives a convenient

mathematical device for solving three dimensional conductor problems involving planes, spheres, ellipsoids.

O Definition of the electrical image :

An electrical image is a point charge or a set of point charges on one side of a conducting surface
which would produce on the other side of the surface the same electric field as produced by the actual
electrification of the surface.

Green’s theorem of the equivalent stratum is of great importance for the solution of image problems. Often
" weneed geometrical method for evaluating an induced charge. Here the idea of the method can be obtained from
an optical analogy. The illumination ata point in front of say a plane mirror is the combined effect of light dlrectly
received from the source and that reflected from the mirror. The latter we may imaine to have proceeded from an ‘
imaginary source behind the mirror which is the virtual image of the source. Let us now take a point charge e in front
of a conductor which, let us suppose, is earthed. The electric field in front of the conductor is due to e and the
induced charge on the conductor. Ifasingle poinf charge ¢’ oraset of charges Z ¢’ placed behind the conductor
produces a field identical in all respects to that produced by the ipduced charge on the conductor, then ¢’ or E e
from the optical analogy may be called the electrical image or images of e. |

The electrical image method is generally applied for solution of electrostatic problems

Inorderto solve a particular problem by the method of electrical images the followmg procedure is adopted.

@)  Without vw}atmg the boundary conditions, the magmtude and position of the image charge are determined

by inspection. ‘

(i) The potential and intensity at any point are calculated using the given charge and image charge by

ignoring the presence of the conductor.

(i) The normal component of the intensity at the surface of the conductor is determined from the mtens1ty n
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&

and using Coulomb’s law, £, = ~ 2. Fromthis value, the surface density of induced charge (o) can

EO
be easily calculated.
(iv) The total induced charge on the conductor can be obtained by using f ods,
. : N

(V) The force between the conductor and the point charge is calculated by using Coulomb’s law, using
point charge and the image charge. ‘
173.9.1. Image“of a single point charge e at a distance ‘/’ from a conducting infinite plane sheet kept at

zero potnetial.

Let the conducting plane coincide with the plane
coincide withe plane x = 0 of a system of rectangular axes.
Leta point charge e be placed at the pcﬁntA (0,0,/). Leta : Y
point charge - be also placed at the point 4’(0,0,- f).
The potential ¢ atany point Pis QT P

: 1 e e : o .
e Rashrll RS e 1 ‘
? 47!60[7' r'} ()’ Y’ ' :
Itisquite evident that ¢ = 0 when = »*, yr— ‘ +e )l

The potential ¢ of the field must satisty the following 4 0 4
conditions ; |

() It must satisfy Laplace’s equation V2p =0
everywhere exceptat 4. Y’

@ ¢ =0 overtheplane z = 0(YOY").
@) ¢ =0 atinfinity,

@iv) ¢~-i-—-—> a finite quantity as P — A, (i.e. when —0).

Hence, by the uniqueness theorem ¢ given by ( 1) is the only potential which satisfies the conditions of the

' problem. o
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It follows that the field on the right of the plane z = 0 is identical with that given by charges e and — at 4 and
A respecﬁ{/ely.

Thus according to our definition the charge —e at 4" is the electrical image of charge e at 4.

Therefore, the image of the charge e in the infinite plane is an equal and opposite charge placed at the
optical point.

O Surface density : If we want to calculate the surface density on the plate, then

g. _(éz)
€, 0x /.
But (1) gives

x(x,y)— e 1 3 i

KSR s

where P (x, ) is any point in space.

H 7. =L I
fence 7~ % /
€, 4reg, {(f__x).’. +y2}/2 {(x+f)2+y2}/2 B
= - 2ﬁ ‘
dr €, (fz+y2)%
or, .'.0'="‘_':g“ez“"37
an(f*+y*)”
a:——_fj—r——-— where AQ=(f2+y2)%
27(40)

Note. Obviously all the tubes of force leave ‘e’ at 4 and end on the infinite plane where the total charge
induced is ‘—¢’ and it can be proved analytically. Clearly the charge induced on a ring on the plane bounded by

circles of radii y and y + dy with centre Ois
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2noydy = 21| ————p
(27: A

where AQ = (f2 +y2).

Hence the total induced charge

- y -1 -
=—ef | ——Fdy=e¢f | ———=| =~
JO (.f2+}’2)3/2 {\ﬁ AR :L
Fxampie. | |

A positive charge e is placed at a distances a and

. b from two semi infinite planes at zero potential y

interseciing at right angles. Find the surface densities
of electﬁﬁca!ion on the nearest point of each plane. e i SN NS —— ff te
Zoon : §neadjoining figure shows the cross section of I S~ g o b 4 f
the planes by the plane of paper. This section contain a point ; g T~ ~< - { p
charge e at 4. The image system will be as shqwn in the i ' 0 ”"””}‘_‘”"””m:”"" *
figure. | I

The surface density of induced charge at P dueto eat +e !_ R P —— _! —e
‘Aand-eatDis ¢ b

Also, surface density of induced charge at P due to—e at Band+eat Cis

__(~ea) _ . ea
27(BP)  om(a +4p?)"

-

1

Therefore the surface density of induced charge at P is givén by

€ ea

226" 25 (a? +4p?)?
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Interchanging a and & in the above result (2), we can show similarly that the surface density of induced

charge at Qs given by

- d i- b3 .
2”b2 (bZ + 4a2 )}é .................. (3)

i4 73.9.2. Image of an external point charge in a sphere:

To investigate the image system E,nd
electric field outside a conducting sphere of
radius a, when a point charge e is placed at a

point outside the sphere at a distance f from

ute centre of sphere; and to determine the

surface density of the induced charge.

¢ Case 1. When the sphere is at zero

potential.
To solve the problem we have to determine the magnitude the position of a point charge ¢’ inside the sphere,
s0 that the sphere will be at zero potential for the charge, eand ¢’ '

Letapointcharge ¢’ beplacedat 4’ the inverse pomt of 4. w.rt. the sphere, i.e. the point on OA is such that

0A"-04=a*

OA a
o, —=-—

a OA

But the triangles OP4 and OPA’ are similar.
OA _OP 4P r _f

Henee op " 04 " 4P ¥ - a VAP

OA OP r

——re———— e 1
% oroa 7 @
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o1 _r
o4 r?
Multiplying fla on both the sides of above equation, we have

fo04 r f£ 9
—~——=-’—5‘;—=7§-,frpm(1),

ie.

aO4" r
04 r a :
Hence we have ox - :,T? ............. (2)

The potential at any arbitrary point P will be zero if

1 [ e ¢ ]
—t—|=0,
dre, AP A'P
. er’  eu
ieife’ = ——=—-—, : T e 3
== ®3)
Thus the image charge is ___e}g at the inverse point of 4.

If O be any point outside the sphere, then the potential at this point is

1 e -—eal | ’

o= + /f | e @)
e AQ  A'Q

(- induced charge on the surface is the charge of image)

.y Surface density of charge at P. Let o be the surface density of charge at P. By definiton of electric intensity

F== _F
drne,r
o I _po 1 |e; ea’
Also by Coulomb’s law, € A, | P T e (5)

n being a positive unit normal to the sphere at P.
Now 7 = A0 +OP = A0 +aii
and 7/ = A'0+0P = A/O+ai.

Therefore from (4), we get
i [f,_(aeram).,fz(__A»O,_ja._m]J
€, 4drey|r f r
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on__d ((_}.fgﬁ_;').._fe_zra_ff.aa]

€, Tan €, r) e S
_ 1 (ea ed , ) 14;_—5_‘4,0(1,(2)
4 Eo KrS ﬁi.‘# M 3 f r13 y
3
ea ar |. ea
Rl LR
_ e(fZ __aZ)
T Azar®
¢ Case I1. When the sphere is insulated and uncharged,
In this case the sphere is to be insulated without - I3

charge. Hence the total induced charge is zero, the
effect of induction being to separate equal quantities
of positive and negative electricity. The sphére isnot
at zero potential but must have a constant potential.

So all the conditions of the problem are obviously

satisfied by distributing a charge +fff’- uniformly over

the surface of sphere in case (I), for this will make
the total charge zero and leave the sphere an equipotential surface.
Itis quite obvious that the external field due to a uniform sphericai charge is the same as if the charge were
ea

e

collected at the centre of the sphere; we may now say that the external fieldsisduetoeat 4 - _e}g at 4" and I

at 0.

) ea .
O Surface density at P, The uniformly distributed charge 7‘ over the surface of the sphere gives rise to

ea . :
the surface density Fand Add this surface density to the surface density of the field in case I, so that in this

case

e(fz-—az) e

+
dzrar®  4dmaf

o=
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The line of no-electrification on the surface of the sphere is given by
oc=0 or r =f(f2—a2)

-4 Case II1. When the sphere is kept

insulated and carries a total charge Q.

. This case may be derived easily from case Il
by distributing a charge O uniformly over the sphere.

‘ (O+aelf). —aelf
But it is desirable to derive it from the fundamental L —

QA

case |,
In this case we add to the field of case I, the

ficld dueto acharge (Q + f}e-J uniformly distributed

over the sphere. This result in the total charge on the sphere to be Q and leaves the sphere at an equipotential

surface. .

- The external field isdue toe at 4, -f;-at A’and (%4. Q) :

at O (becasue the external field due to a uniform spherical charge distribution is identical with the charge
collected at the centre of the sphere) which is the required image system. '
Surface density at P The surface density of charge is given by
elfi-a
elfi-a) e o

dzrar’  4maf Anmad®’

g =

¢ Case IV. When the sphere is kept at a
given constant potential ¢.
To keep the sphere at a constant potential ¢

it is necessary to add a field due to a charge a¢ to
the field of case L.

ea

.

Theexternal field is simply due to e at 4, =
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at A" and ag at O (because the external field duc to a uniform spherical charge collected at the centre of the
sphere).

) Surface density at 2 The surface dens ity of charge is given by

) _‘e(fz——a’)“ P
arar | dma

F =

0 To find the force on the point charge e in all the above cases.

The force un the charge ¢ in case | is that of attraction of magnitude

[f’.‘f‘). | '
[} a eaf C

7 by inverse square law.

N n— > = .
g 47 &, [fﬁ}_} ane, (11-a)

The forec on the charge ¢ in sceond case is givenby -

(2
. 7,57

F;" 3 " -
: { 2N 4we, f°
dze, Lf._‘_;_r_] o f

; ezaz (2){1 __az).
4r &, Jf'1{j"3-—(1"')2 ‘

= positive; henee that of attraction.

The force on the charge in third cuse is given by

{o H_G} ae
°(“* 7 7

F= - 3
PoAme, f ay
| | 4z €, f——};

e da  éaf
f= z+4 3 MY
ame, f°AmE [T dnme, (£ -a)

theattraction or repulsion depends upon the relative values.
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¢ Images of an internal point charge in a sphere. .

To investigate the image system and electric field outside a conducting sphere of radius a, when a,
point charge e is placed at a point inside the sphere at a distance f from the centre; and to determine the
surface density of induced chdrge. '

To solve the problem we have to determine the

magnitude and position of a point charge ¢’ outside
the sphere, so that the sphere may be at zero potential

for the charges e and ¢,

Let a point charge ¢’ be placed at 4, the
inverse point of 4 w.r.t. the sphere i.e. the point on

OA produced is such that

OA4-04’ = &
L
% g T oa

But the trainingles OP4 and Op4’ are similar,
o4’ _OP AP alf _a_r

Hence b “04~ 4P “"a 1 7

The potential at any arbitrary point P will be zero, if

1 e e e s AP  ea
—'——+“'~;- =0je.ife T e I e e
dre,| AP AP A

+ v ...ea - .
Thus the image charge is _}.. atthe inverse of point 4. |

If Q be any point outside the sphere then the potential at this point is given by

b= e . —eal f
ane, AQ  4me, AQ

(- induced charge on the surface is the charge of image).
Smface density of charge at P Let o be the surface density of charge at P. Since he potential at the point
Pis
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..............................................................................................

N P N IS R
dre,| AP AP | 4ze, \/(rz-!-fz—ercosB) S \/(f'2+r2—2rf’cose)’

where " =a’/f.
By Coulomb’s law

S . .
9k =_(_a£) _ 1 e(a~ fcosf) __ea [a'.'-?cosa)
= e S (az +f*-2ef COS‘\Q)% 47 € f (a2 + f*~2af cos 9)%

_ela—fcos8) o (f-acosh)
dme, AP  4dme,a AP

_ele-r)
" 4me, adP?
~ e(az _ f2 )
" 4ma AP
In this case electric field is radially inward. Hence we have
e(a2 _‘fZ)
" 4rma- AP

The force of attraction on the charge e at A is

eqa

f _ e'af
dre, [?——f} 4r €, (az"fz)

209

- [373.10. Complex Potential :
Potential problems in electromagnetics can be dealt with the theory of complex variables. The basis of this

method is that the real and imaginary parts of any analytic function satisfy Laplace’s equation under suitable boundary
conditions. In electrostatics the boundary conditionsare : P , ' v
() Thepotential ¢ satisfies Laplace’s equation V?p = 0 every where except the points on the surface of
 discontinuity - )
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() The potential ¢ is constantat each and every point on the coﬁductor (solid or hollow).
(i) The potential and normal components of displacement vector are contmuous at the surface of separation
of the two media (uncharged) '
In mathematical form :

94, __ 99, d o
¢=¢,and D, =D, or € E, =€, E,_ or € *3—;—63 S where E™ denotes the differentiation

along the normal to the surface of spearation.
O Use of complex variable ; “ .
if wl =f (z}, where z=x + iy, then w may be written in the form
w=g(x,y)+iw(x,y).
[fwis analyticin Z, it satisfies Laplacesequation. o

Viw=0
ie. V(p+iy)=0 |
o, V@+iViy=0 e 1
Equation (1) gives '
Vig=0and Vir=0 7))

Thus the real and imaginary part ¢ and ¥ ofan ana]yt:c function are solutions of Laplace’s equation in two
dimensions.

We know Cauchy-Riemann equations namely

3¢ _dy 34 _ dw

These two statements may be summed up in one statement that if S, and S, are perpendicular directions
- related in the anti-clockwise fashion, then, '

¢ 81// ,
S, A,

In particular, 1f S, is taken along a conductor ¢ = constant, _

a4 d l//
= that —— =0
3s, 0,50 as,

32 Directorate of Distance Education



Module No. 73 : Flectromagnetic Theory

...............................................................................................

showing that ¥/ is constant along the S, direction. This means that the curves ¢ = constant and ¥=constant
intersect each other orthogonally whereever they intersect.

Conveniently ¢ istakenas the potential function and ¥/ is called the stredm function. The furction ¢
and ¥ are called conjugate function. The lines ¢ = constant are equipotential lines and lines w = constant are
lines of force, -

) ) ) S, S,
Example : Let us consider a function.

0
. f(z)=2" sothat %0

w=f(z)=2"=(x+ip) =x* -y +2i9.jz=¢+i;(/ |
np(x,y)=x -y and p(x,y)=2xy e (5)
From equation (5) we conclude that equipotential lines are y = +x and a family of rectangular hyperbolas )
x* - yé = constant, having the two lines y = tx asasymptotes. Along y = +x,¢ =0 and élong other hyperbolas
of the family ¢ hés a non-zero value. The family of hyperbolas xy = constant (including the lines x =0, y= 0)

represent the orthogonal family of curves to ¢ = constant and are the lines of force.

Ifone of the equipotentials is made a conductor, the surface charge deﬁsity (E-
E0

)v' givenb o9
isgivenby =3 -

But ~ -a..?.- = .‘..i.-y{—
© on ds
Lo -
s | [ — ©6)
- total charge ¢ = fods = f €, ~§S—ds =, w]. N
We can also calculate £ from equation (3)
3 )
E = 3 =—real part of f(z)
L 39

Ty = imaginary part of f*(z)

.-.E=,/Ef+Ej
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2 2
= \{(realuparf of %) f[z‘magenary part of%) ]
(%) '
"N dz

From the above, it is clear that, it is easier to work directly interms of wrather than interms of ¢ and ¥ . This
(w) is called the complex potential of the problem.

0 73.11. Maxwell’s Stress Tensor :

Maxwell states that the electrostatic field is simply the stress transmitting medium.

Letus considera given volume in electrostatic field bounded by a surface. If the force acting on this volume
is transmitting outside through the surface enclosing the volume, then transmitting force can be expressed in the
form of space stress tensor 7. The stress will be present even in the absence of the medium. Actually this is simply
aphysical concept and the only reality is the actionata distance between charges as given by Coulomb’s law. The
transnuitting force is just a medium to explain the action at a distance. The transmittihg force expressed in terms of
stress tensor T gives mote vivid picture of the phenomenon of the action at a distance. Let us consider a pg”
component of stress tensor T'as T, . Let dF, be the component 6f the force dF transmitted acfoss an elemental
surface ds and ds, the component of the surface in ¢ direction; the de is given in terms of stress tensor as below:

3
dF, = ;desq. | o [ — ¢))
The tensor T is of symmetric type. The equation (1) may be written as
aF, =T ds,. e 2)

or, Fp = j‘Tng
Now, this force is say, the p* component of the volume force, then

where F, represents the  component of the volume force. Using Gauss’ divergence theorem in thensor

form, as given below:
af,,,
T d
'f 9%, j "o
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we get the p* component of volume force in terms of stresstensor i.e.,

T, | |
Fo = - S 3)

~Ifavolume force is expressed asatensor dxvergenoe of a quantity T'as by equation (3), then the quantity T
represents the surface stress tensor as shown by equanon (2). The tensor comespondmg to volume force Fis not .
-unique and an additional tensor havmg very small divergence can be added toit.

The volume force equation is absence of dielectric is given by

. F,= pE=(v-D)E.
The equation in tensor notation is
o, 0 oE, : ‘
F:;p Ep ax O[ax (EPE ) Eq-a-‘——] ' U vereree . : (4)
q
To change second term to the same form, we know that for electrostatic fields Vx E =0 ie.,
3E BE
ax ax
E, _OE, 1 9 1 8(E2)
"F—t= - EE
qax > 2ax(qq) 2 o, L e (5)

where magnitude of E is E. This equation can be writtenas :

£ 25, L (5)-2(10.7)

Tox, 2 "ox, ox,
Hence equation (4) becomes : . \
.19y 0 (1s 2 | - '
F,=& [’é}:(Equ )_'5;::(5 5pqu )] ............... 3)
Comparing equations (3) and (6), we get
1= (55,10, (- <

The matrix cotresponding to this tensor is given below. This is known as Maxwell electric stress tensor iz the
absence of dielectrics : -
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%(Ef - E} - E?) EE, EE
T=g, E,E, 1 (B2-E2-E?) EE
............... (8)
1
] E.E, EE, E(E:z - Ef - E: )J

The tensor will possess additional terms for irrotational field for which v x E#0.

where &, gives coefficients of transformation as

1 0 0
5,=0 -1 0
0 0 -l

This is symmetric tensor of second rank. It can therefore be reduced to three components only by

transformation to three principal axes. Thus in terms of principal co-ordinates it becomes :

E 0 0 : .
=hlo o |
Tl T T T )]
0 0 -£ :

The principal values of the matrix have been determined by soIving the secular determinant : .

-8 =0. (10)

The principal values are : ‘
£ & -

A=—E, A=h=-2E (11)

The electric field transmits a tension &, £7/2 parallel to field and a transverse pressure of magnitude £ E*/2
transverse to the field. The axes orientation is such that A, isparallelto £ and Ays Ay perpendidular to £,

(J 73.12. Self Assessment Questions : .
1. Whatdo youmean by ‘conservative force'? Write down its characteristics.
2. Define electric potential. Find the e){pression for the potential of a uniformly charged spherical shell.
3. Write down the electrostatic boundary conditions. :
4. Whatisan electric dipole? Find the potential and field at an external point due to a dipole.

36 - - Directorate of Distance Edusation



---------------

10.

................................................................................. Module No. 73 : Electromagnetic Theory

What do you mean by potential energy of an electric dipole in a given fied? Deduce the expression for
the mutual potenﬁal energy of two dipoles placed in a plane. |

What is electrical image? Write the general procedures which are adopted to solve a problem by the
n;ethod of electrical image. '

Find the image of a single point charge a placed at a distance from a conducting infinite plane sheet
kept at zero potential. Find the express in for surface-density of induced charge in this case.
Investigate the image system and electnc field out51de a conducting sphere or radius a, when a point
charge ¢ is placed at a point outside a sphere at a distance *f* from the centre of sphere. Also
determine the surface density of the induced charge. _ _

Using method of image find the expression for the ,surfaée density of charge whent he sphere as -
mentioned in question no. 8,.is kept insulated and carries a total charge Q. Find the force on the
external point charge in this case.

Write noteson :

(@) Complex potential;

(b) Maxwell’s stress tensor.
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Module No. 74 : Electro}nagnetic Theory

U 74.1 Introduction | |
. There is an interdependence of the field quantities. Hence we have to consider the general concept of an
electromagnenc field. The time dependent electromagnetic ﬁeld equations are called Maxwell’s ﬁeld equations.
’f‘hese equations are mathematical abstractions of expenmental results, i
In this module we seek to establish the formation of the field equations, to show that their solutxons are
unique, to discuss the scalar and vector potentials of the field and to consider the law of conservation of charge and

energy.

D 7 4.2 Objective :
After going through this module we shall be able to know about the followmg topics :
@ Maxwell’sfield equatlons, '
@) Ideaofdisplacement current dénsity;‘
@) Poynting’s theorem and idea of Poy{xﬁng’s vébton'
| (iv) Electromagtleﬁc potentials;
and (v) GaugeTransformation.

Q74.3 Eqﬁaﬁon of Continuity :
| Equation of continuity is based 6n the law of conservation of charge.

Let us consider a closed surface S enclosing a volume 7,

Let p= volume density of charge

.. Total charge within volume 7 = [ pdz
. Since electric cﬁarge canneither be created nor destroyed (i.e. the charge is conserved : law of conservation
of charge), it follows that the net flow of the charge; out of this volume must be equal to the rate of decrease of the
total charge inside the volume. The net charge that passes through the surface of unit area (normal to the direction
of charge flow) in unit time is defined as the current density (7). Henoe the total current flowing through the surface
S is ' ‘
| =] j&
$
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If there is anet outward flow of current through a closed surface, then the charge that is contained within the

volume which is bounded by the surface must decrease. Hence we can write,

ot ‘[.7-$=—g;_[pdf [ .- Totalchar,geq=de2‘]
S r r .

If we hold the surface fixed in space, the time variation of the volume integral must be due to solely to the time

variation of ©; or we can say operators are commutative in character.

S 1D
S0, :£J-ds=—!§dr.

'or’A | J(V-j)d‘z' =-f§£dr

A ) Ot
. .90, _
or, !(V'J+—a~t~}d‘r =0
' Since the above equation is trire for any arbitrary finite volume, the integrant must be zero. So, .
<~ dp
V. Jt-—=0
ar

This equation is called the equation of continuity and is an expression of the experimental fact that electrical

charge is conserved.

{1 74.4. Decay of Free Charge :
~ According to equation of continuity,

< 0p
\" e
| J*at 0
aﬁmo;dhgtoOim’shw,
| J=0F
=\, 00
v (G' E)+§?=
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o, Z(v-e B+ 2o

v S0Bp2l0 [ipeei]

€
or, %p+%’;0~= -~ [wv-D=p] e —

Let us solve this differential equation :
» . a. » » .
It is seen that the unit of < s second (i.e. time),

. 50, -Z— =Y{say); Y is known as relaxation time.

So, equation (/) can be written as

op__ 1
ot T
o __a
o1, p Y

Integrating and putting ihe conditionatt=0, p = g, (say)
We get the solution as
p=pe | e N (i)
This relation shows that any original distribution of charge decays exponentially at a rate which is independent
of any other electromagnetic disturbances that may be t.aking place.

i} 74.5, Displacement Current :
We shall now see how Maxwell changed the definition of total current density to adapt the .cqua'tion Qf‘
continuity totime dependent feld |
We know that Ampere’s cixcuital law in its most general form is given by
§adi=[ T |
e [VxA-ds=[J-ds
o, VxH=J. | . - R )
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Let us now examine the validity of this equation in the event that the fields are allowed to vafy wuh time. If we

~ take the divergence of both sides of equation (/) then

V(VxH)=V.J
Now as div of curl of any vector is zero, we get from equation (if)

V. J=0

’

Now the continuity equation in general states

v.j=-92

aid will therefore vanish only in the special case that the charge density is static. Consequently we must conclude

that Amere’s law as sated in equation (i) is valid only for steady state conditions and is insufficient for the case of
time-dependent fields. Because of this Maxwell assumed that equation (7) is not complete but should have something

toit. Let this ‘something’ be denoted by .J,, then equation (7) can be rewritten as |

VxH=J+J,

In orderto 1dent1fy J,,we calculate the divergence of equation (5) and get

V-VxH=V-(]+J,)

ie. V-(J+ j) 0 (asdiveurl H =0)
o, V-J+V.J,=0
o, V.J,=-V.J

ie. V.J, = %’? [from equatlon(zv)]

ie. V-J, =9-(v-f)) [as div p:,gj

ot
(- aD
ie. V‘LJd ""}—9—, =0
As equation (vi) is true for any arbitrary volume
3 aD
J, ==
Y

42
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And so the modified from of Ampere’s law becomes

wﬁ:h%?. e (B)

The term which Maxwell added to Ampere’s law viz. (35/ 8!) is called the displacement current to
distinguish itfrom J, the conduction current. By adding this term to Ampere’s law, Maxwell assumed that a time
rate of change ot displacement produces a magnetic field, just as aconduction current does.
Regarding displacement cutrent it is worthy to note that :
(1)  Displacement current is a current only in the sense that it produces a magnetic ﬁeld. It has none
of the other properties of current. For example displacement current can have a finite value in
a perfect vacum where there are no charges of any type. '

() The mugnitude of the displacement current is equal to the time rate of change of clectric
displacement vector D.

() Displacement current serves to make the total current continuous across discontinuties in

conduction current.

(v) The displacement current in a good conductor is negligible compared to the conduction current

at any frequency lower than the opticald frequencies (= 10" heriz).

It must be emphasized here that the ultimate Justification for Maxwell’s assumption of displacement current is
in the experimental verification. Indeed the effects of the displacement current are difficult to observe directly
except at very high frequencies. However indirect verification is afforded by prediction of many effects particularly

inelectromagnetic theory of light which are confirmed by experiments. We may therefore consider that Maxwell’s

{form of Ampere’s law has been subjected to experimental tests and has been found to be generally valid.

) Example 1. (a) dpply Ampere’s law to the closed curve C bounded by surfaceS in fig. (A) and (B); (b)
Show thut the circuit (A) and (B) yields the same result if we include the displacement current in Ampere s low.

Ei— T

A | - ®
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Soliltion :

(8) According to Ampere’s.circuital law
So for the circuit (4)

And for the circuit (B)
g A-di=| 0-ds=0,
C s .
() Iin Ampere’s Law we include displacement current, the law becomes
- (- ab) -
jCH-dz_js(JJrE;)»d;-
And for the circuit (4)as D=0 it yields .
§CH-d1=.fJ.ds=1. ....................... )
While for the circuit (B) as J = 0 ityields
' " p on = 00D -
ia-[ 23
, s 0
ie. §A-di==/[ D-ds
of,

L= 9 B
or, @(:H°dl=é7j‘rﬂdf (asdiv D= p)

. — 3 '
o §H-d=SLetfas] par=q) R @
From equations (1) and (2) itis clear that both yields the same result.

N.B.: From part (b) it is clear that in case of circuit (4) D=0 the curreﬁt is of conduction type while in case
of circuit (B) asJ=0 the current is of displacement type. Further as the two cases are yielding the same result
J=J,iel=1,

i.e. conduction current is equal to displacement current.
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() Example 2. If alternating field E = E, cos ot is applied toa conductor, show that the displacement

current is negligible as compared to conduction current at any frequency lower than optical frequencies.

Solution, As the given field is
E=Ecosawt. (1
And according to Ohm’s law
J=0E )
So the conduction current will be given by o |
J=oBcoswt. (3)

However the displacement current will be

oD @
d =3;'=5t'(€ E) fas D=€ £]

, 0 (p
ie. J,=€,¢, 5—{-(15‘0 cos @) [as =€, €, ]
ie. J,=-we.€ E;sinwt
1
R . o

So from equations (3) and (4) it is clear that

o
weE €, COS| W +—
r0 2

Jd -
J o E, cos wt
J,|_ wE,E, )
7 e (5) |

But as for a good conductor
€,=1and ¢ = 10’ mohs/meter

Jy| 27X fx9x107"
J 10’

= £x107"

L.e. the displacement current in a good conductor is completely negligible compared to the conduction

current at any frequency lower than optical frequencies ( £ , =10 hertz).
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74.6. Maxwell’s Field Equations :
' ' The differential form of four Maxwell’s field equations are :

) V-D=p

@ v.B=0

(iif) VxE=~%?.
) Vxﬁﬂj+%€)—~.

D =electric displacement in %nz ;

£ =volume density of charge %n’

i

B =magnetic induction in W%z .
E =electricintensity in /.

H =magnetic field intensity in 4/m.
J

= Current density %nz .

Q1. V-D=p

Derivation :

Letus consider a surface ‘S” bounding a volume t withiq adielectric. Originally the volume T contains no net
charge but we allow the dielectric to be polarised say by placing it in an electric field. We also delibrately place
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an chares on the dielectric body. Thus we have two types of charges—
(a) real charge of density 0 |
(h) bound charge density p’.

f.'iauss’s law then can be written as
I |

b F . ds=— d

b Bdi=L] (ot 0)ir

e, ¥ f)\ E-ds= Lpdr +L p'dr. L L e (1)
st as the bound charge density p” is defined as o =-div P and
93 E-ds= J‘ V.-Edr
N i 4
So equation{1) becomes ‘ '
=, L V. Edr= L pdr - L div Pdr [ P =electric polarization]

ie. [Vi(eE+ P)dr = L pdt

or, } V-Ddr= frpdr; ( D=e, E+ P)

o [ (v-D-p)dr=o0.

Since this equation is true for all volumes, the integrand in it must vanish, Thus we have

vV.-D=p.
‘When e medium is isotropic the three vectors D, E, P arein the same direction and for small field, Dis
proy. towai o £

e ek

wher= : iscalled permittivity of the medium.

t”

Ix =0
Yerivation : Experiments to date have shown that magnetic mondpoles do notexist. This in turn implies that

fhie 1. gnetic lines of force are either closed group or go off to infinity. Hence the number of magnetic lines of force
ettt -ag any arbitrary closed surface is exactly the same leaving it. Therefore the flux of magnetic induction B

across any closed surface is always zero Le.
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¢ B-ds =0.
Transforining this surface integral into volume integral by Gauss’
-theorem, we get
f Vv Bdr =0
But as the surface bounding the volume is quite arbitrary the above

equation will be true only when the integrand vanishes i.e.
V-B=0.

- B
23, VxE=——-
o
Derivation :
According to Faraday's law of electromagnetic induction we know that the induced emf is proportional to

the rate of change of flux i.c.

T et
dat

Now if £ be the electric intensity at a point, the work done in

moving a unit charge through a small distance dl is £ - dl. So the work
done in moving the unit chiarge once round the circuit is ﬁc E.dl. Nowas
e.m.f. is defined as the amount of work done in moving a unit charge round

the electric circuit,

e ::?cE‘ 1
So we can write,
I d¢
E-dl=-—£,
ﬁ(‘ dt
Butas
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Transforming the line integral by Stoke’s theorem into surface integral we get
o —  dope —
[ (VxE)-as = —z13~ds. |
Assuming that surface S'is fixed in space and only B changes with time above equation yields
J' (wizﬁﬁ)%:o
s ot

As the above integral is true for any arbitrary surface the integrand must vanish,

. . AA
Q4 VxH=J+—
17,3

Derivation : From Ampere’s circuital law the work done in carring unit magnetic pole once round a closed
arbitrary path linked with the current /is expressed by '
[ Adi=1
a o L
ie. [ Hdl=]Jd, ( I = jJ.ds)

where § is the surface bounded by the closed path C.
Now changing the line integral into surface integral by Stoke’s theorem

we get
[ (VxH)ds=[ T ds
ie. VxH=J .
But Maxwell found it to be incomplete for changing electric fields and
assumed that a quantity

v )
;=5

called displacement current must also be included in it so that it may
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salisty the céntinuity i.e. Jmust be replaced in the above equation by (.7 + ."I'd) so that the law becomes
vxf=J+J,
oD

1.k, VxH= -7+-5—

-

ob ., | | | " |
o i.e. displacement current density arises when the electric displacement D changes withtime andis,

therefore termed as displacement current density. According to Maxwell, it isjustaseffectiveas J inproducing
magpetic field. '

0 74.6.1. Maxwell’s Field equaﬁons in Integral Fdrm :

(§ Using Ist.equation V.D = p, and integrating over a volume 7 we get,

J'V-ﬁdt=fpd1
FipmGauss-ﬂxeowm .
.[[)-3 =f,‘odr=‘q (net charge in 7)

., 1st. Maxwell equation s1gmﬁcsﬂ1at, ,
the total electric displacement through the surface enclosing a volume is equal to the total charge within the

vohune.

iy Using V.3 =0, wecanwrite
~ [(v-B)ar=0
j B.ds=0 I | - N jij
So, 2nd. equation signifies that the total outward ﬂux of magnetic mductlon through any closed mface iszero,

(iii)y Using 3rd. equation, VxE= ~%€-, _wecan.wnte
I(VXE)E=—I
B |

F

€2 Sommmmny,
w‘. .
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"This signifies :
the electromagnetic force around a closed path is equal to the time derivative of the magnetic flux through any
surface found by the path. '

o

(iv) Using4thequation, Vx H =J + %2 , wecan write this in integral form as
, t

This signifies :

the magnetomotive force around aclosed path is equal to the conduction current plus the time derivative of
the electric displacement through any surface bounded by the path.

From the Maxwell’s Curl equations we can say that the time varying electric and magnetic fields in empty
space are independent, i.e. a changing electric field being able to generate a magnetic field and vice-versa.
From this we can say that a time-changing electromégnetic field would propogate energy through empty

space with the velocity of light and further, that the light is electro magnetic in nature.

3 Maxwells Field Equations in Different Medium
A, Conducting Medium :
In a conducting medium of relative permitivity €, and permeability 4, as
D=cE=c,e, E '
and B=uH=puuH.
Maxwell’s equations reduces to
@ V-E=plee,
@ Vv.H=0
oH

@) VxE=-uu e

)

v VYxH=J+e.g, 5
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B. Non-Conducting Medium : o
In a non-conducting media of relative permitivity €, and permeability 4, as

) p=0=0

T 0 Je=oE=0
and hence Maxwell equations becomes
® V.E=0 |
@ v.A=0 ,
(i) Vf:"%ﬂo%

oo oF
(iV) VH =€r€0 _ét— 4

. C. Free-Space

. Infreespaceas
€=u =1
‘ p=0=0
Maxwell’s equations becomes
@ v.E=0
® v.A=0
. oH

i)y VXE=-p —

(i b
. ~__ OF

vy VXH =g, '-é-t— .

(I Spl. Note regarding ‘Monopole’ : ‘

The asymmetry of electro-magnetism suggests that monopoles (a particle having either north or south magnetic
charge) should existas thé concept of magnetic monopoles would bring to elecmmy and magnetism a symmetry to
which nature loves and is lacking in our present picture. mmc has also proved on theoretical grounds that
monopoles should exist and prediéted their porperties. But so far thé magnetic monopoles has frustated all its |
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investigators. The expérimenters have failed to find any sign of these. The theorists on the other hand have failed to
find any good reason why monopoles should not exist.
£174.7. Energy in Electromagnetic Field :

From Maxwell’s equations it' is possible to derive very important expression which we shall recognize as the

energy principle in an electromagnetic field.

For this let us consider Maxwell’s equations Ampere’s and Faraday’s laws in differential forms i.e.

VxH=J+— e 1
)

VXE=——. e
and £y (2)
If we take the scalar product of equation (1) with E and of equation (2) with (f? ) we get

Ewﬁ:ﬁﬂé-gﬁ)— ................ (3)

or

and —~H-VxE=- %’? 4)

Adding equations (3) and (4) we get

—g-VXE-l-E-VXﬁ=JvE+]:E-—--+F1-%§:I

But by the vector identity

L - [.aD, . 9B
-V (EXH)”'E*{E “5@'*””'57} ..................... )
LoD a3 1 3z 10a -
Nowss E-5- 6,6 E-gr=5 6,65 (EE)=35,(F-D)
0B oH 1 9/~ = 10,5~ =
and 750 = ol S5 = oy (- F) =55 (- B)
53
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So equation (5) reduces to

e 13, = o~ o - ‘
JEv (B D H-B)rvo(Exd)=0. (6)

Each term in the above equation can be given some physical meaning if it is multiplied by an element of

volume dv and integrated over a volume = whose enclosing surface is S. Thus the result is,

.

f(JEdr+j-—-—~E13 Hédr-rf ExH)dr 0

—

Butasj ExH)dz' @ (E‘xﬁ)-ds
0 J.f(j"E)d2'+ff§-5t—(E~5+ H-B)dr+[ (ExH)-d=0 ~(A)
‘To understand what the above equation (A) means, let us now interpret various terms in it —

O Interpretation of f J-Edr:

The current distribution represented by the vectorJ can be considered as made up of various charges g,

moving with velocity v so that
[(J-E)ar=[(Jar).E
(J-E)dz = [(Tdsdi)-E (as dr =dsdl)
ie. j{(“ Jdr = [ (s ds)di- E
(J-E)dr=[1dI-E (as1=ds)
J- )dr: dlE (as I = dg/dt)

(
ie. [(J E)dr:.j (as T=dl/dt)

where £, denotes the electric field at the position of the charge g,
Now electromagnetic force on the ith charged particle is given by the Lorentz expression
F=q,(E+v, xE,).
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oW, . .
—Ll =k
a
W s
i.e. -a—tr:q,(ﬁ}arv,xB,.)-v‘.
‘ oW, . = - &
i.e. ~—a7-=q,.v,.-Ei+q, ,.o( . X 1)
X o, _ = - Loy =
ie. ~5I-L=qiv,-E,[asv,-(v,xl-?,.)=(v,.xvi)-B,.=0]
So the rate at which the work is done by the field on the charges
oW oW, I
—_—= — v FE.,
=2 =2k [ ®

Comparing (7) and (8) we find that firs term i.e. L (J-E)dt represents the rate at which the work is

done by the field on the charges.
It is worthy to note here that —
() Incaseofcharged particles moving in free space with no external force acting, the work done by the field on

the charges appears as kinetic energy of the particles as
14 oW, = .
— Y b= Y Ry
ot )Y ot LE

1 91: mél-”'--v (astmg-vi)
1.e. ar iat i i iat

SRLLANE X 6 SN T VKX (I
e EY -Zat[2mei vi)-Zat(zmivi)

W gl T
PO T~
(i) Inside matter, the work done by the field on the charges i.e. the kinetic energy is transferred to random

motion, where in described as heat energy or ohmic loss and is given by

oW - = J?
‘ 4-'5;—=LJ'Ed2'=L:a—d’£'(aS‘E=J/O')
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ie. W _L s (as_frdr=Sl)

o o
W _ P -
ie. = :S,—Z-SI (aso =1/p and J =1/8)
ie. a;:’ I’p-!- =I’R (as R=pl/S).

~—(E-D+H B)d
O Ingerpretation ff 23 t( ) T
_ If we allow the volume 7 to be arbitrary large, the surface integral in equation (4) can be made to vanish by
placing the surface § Sufﬁciently far away so that the field cannot propagated to this distance in any finite timei.e.
js (E x H ) -ds = 0. So under there circumstances equation (4) reduces to

B lp oz W
= wwz(}«: D+H~B)z'+ > =0

ie. %[L,,M%(E .D+H-B)+ W} 0
- Thus the quantity in the square bracket is conserved. Now consider a closed system in which the total energy
~ isassumed to be constant. The system consisting of the electromagnetic field and all of the charged particles
 presentin the field. The term ¥ tepresents the total kinetic energy of the particles. We thesefore led to associate the

t:q

[ 3(6:0+88)0
v all '} Z
with the energy of the electro-magnetic field, i.e.
‘ o
U=L’W§(E-D+H'B){lﬁ S, e (9)
The quantify U may be considered to be a kind of potential energy. One need not ascribe this potential

. energy to the charged particles and must consider this term as a field energy. A concept such as energy stored inthe
field itself rather than residing with the particles is a basic concept of the theory of electromagnensm

O lnterpretatwn of f Ex H . ds.
Instead of taking the volume integral in equation (4) over all space, let us now consider a finite volume. In this
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case the surface integral of ( ExH ) will not in general vanish and so this term must be retained. Let us construct
the surface S'in such a way that in'the interval of time under consideration none of the charged particles will cross

this surface. Then for the conservation of energy

E(U+W)=—¢S(Exf1)-ds ................... (10)

ot
The left hand side is the time rate of the change of the enefgy of the field and of the particles contained with

in the volume 7. Thus the surface integral @ ( ExH ) ds must be considered as the energy flux flowing out of the-

_ volume bounded by the surfacé S. But by hypothesis no particles are crossing the surface, so the vector ( ExH )

is to be interpreted as the flux of energy of the electromagnetic field and gives the amount of the field

energy passing through unit area of the surface in unit time which is normal to the direction of energy

flow. The vector (£ x H) is called Poynting vector and is represented by N ie.
| N=(ExHA). (11

Q Interpretation of the Energy Equation ‘
Inthe light of above all equation (6) in differential form can be written as

" Intheevent that the medium has zero conductivity i.e. J = o % = 0, the above equation becomes exactly of
the same | form as the continuity equation which expresses the law of conservation of charge. We are led by this
analogy that the physical meaning of equation 12, 10 or (4) is to represent the law of conservation of energy for
electromagnetic phenomena. According equation (10) the time rate of change of electromagnetic energy with
in a certain volume Plus the rate at which the work is done by the field on the charges is equal to the energy
Slowing into the system through the boundary surface of the volume t© per unit time.

This statement and the concerned equation is known as Poynting Theorem.

Poynting vector, N = £ x H

U 74.7.1. Poynting Vector

Mathematical form of the Poynting vector,

‘-.

N=ExH
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Itisinterpreted as the amount of field energy passing through unit area of the surface ina direction perpendicular
to the plane containing £ and A per unit time. -

For example as in a plane electro-magnetic wave E and H are perpendicular to each other and also to the
direction of wave propagation, N has a magnitude EH sin 90 = EH and points in the dir-ction of wave progagatiom

The dimensions of Poynting vector are (energy/area X time) so the umits will be joule/m? x second or watt/n?’,

H
A

v

=
A

txy

H

Regarding Poynting vector it is worthy to note that :
(i) Poynting vector> at any arbitrary point in the field varies inversely as the square of the distance of the
Doint from the source.of radiation. To understand it consider a source L of electromagnetic radiations which is
emitting radiations at the rate of P watts and imagine two concentric spherical surfaces 4 and B of radii r, and 7,

respectively with source being at their common centre. If ¥, and N, are the Poynting vector at any point onAand

B respectively then
N, x4zr} =N, x4xr; = P
P
. N, = =
1.€. i ’,12
‘ P
and Ny=-3.
)
Soin general
1
N o¢ o
rl.
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(it  The definition of Poynting vector is not a mandatory. Since this vector has been introduced only by way
of its divergence, the curl of any arbitrary vector can be added to it without altering the physical facts of the case i.c.
it is arbitrary to the extent that curl of any vector field can be é.dded toitie. |
N=ExH+G
where G = curl M
M =anyarbitrary field vector.
However on various grounds, such as additional term has no physical cosequence, the definition 614 is
retained as such. This definition is also found to be convenient particularly in electromagnetic theory. |
1) If Poynting vector is zero then no electromagnetic energy can ﬂéw across a closed surface but if no
net field energy is flowing across a closed surface the Poynting vector may or may not be zero. For example
in case of the field due to a point charge in the presence of a magnet at rest as shown in fig. ora cahrged capac::.
placed between the poles of a permanent magnet if £ is not parallel to /, the Poynting vector is not zero as
|N|= ExH = EHsing # 0 |
While the flow of energy across any closed surface is zero as

gﬁsz\”f.dssjrv-z\?dr=.(tv-(1§x H)dr

For steady fields N # 0 N-ds#0.
But there is no flow of energy 4, N-ds=0.

ie. (ﬁgﬁ~$=fr(1_:"-curIE—E-curlﬁ)dr:0'

" (as E and H are constant for steady fields).
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This is because, NV does not determine the rate of ﬂow through small element ds atapoint but implies that
onlytheﬂux of Sacrossa closed surface is significant, '

(iv) In case of time varying fields N=ExH gives the instantaneous value of the Poynting vector and

the average value is defined as the average over one complete period i.e. ‘
~ 1 p2r)a —~
(W)= = /] (Ex H)ar.
For example in the case of sinusoidaily varying fields i.e.
E=FE sinot and A= H,sinor
o\ 1erys -
(N) = ?J‘ (Eo smwt)x (Ho sin Qt)dt
. ~.' l nlw. | 2
ie. (N ) =7 (E x H, )j sin® wt dt
1 E, H -
ie. (N>=-(E x H, )T Jﬁ xH,.
The ixﬁpoﬂance of Poynting vector lies in the fact that with its help we can interpret various optical phenomeu.
QProblem. ,
(a) - Calculate the value of Poynting vector at the surface of the sun if the power radiated by sun is
3.8x10% watts while its radius is 7x10* m
(b) Iftheaverage distance between the sun and earth is 1.5 X 10" meters, show that the average solar
energy incident on the earth is ~2 cal./cm?, min (called' solar constant). Calculate also the amplitudes of
the electric and magnetic vectors at the surface of earth assuming that the radiation is a plane wave.
Solution,
(a If ( N > isthe 'average Poynting vector at the surface of the sun then by its definition
(N S) X4zrt =P

. P 3.8%x10% -
e (No)= =
he. (M) 4mr’ a4z x(1x10°)

ie. (Ns)=6.175x10" watt/meter’

b If (N 5) is the average value of poynting vector at the surface of earth then
(Ng)amr} =(N;)dmrl =P
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(M) =S (M) = — B (V)= L ()
he ’ r“'g ’ (’53‘*"3’)2 ’ rEZS ’

. 7x10° , ,
e, (N,)=| - [x6.175x10" = 1.5 x10° watts/m?
O LLSx10 ' _

. 1.5X10° x 60
e Mo ==

Now as in a plane wave

cal/ecm’~-min=2.1 cal./emZmin.

Hav =Eo CEav

So N, ~E H =€, cE}, = % &, cE; (as E, = Eo‘k/ \/f)

av av

’ 3
e B | 25| | 2XLIX10 1050 yoltymeter
\ € ¢ 9Ix107° x3x10

E
and as B, = i, = th €, 0E0=‘“C"9‘

ie By = 3% web/m? = 3.5 %107 web/m?.
B Sx10t 35
[Here Hy=—2= 35x10T amp-turn/meter]

174.8 Electromagnetic Potentials and Gauge Transformation :
We know at every point of free space the field vectors satisfy the following equations :

¢ . .
Complete description of an electromagnetic field can be obtained by solving Maxwell’s equations. The
ocess becomes simple if the equations are written in a suitable form. It is often convenient to reduce the number
 equations by introducing new quantities called “electro-magnetic potentials™. Weé have already adopted this
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technique in the treatment of static fields : The electrostatic field was expressed in terms of scalar potential
(E = —grad ¢) and the magnetic fields in terms of a vector potential (E =Vx ;i). We shall now consider potentials
in electromagnetic fields when electric and magnetic fields are time-varying,

In the the time-deponent case the eqution

v.B=0 S (1
still holds and hence we can express B in terms of a vector potential,
ie. |B=VxA4 _ SRR (2
We consider the equation which does not involve any currents or charges i.e.
= 04)_ . A
~VX(E+3;)=0 e 3

Since the curl of the gradient of a scalar function vanishes, the quantity within the brackets can be expressed
 asagradient of a scalar function ¢

- o4
E+—=-V
ot ‘¢
P EY; .
, |E=~Vg-—1{ 4
or [ Ey (4)

Once 4 and are determined B and £ can be found from equation (2) and (4).
If we add the gradient of any arbitrary scalar function to the vector potential, i.. say if 4 ischangedto
A=A+Vy | e, (5)

the magnetic field remains unchanged. But will £ remainunchanged? It will certainly change if some spueisd
precautions are not taken. In order that the addition of Vi should not affeét the electric field, the scalar potenriz:
¢ must be simultaneoulsy transformed to ¢ ¢ where
Y%

3 e (6]

Youcan verify this by substituting A’ and ¢’ in(4)

¢ =

Any physical law that can be expressed in terms of the electromagnetic potentials A and ¢ remains unaffected
by the transformations of the type (5) and (6). These transformations are called gauge transformations. Cleacly,

equations involving potentials must be gauge invariant.
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In electrostatics we adopted the condition v. j=( which together with B=V.4 specified 4. In
electromagnetism we have to make a different choice. In order to specify 4 we have to impose an additional
condition on 4 in such a way that jt does not change the physics. In other words, it must be consistent with the
transformation (5) and (6) so that £ and B remain unaffected.

Substituting (4) in equation V. = p Wehave

- V.-D=V.¢, E=¢, V [—V¢-—§—‘§)—p

ie. ~v2¢~—(v A) /e, . T %)
Equation (iv) can be written as
9 .
VXH=——=J
a
B 0E
‘e VXm——g, —=J
1.C. ‘uo a

1 - d 4] -
ie. ;;Vx(VxA)—GOa ( V¢——87) J

oo J AN
. vx(Vx 4}~ Llwve-2L\=puJ
ie. x( XA) o & Bt( ¢ ) My

27

ie. -V’2+(V-Z)+,uo'eo (V¢)+/z0 € 5r =ud @®)

where we have made use of the indentity‘
Vx(Vx4)=v(V-4)-V4
Letus choose 4 and ¢ such that

y ?.?..__I_W |
Vid=-phesi=on T ©)

We.see at once that with this substitution the two middle terms of (8) cancel and the equation reducgs' to

2=

- 9’4 - '
VzA—[lo €, ‘5;5-=~ﬂoJ . L e (10)
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With the condition (9) the equation (7) becomes

o, - 7
V-2 (v-3)= Vg sy, Tl
2

d . ’
or  -V¢-u €, -5;?- = p/e, . ‘ S (1D

The choice has yielded two independent equations : one for 2‘ (Equation 10) and the other for ¢ (Equation
11). 4 isconnected with the vector 7 and ¢ with the scalar quantity 0. Furthermore, both the equations have
the same form i.¢. both potentials satisfy the same eauations. The condition, thus, introduces complete symmetry
between the scalar and vector potentials. For the steady-state, the time derivatives vanish and we have

Vid=puJ and Vg=-ple,

The condition (9) is known as Lorentz gauge condition. The gauge used in manetostatics viz. V- 4 = 0 is
called Coulomb gauge. o

‘We know that the electric field £ and the magnetic field B are invariant under transfonnétion (5)and (6). The
potentials thus transformed will have to satisfy the Lorentz condition. Hence, the gauge funétion ¥ which so far
remained arbitrary will have to satisfy a certain condition, |

Since the original and the transformed potentials have to satisfy Lorentz condition, we have

- a9
vig kA
+ 1y €, -0 e (12)

- 3¢’
and V2.4 +‘uoeo—£—-=0 ............... (13)

ie. V~(;1+Vy/)+/_1,0 €, -a?;(¢—-§—?-)-_—0

. - ¢ Iy
ie. V-A+Viy+u, €, 'é?"tao € "é?z"zo

Hence,

y ,
===, 14
Py (14)

Thus, the restricted gauge transformation
A= A+Vy

VY -ty &
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g0 o (15)
where i satisfies the equation-
R alw .
Vo -y, €, —a_tz"' =0

preserve the Lorentz condition i.e. Lorentz condition is gauge invariant,
y d¢ o
V-d+ue ETR 0— Lorentz Condition

when the vector and scalar potential satisfy it, the gauge is known as Lorentz gauge.

Equations {1)and ([ 1) can be written as

@ A=-put cerverennnn (16)
and 5¢=—§g ............ a7

—adon{16)and {17} are known as D’Alembertian equations; and can be solved in general by a method
similar to that we used tc soive Poisson’s equation.
O Problen:

Show that an electromagnetic field possesses momentum. What is electromagnetic momentum
density? Write the relation between electromagnetic momentum density vector and Poynting vector.
Solutien :

We know the force on a region containing both charges and currents is

-

F =fr(p£“+.7x§)dr.

IfP . isthe sum of momenta of all the particles
Plos _ [ (pE+TxB)ar.
dt r
From Maxwell’s equations
p=V D;J:VxH-—%—?
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..-qf—--_- (V-E)E‘+ Vxl?—ég x Bldr
a N

T ot
3,5 = = 9B b -
Since % (DxB) x-é;-+—é—;x3

Because V. B = (), addition of (V ' E) H 10 the square bracket does not alter the result.

,dﬁm d
“Tdt dre

o[ [(v.zj)s+(v.é)f?-{bx(vxf)}

(DxB)dr

= [ [(v-D)E+(v-B) & -{Dx(V*E)}-{Bx(Vx )} ¢z ( VxE-f%—fJ

Clearly, the integral in the second term of the left-hand side reprcsents momentum. Since it is not associated
with the mass of particles and consists only of ﬁelds, we 1dentxﬁr it as the electromagnetic momentum Pri

The vector g = [D X B] is called electromagnetle momentum density. The right-hand side can be
converted into a surface integral and identified as momentum flow,

The momentum density vector g is related to the Poynting vector N and the relation is given below :
g=[DxB|=[eExu|=pe[ExA]=peN

Q) 74.8. Summary :

J
@ Equationofconﬁnuity: V'J+'§"’0

. . -
() Equation for the decay of free-charge : 0 = Dy /' T= p =relaxation time.

' . oD
@) Displacement currentdensity J,; = -&-
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(iv) Differential form of Maxwell’s four field equation :
V-D = p (Gauss’s law)

V.B=p (noname)
V-E= -%—?. (Faraday’s law)
- = aD . :
V-H=J+ o (Ampere’s law with Maxwell’s corrections)
" (v) Integral form of Maxwell’s field equations : o
“.S D | a; = -[r p d‘t

. jSB’.E?E:o

&

-
pE =3[

o e of- 3D -
SBH-dz-—-js(h—é?)-ds

(vi) 'Poynting Theorem :

[(7-B)de+ [ 2 2(E D+ B -B)ar+ §(Ex )& =0

’

Poynting vector: N = Ex A.
(vil) Fields interms of Electromagnetic potentials :
B=Vx4
od
o’
(viii) Gauge Transformation :
A=4+Vy

E=-V¢-

$=4 ER
(x) Lorentzgaugecondition: V-4 =—/4 & 5

Coulomb gauge condition: V- 4 =0,
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" (%) Electromagnetic momentum density : & =(Dx I?)

Reianon between momentum densxty and Poynting vecbr

g =puehn.

Q74.9. Sel_f-Assessment Questions :

68

2,

Starting from Maxwell’s equations prove (i) Coulomb’s law; (ii) Equation of' éonumity

Show that the total current flowing out of some volume must be equal to the rate of decrease of
charge within the volume, assuming that no sources and sinks are present within that volume.

Show that the potentials at the position defined by the vector 7 in uniform electric and magnetic
fields may be written as, ‘

" Inasource free region if

Compute field vectors £ and B.

Proving that Ampere’s circuital 1aw isnot apphcable with conservatlon of charge in general, explain
how Maxwell resolved this contradiction by introduing the idea of displacement current, |
Give physical significance of (i) Displacemtn current and (ii) Poyntiﬁg vector.

State and prove Maxwell equations. What form these equations will presume if the medium is non-
conducting,

State the law of conservation of charge; hence deduce the equation of continuity,

9. Write down Maxwell’s field equations and prove Poynting’s thearem relatmg to the flow of energy at

10.
11.

12,

a point in space in an electromagnetic field.

State Ampere’ s circuital law and discuss why and how it was modified to include the displacement

current.
Express electromagnetic fields i interms of electromagnetic potentials 4 and g. Exp!am Lorentz

i conmuon. ,

Show that the electromagnetzc potentials define the field vectors umquely but they thcmselm are

non-unique.
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74.10, References :
1. Introductionto Electrodynamics~ David . Giffiths. Prenctice Hall of India Pvt. Lid.
Elementary Electromagnetic Theory (3 Vol.) ~Chirgwin, Plumpton, Kilmister. Pergarmon Press. Oxford.
Introduction to Flectromagnetic field and waves— Corson and Lorrain. Freeman, Sau Francisco.
The Fundamentals of Electromagnetism — Cullwick. Cambridge University Press.
Applied Electromagnetism — Hammond, Pergamon Press.
Field and Wave Electrodynamics— Johnson. McGraw-Hill, New York. -
Foundations of Electromagnetic Theory — Reitz and Milford. Addison-Wesley.
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Module Structure :

Q751  Introduction

Q752  Objectives

a7s .3 Propagation of plane electromagnetic waves .

L175.3.1 Electromagnetic waves in free space

(175.3.2 Electromagnetic waves in anisotropic dielectric mediﬁm

(17533 Electromagnetic wavesin conducting medium

U754  Reflection & Refraction of electromagnetic waves, Fresnel s formula
U75.4.1 Boundary conditions for the electromagnetic field vectors

(07542 Reflection and Refraction at the boundary of two dielectric media .-
7543 Fresnel’slaws

U 75.4.3.1 E-polarized perpendicular to the plane of incidence

{1 75.4.3.2 E-in the plane of incidence.
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0755  Retarded Potentials
D756  Lienard-Wiechert potentials
0757  Fields produced by an arbitrary moving charged particle
Q75.8  Radiation from an accelerated charged particle at low velocity
0759  Summay |
. 7510 SelfAssessment Quwﬁons.
07511  References. |

Q75.1 Introduction : |
Maxwell’s field equations predict the existance of electromaghetic waves. The charﬁc&r of Propagation: of
elecuomamenc waves in free space, non-conducting and conductmg media can be predicted from the mathensaicat
apalysis. The nature and velocity of electromagnetic waves can also be known. The interaction of elecromaginetic |
waves with matter will give the laws of reflection and transmission.
Inthis connection it 1s mentioned that, awaveisa disturbance of a continuous medium that propagase. : i
a fixed shape at coﬁstant velocity. Electromagnetic waves can propogate even in vacuum. In the preseucs of
absorption, the wave generally diminishes in size as it moves; ifthe medium is dispersive different froquencies et
at different speeds, in two or three dimensions, as the wave spreads out its amplltudc will decrease The g ;,enma’f
wavcequanon inone d.in’lenswn, |
__f, - i...,,f.
' T v ar
‘v=velocity ofpropagation
- (x.¢)= g(x - vt); g =any function.
Most general solution to the wave equation, |
' Flxt)=glx=ve)+h(x+vr) 3
A wave is said fo be a'plane wave, as long as the wavelength is much less than the radius of curvature of tige-. :
wave-fiont. ' o - . ' T
* Ttis found thet electromagnetic énergy can be radiated only if a charged paxﬁ'g;e is undergoing acceleration.
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To get the quantitative idea regarding total radiation emitted and the angular distribution of radiation the velocity
dependent electromagnetic potentials (retarded potentials) are incorporated.

€1 75.2 Objectives :
After gbing through this module one will be able to know the following topics ;
Idea and nature of electromagnetic waves; ‘
f’ropagaiion of electromagnetic waves in vacuum;
. Propagation of electronmgnétic'wav&s in dielectrics;
Propagation of electromagnetic waves in conducﬁng media;
Skinaffectand skindepth; o
Reflection and Transmission of electromagnetic waves; o
Fresnel’s formula; )
Retarded Potentials; ‘
Lienard-Wiechart Potentials;
Field produced by moving charged particles; ‘
Radiation produced from an accelerated charged particle at low velocity and high velocity.

0000000000

O 75.3 Propagation of Plane Electromagnetic Waves :

Maxwell’s four field equations are :
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J = oE; o = conductivity
QO Homogeneous mediﬁm : The medium for which €, 4 and ‘o are constant throughout is called
homogeneous medium. Here the properties of the medium do not vary from point to point.
Q| Isotroplc medium : The medium for which € isascalar constant 0 that D and E are same in all direction
is called isotropic medium.
O Source free medium : The medium which does not contain any impressed voltages or currents is called
source free medium. . o
The laws of field vectors £ and A are derived in studying the propagation of plane electromagnetic waves.
The solutions of the differential equations (Maxwell equations) will provide us the desired results,” ~——— .-

U 75.3.1 Electromagnetic waves in Free Space :

Free Space means where there is no charge or current.

D=¢, E
B=uH
€,= pemnittivity in free space = 8.8542 x10™2 F/m.
. My = permeability in free space = 47 x107 H/m.
O The Wave Equation for E and B in Free Space:

"We know VXE—--%?

.'.Vx(VxE): Vx(-—ag)
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or, V(V E)-v’E:—%(VxB)

o, V(V-E)-vE =~ (Vx )

or, v(v.E)—vzz -;xo—g;(vw?)

or, V(V-E)-V?E=—p, = ;(%ﬂ

or, VE= =€ az ...................... )

>

Similarly, using VX B = 4, €, %‘?—, we get,

Vx(Vx§)=v(v B)- VzB=Vx(,uo &, %‘-?)

B, 0 =
v(v-B)-VB= e, = (V% E)
's
o, -VB —%eo%f » e I )
[ VB= O&VxE*—g—Ii:l
ot

Equations (1) and (2) are separate equations for £ and B but they are of second order.
In vacuum, then each Cartesian components of & and B satisfies the three-dimensional wave equations,

1 Py
Viy=—22
v o
So, Maxwell’s equatlons mxplydmtemptyspacesmports the propagation of electromagnetic waves, travelling
at a speed,
1

ke

= 3,00 x 10 m/s [Putting the values €, 4 ]
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= ¢ (velocity of light in vacuum)
Hence, we can conclude that,
(a) there exists electromagnetic waves in space;
(b) electromagnetic waves travel in free space’ with the velocity of light in vacuum,
Indirectly it may be inferred that light is an electromagnefic Wave.

The differential wave equation in vacuum for £ and H are,

VE-——Z=0
| c? o
s
and vﬁi~%§%?=o

Let the solution of the above two equation be,

=, =, —r(wl -k r)

E=Ege
& I:'[ = f‘{oe-l(wl-i-F)

where k propaganon vector = 7 n= ~——f- =
. ¢

ﬂlz

here /=unit vectorin the direction of wave propagation.
oV ik and 5 = (-iw)

So, Maxwell’s equations in free space can be Written as,

k E=Q- 0

E =0 (n)

-—k xH = W Eo ........ (m)
-am'kxE m%H ....... W)

. Hence from the above equations, regarding plane electromagnetic waves in free space, it may be inferred

 that,

| (8) From equation(i) £ is perpendicular to the direction of propagation, and from equation (i) H is
| perpendicular to the direction of propagation. So, electromagnetic waves are transverse in nature.

(b) Fromequation (iif) E is perpendicularto both H and  ; and from equation (iv) 7 is perpendicular
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toboth ¥ and  , field vectors £ and H arealso mutually perpendicular in a plane wave. This all in
turn implies that in a plane electromagnetic waves vectors E, H and k are orthogonal.

b(c) From equation (iv),

FxE=widl
:.ﬁ=;’f”:(“xé) [ F=nk]
ﬁ=ﬁc’;é=ceo (AxE)

[ é:%andyo e?=zl-2—:l
o E=i’z>:E

Ei E .
= =t = ('&] =%lo)=3770

amear

77| isreal and positive, the vectors E and H arein plase; i.e. when E has its maximum

Astheratio

value H has also maximum value. It is also clear that in an electro-magnetic wave the amplitude of
electric vector £ is Z, times that of the magnetic vector H.
(d) The Poynting vector for a plane electromagnetic wave will be given by,

ﬁ=Exﬁ=ExﬁXE
R C‘uo
o (EB-(EA)E
Cldy
1 e o=
=-c-;l:Ezn [E-Aa=0]
=€, cE’A
N R S
_Zo c/‘o— O-Zo
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O .. Conclusion ;
For electro}nagnetic waves in free space
() em. waves travels with speed of light;
(i) em. waves are transverse in na?ure; | o
(i) E, Hand k constitute a right hand o}'thogaaal set,
() the field vectors E and H are in the same phase;
(v) the direction of energy ﬂaw is the direction of wave propagation;
(vi) the energy density associated with e.m. waves in ﬁee space propagates with the speed of hght

Q7532 Eléctromagnetic waves in anisotropic dielectric medium :
A non-conducting medium whose properfies dépend on direction is called anisotropic dielectric. -
Inanistropic dielectric medium the relative permitivity is ot longer a scalar and to deal with wave propagation
we refer all fields to the principal axes so that '
D, =€,6, E,;D, =€ €, E, and D, =€.€, E, e e 0))
Further since the medium is non conductmg ie.
J=0, p=0and g, =1
So Maxwell’s equation in an anisotropic dielectric medium reduces to

divD=0 (@ )

divA =0 (B

curl & =%— © } . [ @
' o0H -

curl £ =~ '5;- (@ |
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It is important to note that in this case though
divD=0 divE#0

because D in general isnot in the directionof .
Now let us consider a plane wave advancing with phase velocity v along the direction of wave normal 7

(i.e. wave vector & ). Letit be,

{‘?} = {I?o }e—f(m—f?i) | ’ o
H : A e 4

So the operators V andg-t- will be

- ?I?and-(% - (~iw).
And in terms of these operations equation (2) and (3) can be written as
D=0 @)

H=0 (&)
-kxH=wD  (©)
ExB=pol @ |

From these form of Maxwell’s equations it is clear that :
()  The E.M.W. are transverse in nature wrt. D and H (and not w.r.to E and 7 as in a isotropic
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media). It is because according to 4 () k is L to D while accordmg tod(b) kis L to Hie k
is L toboth A and D as shown below in fig.

(#) Thevector D and H and k are orthogonal it is because according to equatlon by kis Lto H
while according to equation4(c) D is L to both k and H. |

- (i) Thevectors D, E and k are co-planer. This is because according to equation 4(c).

. kxH
mee——— e 5
- (5)
while according to 4 (d)
. kxE
H= e 6
o0 (®
So from equations (5) and (6)
- 1 r= /- =
D:-m[kx(kxli):[
- 1 ~ \= s
e D=-ﬂ0w2[(k‘-E)k—k El i Q)

(iv) Inan anisbtrop}'c media energy is rot propagated in general ‘ in the direction of wave propagation
(i.e. the direction of k and N are not same) and the Poyntmg vector N is coplaner with D ,E and k . This
is because the Poynting vector is gnen by
N=ExH
i.e. N isnormalto the plane of E and A and not to the plane of D and A (which is the direction of & ).

Example. Show that in case of propagation of plane electro-magnetic waves through an anisotropic
dielectric |

cos’a cos’ B cos’y
2 2+ 2

viev? iyt pioy? =0
X y b

where v is the phase velocity of the wave, a, B and y are the angles which the wave vector makes with the

 principla axes and v, =c/|/(e.), and
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Selution. In case of propogation of plane E.M.W. in an anisotropic dielectric we know that

D= —;—%}—5[(5 - E)}Z -~ sz] (frozﬁ equation. 7)
(4]

ie Dbyfc;z [E-(7-E)i] (as £ =-E)

ie, 5:—}:;[5%51‘-5)%} (as k = w/v) .‘ e (D

Equation (1) in terms of components can be written as

HoV
ie. D, -——E}V—Q[Ex—(wf)cosa‘] ............. o)
Similarly
1 R
) =‘;;;f[1‘% ~(7-E)eosp] 3)
And D =-%1V2 [E_.—(;z'.é)cosy] ............. 4)
Now as in an anisotropic medium
X
4

7w

: Y
Vector H is normal to the plane of k. =kcosa
the paper and outward k, = kcos
k. =kcosy
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D, =¢,&, E, D, =€, E, X
, D.
ie. Ex-'—“"-D"— E;=-9—’-— and Ez-——--é—;-
€,€, €.€, :So
2 et 2
o E=Hp  E=Hp amd  E=fAp
ex ey ° : . E; )

or E, =uv;D, E, = uviD, and  E =gvD. e (5)

[as c/@=~vx',cl\/(;j)=vy and'c/\/(—es_,-)=v:]

So on substituting the values of E,E and E_from equation (5)in 2, 3 and 4 respectively we get

D, = ;—i—)—z— [ﬂopfl)x ~ (Fz -E )cos a]‘

X

. ___cosa . = | : ‘
b Do=ri [v:-.v?](" E) R ()
Similarly
D =—S88 i 7
y ﬂg[v;".*vzj(n ) 4
=08V (s F :
and D:-#o[v:z"vz](n E) e ®

Nowas vectors D and £ are perpendicularto each otherin case of a plane electromagnetic wave propagating
through an anisotropic dielectric i.e. ’
k-D=0
ie. kD +kD +kD, =0
ie. k[D, cosa—D, cos B+ D, cosy] =0
(as k, =k cos & and so on)

ie. D.cosa+D,cosp+D cosy=0 %)
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On substituting the values of D, D, and D, from equation (6), (7) and (8) in (9) we get

cos® @ (ﬁ'E)+ coézﬂ (ﬁE)+ cos’ ¥ (ﬁ.E)-()
-v) (V) m -Y) A

, cos’a cos’ B cos’y |
ie. G+ +t-5—5=0
R AR AL R L

This is the required result and is known as Fresnel law of normal velocities or Fresnel law for the wave

or phase velocity,

Q 75.3.3 Electromagnetic waves in conducting medium :

We know that Maxwell equations are

divﬁ¥p )

divB=p \ J_=01f“
| H=J oD i ?ze}i

cur = +—é—t‘ f B:ﬂH

cur1E=--a£

divE=0 i (@) )
divA=0 e ®)
curlﬁ=aE+e%~§- e (€) } , e ¢))
- OH
|E=-uy— ..
o “a @ /
Nowif
()  wetakethe curl of equation (c) then
Vx(Vx}?)=Vx[aE+e§£}
ot
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ie. grad div FI—-V’I? =a(VxE)+e§;(Vxﬁ) .............. 2)

But from equations 1 (5) and 2 (d)
V.-H=0 VxE=-pu—.

So equation (2) reduce to

Le. vlﬁ—a;;—-t-— pe——==0. : o (4)

(i) wetake the curl of equation (d) then

e, gaddiv E-VE=p2(VxH). | e ®

But from equations 1 (g)and 2 (¢)
, R -
V.-E=0 and VxH=o'xE=oE+ejaT.v

So equation (3) reduces to

ie. VE-op=—-pe—=0. )

E quations (4) and (B) are known as ‘equations of telegraphy’. It is worthy to note here that second term
iﬁequaﬁ.on (4) arises due to conduction current J, while third arises due to displacement curreﬁt (aD/ Bt). Equations
(4) and (B) are of the from )

1% oy

VZW—G‘&!-'(:;'—-#E—a—P-'-:O. e (4) |
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Now as equation (4) represents an attenuated wave of the form

= woe-i(m-i“i)
where k" isthe complex wave vector, the solutions of equations (4) and (B) must be of the form
E - Eo ~i{ot~k"7) '
{ﬁ} {ﬁo}e | (e

The above from of field vectors suggest operator v is equivalent to ik while 3/0¢ to (~iw). And so
equations (8) and (4) yields

A [E]_
(k tioumw+ pew ){i}} 0.

Since the above result is valid for any arbitrary & or
k* ~iouw - e w? =0

ie. Kk° =ﬂew2[l+£~)~] roreerrnanst (5)
Equation (5) shows that propagation constant is complex and may be expressed as
kK =a+if - e (6)
le. k=~ +i20f )]
Comparing equation (5) and (7) we get. |
a’- B =pew? e, (8)
ad 20f=pow0 wenes (9)

and on substituting the value of p from equation (9) and (8)

2.2 .2

HOQ 2
- =UhEQ
aa? Y
2 ,52,.2
o'w
ie a‘—ﬂew’a’-—ﬁ-&———%o

whichgives
HED? i\/[(u € wz)z + uzaza)’]
. 2
: 4
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e. a=to | £ 1£, /14 = R 10
. (2]{ (ew” “

Now as in the limit o — 0, & — #4,,€ —€, and so equation (5) reduces as
| B =y € @0 ’
while equation (6) reduces to
F=a
So that .

a—o\(th &)

‘This in turm implies that correct value of o. given by equation (10) is

» Y 172
a=w (5‘——6—) 1+ {1+(~9—”
2 €Ew
| e mn o Y ] ’
ie. a=w (L) {14-(-—-} }H | N ))
2 eEw

Similarly putting the value of o, in terms of B from equation (9) in (8) and solving we get

-
B=0 (—‘ff]{ {1{55) }-1} I — ®

and in terms of these values of o and B the field vectors given by equation (C) may expressed as

I:_;:: = %) e—i[w!—(a+iﬁ}ﬁ-?]
al~\a,]

” E\_| E, -gAF _~i{on-aiF) |
.e. _r=q e 11
He {H} {Ho} ( )

From equation (11) it is clear that the field vectors are spatially attenuated and are propated through conducting

medium at a wave speed
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5T

The quantity B is ameasure of attenuation and is called absorption coefficient. So if we get

AF=8=1/p.
‘Equation (11) yields
-~ I r  -i{wi-anF '
E(a):E[Eoe (s )] v
: .
ie. [E)=lB]. e (12)

i adistance 6 the amplitude of the wave becomes (1/¢) i.e. 0.369 times of its value at the surface of the
conducting medium, This distance is called skin depth. i.e. '

" From equation (13)it is clear that for good conductors

M )

at high frequencies the current will flow only on the surface of a conductor. For example in silver or copper

E\  Freespace [, Metal rsT—
E { —— v SrIsme—oy
2 = ST
3 E \ -
1 L
s & 1 1.\ 7 N o oo
d . YL v s e—
Unattenuated o — Atfenuated T = ...
wave R e R P

v n s e " ST b WIS At W o
[ T e o e Y wa e w-

roen e G ST S ST
' Skindepth
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(o ~107 mho/m) at typical micro wave frequency of 100M Hertz § = 10~ cm. and in sea waver(g ~ § mho/.m)‘
at frequency of 30K hertz & = 10% cm. This is why for micro wave ﬁeqiwncytxansmission itis necessary only to
have a thin coating of silver (or copper) onevena poor conductor and radio communication with submerged
submarines become increasingly difficult at depths of several meters. Furtherif & — e0,§ — 0 ie. £ and f{ are
both zero inside supper conductors. '

. Now as according to equation (C)

. . a .
" Vit and 'a;—>("'w)

So Maxwell solid equations (i) in terms of complex wave vector can be written as

E' E:O ............ (a) )
EH=0 e %)
I - b e (14)
k' XH={€@+iO)E .. (€)
ad -k'xE=poH e @ |

From equations 14 (a) it is obvious that E is L to £° while according to 14 (8) His L to ‘I?}t'.e. the
vectors E and H are perdicur to the direction of propagation .e. electromagnetic wave is transverse wit, £ and
H. And as according to equation 4(d) His L to k and E both, £ and  are also mutually L.,

B=X_(ix5)=22E i< F)
Ho . Mo <
i.e. complex quantity i.e. the vectors £ and H inaconductor are not in phase. So writing

K=a+if=re” =rcosg+irsing

ie r= (a’+ﬁ’)§w (ye)[l-k(fgyr | o
andg}ﬂw,rl-é:ltan_![wg”] | } .............
a 2 we )
we get ‘ '
= 1 o g =
H=El;w (ﬂé)[l-ﬁ-(-—e——-)J e"(h‘xE)
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- ffe o V1 - ~ '
ie.. H= (——)[l-}-(———-—] ] e* (h'xE) ............. (15)
H €Ew . .

a Equzition (15) clearly shows that there is a time lag of H, behind £ by an amount of phase angle ¢ (given by
equation F) and that the magnitude of electric and magnetic vectors are related by

|H|= (-E) [1{;%)2 r || | - | ......... (16)

=t
h

Attenuated electromagnetic wave in which E is
leading H is phase

Further the Poynting vectdr in this case will be

(S)z%Re(Exf?')

Vl € . (o Y a8
“ie. (S)-_-.-.z_ (;)[Ejne“”‘”"):l[H E_;‘)_)J cos ¢

For good condensors @ = and —— 1
For good con gsors 7 @d —>lso
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(S)=1 ,( 2” JEfm b0 )G e, (17

And the energy density uwill be given by

u=u,+u

m -

with %, = —;—Rc G— E- EJ = -;Ej,ue'”(“") ............ (18)

1 /al 'y r y?
=—Re|£H-H

N4
Hle 1+(_€_.) 2 g A0
2| u Ew s

2
p .
ie. um[lﬂ"(gz;):f U, (19)

From equations (16) and (17) it is evident that in a conducting medium, the intensity of the wave (energy
flow) and the energy density are damped or attenuated as the wave progress. This energy is lost because of the
resistive heating of the medium. It is also obvious from equation (19) that the fnagnetic and electric energy densities
are different with in a conducting medium. In fact as o — o the energy density becomes directly magnetic (as in
the case of super conductors) and as o — 0,u,, = u, (as in case of insulators). For g — 0 the energy density is
again entirely magnetic and is in agreement with the fact that a conductor can not support a static electric field.
O Spl Note : As

Case L ( o J <« 1. The conduction current is much less than the dxsplacement current. Such a situation

E | |oE | o
BE/Bt)] l-iweE|l cw

So there are two possibilities.

holds good for a poor conductor or for even moderately good conductor at high frequency. In such a situation

Y
_ 1 o V/[° o ffu
@ (”E)[“z(m” wd =3 (::r)
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, :

Therefore we see that, in so far as the frequency dependence of the conductivity may be neglected, the
attennation factor § is independent of the frequency. o

Ifois sufficiently small, we have |
a— a)\f(_;z-e—) g-0
. k—-)a-éw\[;z?—ak #— 0 and fH]—)JET;T[E[
These results are exactly the same as in case of propagation of E. MW, through isotrpic delectric. So we
conclude that at very high frequencies a conductor can behave like dielectrics for the propaganon of E. M W.

Casell, ( w)»l ’Iheconducnoncummsmwhgreaterﬂ)antbzmews (o/€)=10", sothe conduction

current always dominates for frequencies below abqut 10' Hertz which includes all of the radio waves, micro
" waves and visible light as well as part of the X-ray region. In such a situation '

so that

e[

Thus H and E are approximately 45° out phase and H dominates | £| in magnitude.

O Conclusion :
In case of propagation of E.M.W. in conducting medium :
(@ The wave gets attenuated with penetration.
(i) Thewaveistransverse w.r.t.£and H. '
(i) The vectors E and H are mutually perpendicular. H is much greater than E in magnitude but lags in
phase. : :
(iv) Energy flowsinthe direction 6f 'wave propagation but is damped off exponentially.
(v) Magnetic energy density is much greater then electric energy density and both are damped off

exponentially.
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Module No. 75 : Electromagnetic Theory

£175.4. Reflection & Refraction of electromagnetic waves :

Here we shall discuss about the phenomena of reflection and refraction of electromagnetic waves i.e. in
general the interaction of elecfromagnetic waves with matter. At the boundary between two dielectrics, the
electromagnetic waves obey the familiar laws of reflection and refraction. The derivations of these phenomena will
be based on general electromagnetic equations. Here we shall discuss first the boundary conditions which the
electric and magnetic fields must satisfy at the boundary,

0 75.4.1. Boundary conditions for the electromagnetic field vectors :
The boundaty conditions are —
() Thenormal component of magnetic induction B is continuous across boundary, i.e.
Bn = Bn,
(#) The tangential component of E is continuous across the interface, i.e.
- Et = Et,
(@) Thenormal component of electric displacement D is discontinuous across the interface, i.e.
’ | ‘ Dn,—-Dny=0; o= sm'face-éharge density at the interface. |

(7v) Thetangential component of magnetic intensity H is continuous across the surface separating the two

dielectrics.

| Ht, = Ht,

Q 75.4.2. Reflection and Refraction at the plahe

, boundary of two dielectric media : K, ‘
) @) 14,&

€ v ‘ 4
dielectric media designated as ‘1’ and ‘2’ characterized @, K

Let us consider two non-conducting (o =0)

Ey constants /4,€, and 4 ,€, and separated by a plane
x=0. ' '

Letaplane elechomagneﬁc wave is incident oblfﬁuely
on the plane boundary, as shown in fig. .
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We can express the fields for the incident, reflected and transmitted waves as :

. = = ik, F- - IZ XE
Forincident wave: E, ==E0,e(" ) ; H, =1
P
CRm _n ikrey) . 5 KyXE,
Forreflected wave : £ = Eppe’ " '3 Hp=
g
- = o e - K, xE,
For transmitted wave : &, = E, "), i = 2rX%
Oy

E,,E,,, E,, aretimeindpendent scalar amplitudes which may be complex.
The tangential components of £ and 7 canbe continuous across the boundary at all points and at all ﬁmes
only if the exponentials are the same at the boundary for all three fields. This is possible if
w,=w,=w,and K, -F =K, F=K, F.
(®  Thefrequency remains unchanged in the reflected and transmitted waves, i.e. the frequency of the
wave remains unchanged by reflection and refraction :
@) X, -7=K, 7=K, F, showsthatall the propagation vectors are coplaner i.e. the incident, reflected
and refracted waves all lie in the same plane but normal to the boundary surface.
Now if we choose 7 to lie in the boundary plane (i.e. 7.7 = (- where 7 is a unit vector normal to the plane)
and inthe plane of the propagation vector, it follows that,
K, sin6, = K,sing, = K, sin6,
Now K ,A =K, as théy are in the same medium
-6, =6,
(iif) In case of reflection, the angle of incidence is equal to the angle of reflection.

Since K, sin, = K, sin4,.

L6 K 1hE [k =oJue]

For non-magnetic materials 4, = 44

. sing e, n, ,
"sinBT g, n,’ Snell’s law.

where n,,n, are the refractive indices of the medium ¢1° and 2’ respectively.
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(iv) In case of refraction or transmission, the ratio of the sine of the angle of incidence to the sine of

angle of refractwn is equal to the ratio of refractive indices of the two media. This i is Snell’s law

O 75.4.3. Fresnel's iaws :
The formulae relating the amplitude of the reflected and transmitted waves with that of incident wave are

known as Fresnel’s fnmulae or Fresnel’s laws. .
The boundary conditions of D, and B, are automatically satisfied prov:ded the condmons on E, and H

are met. The conditions are ;

(B, + E;)xA=E, xa ‘_ | e )
and ‘(1?, +Hy)xA=H, %A : )
The equation (2) can be written as, L . |

(K % E,+ K, x B, )xa=(K, XE,‘)xﬁ' [t = 1] R )

- [and X, = K] |

Let us consider two seperate situations : .
(] Eis polarised perpendicular to the plane of incidence;
(i) E is polarized parallel to the plane of incidence.

D 75.4.3.1 E polarized perpéndicular to the plane of
incidence. ‘

‘The field vectors corresponding to this situation are
showninfig, |

Here the electric field vectors are directed away from
the observer. '

The conditions (1) and (3) give,

and K, E,, cos@, - K, E,, cosB =K, E, cos,
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or, (E,, — E,, )cos8, = %—EOT COSB) weurrerresrrsirmnes ) [-6,=6,]

{
Solving these two équations, we get
cos@, - % cos &,

OR _ !

EOI

K,
cosé, + ?” cos b,

nz
cosf, ——*cosé;

cosf, + ~n-°=~cosar
n,

-

siné,
cos§, ~——L-cos O,
- s .. _sin,
sin CE
cosf, + ——L cos b, n, siné,
siné,

E in(6, -6,
o, 2 _sm@-6) “
E,  sin (6,. +8,)
and io,. ch}zﬂ,
™ cos®, +—Lcos,
Kl
E,,  sin8, ) :
o E, sin(6,+6,} o st (B)

Equation (4) gives the ratio of the amplitades of the reflected and incident waves. If n, > »,, theratio is—ive,
: indicéﬁng that the reflection of ¢he wave results in a phase change of rt i.e. the electric vector of the reflected wave

-

- . E . - a, e
oscillates 180%ut of phase with that iri the incident wave. The ratio '}ZQL (equation-B) is always positive.
. ot

{175.4.3.2. E in the plane of incidence
The field vectors corresponding to this situation are shown in fig.
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Here the boundary conditions give,

Eycos6, - E,,cos8, = E,, cos,

ie. (Ep — Epg)cos 6, = E,,, cos 6, [+6,=6] [, (6)
and K Ej +K, By = K, Eyy [ K, = KR] |

. » n K. n . '
ie. E,+E,= —;j- E,, [ 7<_:_ = ;]2_ e N
Solving we get, h

n
cos8, -2 cosb,
’z] i

Eop =.
Eo cosd, + "2 cos 6,
RRL
or Epy _ tan 6,-6) _ v o
s E()l tan ( 6, + er ) .................. (
E,; 2sin @, cosf,

and E, sin (8, + 6, )cos(8, —9,)

The 4, B, C and D equations are called Fresnel’s formulae or Fresnel’s laws,
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{1 75.5. Retarded Potentials :

Under Loténtz condition [z e. V- A+ Ho €, %9 ] the Maxwell’s equations interms of electromagnetic
potentials are :

VA~ eo—-é-:-—'/toJ

2

" Fo_ _p
The solutions of the above equations yield the relationship between the retarded potentials 4 and ¢ say at
field point (r, £) with the respective sources J and 0, say at corresponding source point (7’,#*) such that the

source and field point times are related to each other,

H= (t--;-] ‘ s 10))

_ where % = time taken by electromagnetic signal to reach from the source to field point with free space
signal velocity c. Equation (2) states that the signal perceived at field point at time ¢ should have emanated from
source ( % ) times earlier and hence potentials given by the following equation are ‘retarded’.

The retarded potential solutions of equation (1) are written as

)= i‘& J-j (r'st
( ) ............. 3)
PAr,t ”
¢ 47ze j
In case of small charge (say electron),
I pdt'=¢ _ .
. st @)
[Jar' =ev » |

e= electrotﬁc charge, 7 = velocity of the electron.
For electron or small charge'equation (3)i.c. retarded potentials can be written as.
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d=thSo e 1 pe

1 e
4r g, [r] J

P=

' 1
Here lloEo=;§-,ﬂ=% ‘. |
when relativistic influence on retarded potential is considered, [#] is replaced by (r -B-F ) The expression
for the relativistic retarded potentials for a uniformly moving point charge are :

B — 0 (nonrelativistic) implies 4 — 0 i.e.no magnetic effect;

and ¢ = ‘. - (electrostatic case).

4z e,
A Lienard and Wiechert transformed retarded potetials into relativistic ones for the first time. Hence relativistic
retarded potentials are known as Lienard-Wiechert potentials.

Q75.6. Lienard-Wiechert Potentials :
Let us consider the application of the retarded potentials to compute the radiation from a single charged
particle, say, an electron, in arbitrary motion. Since the calculation of the potnetials depends upon the position and

velocity of the charge at the retarded time ¢ — ji—_r_l , wemust know the details of the motion of the charge. In Fig.
. ’ ¢ ‘ ’

- atrajectory of the electron described by the radius vector 7. (¢) is shown. The calculation of the potentials as given
in equation (3) involves a retarded time integration over the entire volume containing the charge. Nowwe do not
know how the charge is distributed geometrically within the electron. The only thing that we know is that it has '
certain total charge. If we assume the electron to have zero physical extent we will land into difficulties. We,
therefore, assume that the electron has a finite radius, but shall consider only those properties which are indeperident
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0

of the magnitude of the radius. F of an electron we may express the retarded potential in terms of Dirac 3-function.

| 5{:'-— 1_}?—&1]}} ,. R ~ ,
e r ¢ a. (7

4me, )= |F -7

Thus,

¢(r,t)z

If we'put the integral in the form f : £ (x)8(x - x")dx, following a property of delta-function, its integral is

readily found and isequal to £ (x’).

We, therefore, introduce a now variable #” such that

= ;r’f-t-&»L’-:-:r-—:'—g-:)l ” ' ‘ R ()|
c
” ? . l d - == ’
dt” = dt +;—‘-1;;[r—re(t )]at N )

Here we have takne df = 0, because the observation is made at a fixed time £. Let the coordinates of the fixed

point Pbe x,,,,x, and those of the electron x, (1'),x, ('),x, (+')-

2

Now l?—if_,(t’)i=\/2{xj - X, (t’)} : , SR P ¢ (1)

ox

I RPN Fy: S |
. ZE? r —re (l )l-—gz-é—x-;“ r "?'e(t )l'?d—t'f ... (11)
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dt
, Smce -_];- F (f )l are the components of the gradxent of ir r.(t )‘ and - are the components of
x .

€

—=< we can write
dt ‘

The gradient can readily be determined
F-F() _ R v
grad,,[F -, ){--]-_——';(7—-—1——‘ erdensenseennes (13)
where 7 -7, (¢)= R. |
We also know that

dar,
-Er—- # (the velocity of the electron)

J1d
f cdt’

-R

1

_29..*
P
Jach
<+
S’

1R

B —— = -

,wherel§=%-

Therefore,

a” =de'|1-H- |

ie. dt =W~=‘—:dtﬂ. T ssseesesennene (15)
R|-B-R
Hence, the potential (9.44) can be exﬁressed as

; ) R .
¢( ) 47[6 J‘_ﬂlR XlR(t ()R(f)dt. o —— (16)

4”6“[lﬁ(t')l'ﬁ(")'ﬁ(")]mo | e veveeee (17)
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" Since ¢ = ( implies ' = £ - R(t') e

e 1 .
47:50[3 /”R]_,._ 0 R — (18)

p(F,1)=

By similar arguments we find that the vector potential is given by

The potentials ¢ (equation 18) and 4 (equation 19) are called Lienard-Wiechaert potentials. They are
dependent on the velocity of the electron but independent of the extent of the charge, i.e. of any detailed electronic

model.

(3 75.7. Fields produced by an arbltrary movmg changed particle :

Let x, =x,,X,, %, be the coordinates of the point of observation P Fig. and x; (¢ ) =x{(t"),%; ('), %; (')
be the corrdinates of the charge at time ¢ at which a signal propagated with velocity c is emitted at x; soasto
arrive at x, attimef, ’

R =Y (x,~x).

~ Let, further that x/, (¢*) is given.

% ()
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-------------------------------------------------------------------------------------------------

The fields can be found from the relations

-

:-V¢—--—a-/—1-
and B=VxA
The potentia!s are given by
b= o1 e 1 . : . ,
47[60[1{ ﬁR] 47reoS o . et (1)

jzﬁi[ i ]= e il
4 |R-B-R| 4ze, 'S
where Sz(R—-ﬁ'ﬁ). |
The components of y are partial derivatives at ‘constant time ¢ and not at constant time #, Since the time A
variation with respect to ¢/ is given, in order to compute the fields, we have to transform %

Xa

and Vix, to

. This is necessary because in the case of an accelerated charge it is not possible, in

1

: N d
expressions interms of +—

ot

general, to express the potentials in terms of the “present position” alone. Let us see how this can be done. From

X

Fig. we have _
R ()] =[x
=c(t-t'). PR )
Since x, isgivenasaﬁmtioﬁ of #, R isafunction of x, ant ¢/ '
R[:‘éa,x; ()]=f(xast)=cle=¢). e (3)
Now ' ' |
QLC(I-?-'—). e @
ot ot
Also » |
R OR - | | v ..
| .5.1. =3 : Pevsrserenins ()
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But
R R
at’ R
Henee
(I_FJ:’\_ Rt ot
ot R at
or -ar- = --—-R__-..—_ *@ . IRTORY (¢)
# R-B-R S
- Therefore,
8 _R d .
6: Sar _ v (7)
Let us now transform the operator ¢ . Because R is a fanction of X, ant §7, wecan write
aR R R
VR=V RV == - —' veseenreenennrer (8
i TRTR | ©
where ¥, implies différentiation with vespeet 1o x, at constant reatrded time ¢ .
We have also from (3)
VR =~V
Gt = E._E__zi '\7{’
R R
: 2 .
e Vi's——0 cereesarieneeees (9)
Se ;
Substituting this Incquation (8) we see that we can write, in general, for \v)
R 9
V¥ - ——, W (10
Se o | RSN {1

d
We have thus found the required transformation of the operator 'é? and ¢

We now compute £ and 1}

E: _'g_v J & a u
47z €, LS 41{(_,,81\&)
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__e l:_l_v R os 'R_Ruas}

ane,| S :'-Esggpf‘gfg{u'?ga"g; v vevoreen (11)
e [ R & R(R%Y R« R(R@
= - _—
- 4dre, [ s'R oS S R ) S%cc¢ S%| ¢
Ru R _(Ra#) R ., R _[{Ri
_Szcz"Ssczu R ‘+Sscsm‘ ';2"573’” P (12)

Rearranging and combining the terms, we have P .
- e [1(5 RAY, & 1 {- (- Ra\ . ' '
E= | RN 12 | Box| B2 x|,
47zeo[s’( c )( cz) 0253{ ( c) “}] ................ (13)
Similarly ‘ | v
e [axR(, wY\ 1 R [+ (= Ri '
= l—— |+ ——=X{RX| R—— |Xii}|.
4756002[ s? ( cz} 25’ R { ( - J ”” ................ (14)

Itis seenthat, £ is composed of two components, The first component given by the first termisa function
of velocity #, while the second is a function of acceleration, We can, therefore, write
E=E+E, |

b

where E, is the velocity field and E, the acceleration field. We further see that E, o (1/ R’) while

E, (1 R)‘. If we compute the Poyntixig vector for the fields, we find that the contribution to this vector due to the
two components is '

To find the energy radiated by the particle, we have to integrate the normal component of N over the -
- surface of a sphere of radius R. Because the element 6f surface area involves R?, the integral containing A, varies
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@ if R* while that involing N, remains finite. Therefore, for large R, the contribution due o N, tendsto zero while
thatdue to A, is finite. We conclude, therefore, that a particle moving with a uniform velocity cannot radiate

ssv:rgy. Energy can be radiated only by accelerated charges,

Lt 75.8. Radiation from an accelerated charged particle at low velocity :
If the velocity of the particle is so small that we canbe neglected, then S ~ R and fields as obtained from
eyunation (13) and equation (14) are : ' C

Since N‘J is perpendicular to R

. 7 - 1 24 eO 24 . '
Na—;;;Ea —,/‘;‘:Ea" - s (19)

Now E, =m{ﬁx(ﬁ xii)}

ey (L LR

= M{ﬁi}'ws 8 k- Rzz"i}
where 0 is the angle between R and i.
Therefore,
-1 &

" Moc 1678 €k c*R®

{sz cos 8 R - Rz'ii}2 A
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-----------------------------------------------------------------------------------------------

m{k“ (u cos* 6+ R* ()’ ~2R* (1)’ cos® 0}
€, ¢

—wfi(zf—--—(l—cosz e)ﬁ"—ﬂg—x——sinzﬁﬁ 20
167° €, ¢’R? 167° €, ¢*R? e ( )
The Poynting vector gives us the energy flow per unit area per unit time. The power radiated per unit solid

angle can be found by multiplying by R? which is'the area per unit solid angle.

2

ey
TdQ l6nt e, c

psin®d - - e Q1)
The angular distribution of energy, therefore, is just the sin’ @ distribution (Fig.)

—?I—g—asinzﬁ

0 acceleration —>

To obtain the totald radiated power, we have to integrate over the whole sphere

167: c 3R2 _[Mf ~cos’ )R*sin6 dBdp
c
2 ) )
or, -_.___(.ff)m 4.8 () =—£9 _ wherea =acceleration= =z ......... veone (22)

3.

= T— =
l6n*e,c* 3 6rie,c” brme,c

This is known as Larmor formula.
It can be shown that for charged particle at high velocity the total power radiated will be

W= tree 67:;0;: {'62 (BXB)Z} ................ 3)
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0759, Summary |
(i) * Electromagnetic waves travel in free space with the velocity of light in vacuum.
(@) Electromagnetic waves are transverse waves.

AN

@) Skindepth for good conductors

5= |2
How

(iv) Fresnel’slaws:
(8 For E polarized perpendicular to the plane of incidence :

E,, _sin(6,-6,)
E, sin(8,+6,)

Eyr  2co0sé,sin6,
E, sin(6,+6;)

(b) for E in the plane of incidence :
E,, tan{(6,-6;)

=

EOI tan (Hl + 9T )

EOT - 2sin&, cos b, :
E, sin(6, +6,)cos(6,+86,)

(v) Retarded potentials

Z(r,t)=% —-————dJ(r 1) 7’
.4

3= [ L)y

4ar €, r

A
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...............................................................................................

_ e 1
’47[G0 (r—BF)
(vii) Energy can be radiated only by accelerated charges.

ela’
3

(vit) Larmor formula: # =

(3 75.10. Self Assessment questions :
1. Discuss the propagation of plane electromagnetic waves in a conducting medium.
2. Whatis skin effect? Show that for a good conductor the skin depth, -

o= ,u; & Where notations have their usual meaning.
Show that the speed of electromagnetic waves in isotropic dielectrics is lcss than the speed of
electromagnetic waves in free space. ,
Show that in a plane electromagnetic wave £, i and K vectors are orthogonal.
Find the ‘equations of telegraphy” using Maicwell’s field equations.
6. Show that in a conductor energy flows in the direction of wave propagation but is damped off
exponentially. |
Write the boundary conditions for the electromagnetic field vectors. Using electromagnetic wave equations
prove the kinematic laws of reflection and refraction. '

L

ot

-~

-

Deduce Fresnel’s laws.
Y. Whatis retarded potential? Write down Lienard-Wiechert potentials.
10.  Find the express in for the fields produced by an arbitrary moving charged particle.

i1, Obtain the total radiated power from an accelerated charged particle at low velocity.

2 75,18 References ;

1. Classical Electrodynamics — john David Jackson. John Wiley & Sons.
2. Electrodynamics and Classical Theory of Fields and particles —A.O. Barut, Macmillan, New York.
3. Elsctrom agneticEnergy, Transm ission and R adiation .1 R B .A dlsref al., Wiley, NeWYOI‘k
4. Electromagnetism and Relativity — E.G Cultwick. Longman.
- 5. Electromagnetic Theory —J.A. Stratton. McGraw-Hill.
6.  Electromagnetic Fields —J.Van Bladel. McGraw-Hill, -
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Contgnt |
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76.2 The Birth of Fuzzy Set Theory

76.3 Transition from &aditional view to modern view

'76.4 Concept of Uncertainty

76.5 Random uncertainty verses Fuzzy uncertainty

76.6 Power of human thinking |

76.7 Application of Fuzzy Set Theory

76.8 Important Quotations

76.9 Mathematical mode.ling of fuzzy sets

'76.10 Summary

76.11 Suggested Further Readings

76.1 Introduction |
The classical sets divide the world into two distinct classes viz. white and black, true ind false.
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As tor example in a collection “all integers” if we consider a subcollection of all “even integers” and
ask the question whether an integer belongs to that subcollection or not, the answer will be ¢ither yés
Or o, No‘ambiguity remains in the answer. But in the same collection of all integers if we consider a
subcollection of all “large integers” and ask whether an integer, say 2500790, belongs to the
subcollection or not, then ambiguity comes in the answer. In some situation the answer will be yes
(e.g. in the study of number of students in different classes ina school), in some sithation the answer
will be no (e.g. in the stndy of number of atoms taking part in a chemical reaction), again in some
~ situaiion ambigu‘ity occurs in the answer, the answef:méy be neither yes nor no. Let us consider
anotlier example. In the collection of “all boys” if we consider the subcollection “good boys” and ask
the yuestion whether a particular boy is a member of this subcollection or not, the answers will be
difrerent from different persons. His friend or his motixer' will answer ‘yes’, his enimy will answer
‘no’, whereas a comimon people will answer “I don’t no”. Someone may say that the boy is neither
good nor bad.
Thus in our natural language, theré is ~a great deal of imprecision, vagueness or fuzziness. The
'following are some more exampleé.
i)  The classification of certain objects as “small”.
ii) The description of a human characteristic such as “healthy” or as “tall”.
iii)‘ The classification of people by age such as “old”.
iv) The classification of patien»ts as “depressed”.
v)  Theclassification of flowers as “red”. -
vi) The classification of students as “intelligent”. |
1n the above examples it may be impossible to decide whether an individual object belongs to the
subset or not. There is no sharp boundary between members and hon members and hence the concept
of gradation of membership, or dégree of membership becomes necessary. To discuss the situation

of partial membership, let us consider the following example. Let us consider the universal set as “all
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students attending the ineugural ceremony held in a room of a school”. Let the s.tudents be listening
the function in that packed up room both in sitting and standing position and the standing students are
standing both inside and outside of that specified room. Let us consider the subset “the students
remaining inside of the room”. . :
Here the student remaining cempletely inside of the room has full membership having
' membership grade one and the student remaining completely outside of the room has no membership
ha\ ing membershlp grade zero. Now question arises “what about the membership grade of a student
standmg at the door whose some part of the body is inside and some part outside of the room?”
Naturally, this student will have a partial membership, and the grade of membership will be some
_ number in between zero and one. The value of membership grade depexids on the percentage of his

body remaining inside of the room. Ifhe has 50% of his body inside then the grade of membersth is

% whereas ifhe has 75% of his body inside then the grade of membership i 1s ~. In general ifhe has

£%v-u1 his body inside then the grade of membershxp is A 00"

Thes esituations where multigrade of memberéhip is needed, “fuzzy eet” isthe tool. Fuzzy sets
deals with objects that are “matter of degree” with all possible grades of tmth between yes and no, and |
the shades of grey between whlte and black. - ‘ '

. L.etus consider one more example. If someone ask the questlon “Is Ram a student? “The answer
is-. definite, Yes or No. This is a crisp situation. Butifthe question is “Is Ram honest?” The answer here
is not definite. A variety of answers will come as “yes honest” or _“ektremely honest” or “extremely
dishonest™ or “honest at times” or “very honest” or “No” ete. This situation is fuzzy.

76.2 The Birth of Fuzzy Set Theory ‘

. InJuly, 1964, Zadeh was in New York city visiting his parents. He was then invited by Richard

Belman to spend part of the summer at Rand Corp to work on problems in “pattern classification” and
“system analysxs”. With thn_s upcoming work on his mind, his thoughts often tumed to the us¢ of

*imprecise categories for classification”.
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| One night in New York, Zadeh had a dinner engagement with some friends. But if was cancelled,
~ and he spent the evening alone in his parents apartment, and the idea of grade of membership, which is
the backbone of fuzzy set theory, occured in his mind. This important event gave the birth of fuzzy
iogic technology and fuzzy set theory with the publication of his seminal paper on fuzzy sets in 1963.
The concept of fuzzy sets had to encounter sharp and strong criticism from academic community.
Some rejected it because of the name, without knowing the content in detail. Others rejected it because
of'the theory’s empahsis on imprecision. The funding agency of Zadeh “National Science Foundation”

even was suggested by Congress as “Not to waste Government Funds”.

76.3 Transition from traditional view to modern view

A paradigmatic change in science occured with the concpet of uncertainty. In science, this change
occured as a gradual transition. The traditional view insisted that uncertainty is undesirable in science
and should be avoided by all possible means. According to the traditional view, science should strive
for certainty in all its manifestations and so science should deal with only precision, specificity,
sharpness, consistency etc. Accordingly uncertain situations like imprecision, nonspecificity,
vagueness, mconsxstency etc. should be avoided as they are regard@d unscientific.

The transition from the traditional view to the modermn view of uncertainty began in the 19th
century when study of molecular level became essential in physics. The need for fundamentally
different approach to the study of physical processes at the molecular level motivated the development
of relevant statistical methods viz statistical mechanics. The role played in Newtonian mechanics by
the calculus, which involves no uncertainty, is replaced in statistical mechanics by probability theory.
The analytic methods and statistical methods are highly complementary. The analytic methods based
upon the calculus are applicable only to problems involving a very small number of variables thatare
related to one another in a predictable way. The statistical methdd on the other hand has exactly

opposite characteristic as they require a very large number of 'variables which are related to one
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anotherin a very high unpredicable manner. ‘

" The purpose of probability theory i is to capture uncertamty of a particular type known as random
uncertainty. But there are many uncertainties which are not of random type. They are called non-
random uncertainties and are associated with vagueness, with imprecision and with lack of information
regarding a particular element of the problem at hand. Fuziy set ttfcory is amarvellous tool for handling
these non;randpm uncertainties. The underlying power of fuzzy set theory is that it can use linguistic

variables rather than quantitative variables, to represent imprecise concepts.

76.4 Concept of uncertainty

Uncertainty arise from the following _

i) complexity ii) ignorance iii) chance iv) randomness v) imprecision vi) inability to perform
adequate measurements vii) inconsistency viii) vagueness from natural language etc.

Uncertainties can be divided into following two types (i) Random uncertainty and (ii) Non-
random uncertainty.

Random uncertainty occurs when due to lack of information, the future state of the system is not
known completely. It describes uncertainty in the. occurrance of the event. This type of uncertainty is
handled by probability theory.

Non random uncertainty occurs due to vagueness concerning the description of the semantic
meaning of the events, phenomena or statements. It describes the ambiguity of an event. This type of
uncertainty is handled by fuzzy set theory. | |

Only a small portion of the “information world” is certain, a vast portion of the information
world is actually uncertain. Again in the uncertain information world the portion of the non-random’
type uncertainty is much larger than the portion of the random type uncertainty. The following pi-

diagram shows these proportions®
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Certain

random uncertain

non-random
uncertain

Information World (real situations)

% Random uncertamty verses Fuzzy uncertamty

The classical concept of set holds for both the detenmmstxc and the stochastlc cases. The random
uncertainty occurs if the future state of the system is not known. It is handled by probabﬂity theory.
Stationary random processes are those that arise out of chance, where the chances represent frequencies
ui ceurence that can be measured. Problems like drawing balls from an urn, tossing coin and dice,
drawing cards from a pack are examples of stationary random processes.

Now we see how to recognise the random behavior of uncertainties? For example, are the
foliowing uncertainties random? -

1)  uncertainty in the weather prediction

‘ ii) uncertainty in choosing clothes for the next day

iii) uncertainty in buying a car
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iv) uncertainty in your preference in colors

¥)  uncertainty in your ability in parking a car

vi) ,uncerta’inty in caus.ing cancer for consuming tabaco

Although it is possible to xﬁodel all of these forms bf uncertainty with various classes of random
processes, the solution obtained may not be reliable. Treatment of these forms of uncertainty using
fiizzy logic should 'also be done with caution, We should study the characterof the uncertainty first,
then we are to choose an appropriate approach to develop a model of the process. Again same problem
i have many features. As for example, let the weather report suggests that “there is a 80% chance
of rain tomorfow”. It may mean that there has been rain on tomorrow’s date for 80 of the last 100
veurs. It may mean that somewhere in your community 80% of the land area will receive rain. Again it
may mean that 80% of the time of tomorrow it will be raining, Also humans often deal with these
{orias of uncertainty linguistically such as “it will likely rain tomorrow”. And with this crude assessment
oi'the possibility of rain, humans can still make appropriately accurate decisions ébout the weather.

Another important pomt is to be noted here. The statement “I think it will rain today” is not
<z in, This statement may be true with a degree of certainty. Let the level of certainty be 0.8. It is the
nuth value of the statement. The degree of certainty sounds like probability. But it is not quite the
sanie. Probabilities for inutually exclusive events cannot add up to more than one, but‘their fuzzy
values may. Suppose that probabilfty of a cup of tea being hot is 0.8 and so probability of being cold is
1.7, e probabilities must add up to 1. On the other hand, the truth value of the proposition “a cup of
ten is hot” may be 0.8 and the truth vahie of the proposition “a cup of tea is cold” may be 0.3. The sum
ot these two truth values here is 1.1 not 1. ’ o

The problems occuring in the real world are in genéfal complex owing toan element of uncertainty
either in the parameters which define the problem or inthe situaﬁon in which the problem occurs.

Probabitity theory can be applied only to a situation whose characteristics are based on random process
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i.c. process in which the occurance of cvents is strictly determined by chance. In reality therc are a
large class of problems whose uncertainty is characterized b'y a non-random process. Here the
uncertainty may airsc due to following reasons:

i)  ducto partial information about the problem-

ii)  due to information which is not fully reliable

iii) due to inherent imprecision in the language

iv)  due to reccipt of information from more than one source which are contlicting.

Fuzzy set theory has immensc potential for effective solving of uncertainty of above types which
arc non-random in nature.

We should not be confused between probability value and membership value. If we ask the question
“what is the probability of an individual x to bc a member of a subset A?” The answer may be “the
probability for x to be a member of A is 90%”. Here the chance of the correct prediction for mcmberéhip
of x is 90% membership in the set A and 10% non-membership in the same set. We may note that in
the classical set theory, it is not permissible for an individual to be a patial member of a set. Partial
‘membership is only permissible in fuzzy set theory. .

Let us consider an cxample and sec how we can combi:he two types of uncertainties. Let a bag
contains ten identical red balls with different gradation of réd colour. Let the grades of 10 balls be
0.95, 0.93, 0.91, 0.9, 09 0.7, 0.7, 0.0, 0.0, 0.0. Herc the balls are identical and three balls have
membership grade 001 .e. three balls are completely non-red. The other seven balls are red having
different gradation in red colour.

Ifa ball is drawn from thé bag at random then the probability that the ball drawn is red is given by
7/101.e.0.7 asin the bag there arc 7 red balls and 3 non-red balls. Here the drawn ball may be any one
of the 10 balls, even non-red one. If the experiment is'performed a large number of times then we
expect 70% of the drawn balls to be red. o

On the other hand “Grade of membership of a ball is 0.7"* means a particular ball whose grade of
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rednessis 0.7, 1t can never be any other ball havmg grade dxfferent from 0.7, however it may be any
Qneaf ﬁle“iwn balls having grade 0.7. .
To be more preclse inthe expemnent of drawmg red balls at random from the bag we note. that
-l balls are not red of same grade i.e. they have diffrent gradctxon of being red.So the statement that
tiiere are 7 red balls out of 10 balls is not fuﬂy correct as someone may disagree to regard the balls
~ith grfadetaon 0.7 as red
- We give the followmg argument to tackel the situation.First,we have to select a value of

| m emb,crshxp, above which we would be willing to regard the c_olour as red. For cxmn_plg, any ball with

a mcmbcrship value above 0.8 in the fuzzy'setof “red balls” would be cbnsidere’d asred. Secondly we
. .' would have then to know the propomon of the balls in the bag thathave membershlp values above 0.8.
i1ie number of such ballg is 5 havmg membershlp grade 0.95,0.93, 0 91,0.9 & 0 9.

5 1
Thustheprobabxlﬁyofrandonﬂyselennngredballsﬁ'ombebagls 0=3 : On the otherhand

. 3.
if we .r;cga,td the balls having gmde more than 0.9 as red then the'pr’obability is '— .
Hence first we have to access the ambiguity of redness and then we are to determine thepnobabmty

i hus we have been able to combine both typcs of uncertainties random and non-random.
" F mally we againrecollect that - ’
i) Random uncer!mnty descnbw uncertamty in the occurance of the event i.e. uncertainty :
* arising due to random occurance is handled by probablhty theary.- :
ii) Non-random uncertairity describes amblguxty of an event. Itanses dueto belongmgness as
mhandledby fuzzyset theory. '
6.6 Power of humanity thinking , : |
, Ouroommonwayto cmveymfoxmauomshvmglanguage. Byﬂmevaynauneefhvmghnguage,lt
is vague and impresics. Yet it is most powerful form of communication and information exchange B

among humans.
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Despite the vagueness, huinans have very little trouble in understanding one another’s concept
and ideas. Our understaning—is based largely on imprecise human reasoning. This imprecision is a
fortn of information that can be quite useful to humans. | ‘ |

Human thinking and feeling, in which ideas, pictures, images and value systems are formed, has
certainly more concepts or comprehensions than our daily language has words. Our thinking is unlimited
but words in a dictionary is definitely limited. o |

The following diagram shows the real situations and our power of thinking.

Power of
human thinking
and feeling

Power of
logical language

Power of
living language

76.7. Applications of fuziy set theory

Fuzzy set occurs almost in all areas in which human judgement, evaluations and decisions are
important. These are the areas of decision making, reasoning, learning and so on. '

More specifically application area of fuzzy set theory covers .

i) Engineering ‘

ii) . Phychology . -

iii) Medicine

iv) Ecology

v)  Artificial Intelligence

vi) Decision theory
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vii) Pattern recognition

viii) Sociology

i}

x)

i)

Meteorology
Computer sdience "
Manufacturing and so ori.

Practical implementation on fuzzy set theory are as follows :

P Fuzzy air conditioner that controls temparature chénges-accbrding to human comfort.

Fuzzy washing machine which detect the colour and the kind of cloth present in the machine
and accordingly acts .. controls the revolution and select the type and amount of detergent.
Fuzzy v:deography offering fuzzy focussing and i unage stab:hzatlon

‘ Fuzzy computer wh1ch Qontrols a number of stations in the subway system, the ride is so

- smooth that the nders do not need to hold anything,

vi)

Fuzzy anti-skid brakmg system to luxary cars.
Fuzzy rice cookers.

vii), Fuzzy vacuum cleaners.

and so on.

.4 important Quotations

Relating to the notion of fuzzy set thcory and fuzzy logic great tlunkers and phllosophers made

+i: remarkable statements. We state here some of them.

i)

ii)

Charles Sanders Pierce (1839-1914) ; He laughed at the ‘sheep and goat separators’ who

split the world into true and false. “All that exists is continuous and such contimums govern

knowledge”. }
Bertrand Russell (1872-1970) : “Both v&gueness and precision are featurs of language,
not reality. Vagueness clearly is a matter of degree”. All traditional logic assumes precise

symbols. So traditional logic is not applicable to this terrestrial life.
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ili) Jan Lukasiewicz (1878-1956) : He proposed a formal model of vagueness, a logic ‘based
on more values than TRUE or FALSE’. 1 stands for TRUE, 0 stands for FALSE and '/,
stands for possible.

(Actually the trhee-valued logic by Lukasiewicz stayed just one step away from the
‘multivatued fuzzy logic by Zadeh and can be considered as its closest relative).
- iv)  Max Black (1909-89) : He proposed a degree as a measure of vagueness. |

v)  Albert Einstein (1879-1955) : “So far as the laws of mathematics refer to reality, they
are not certain. And so)far as they are certain, they do not refér to reality™. '

vi) Lotfi Zadeh (1923) : He introduced fuzzy sets and logic theory. ‘As the complexity of a
system increases, our ability to make precise and significant statements about its behaviour
diminishes until a threshold is reached beyond which précision and signiﬁcanc'e (or

- relevance) become almost mutually exclusive characteristics.....”. A corollary principle
may be stated succinctly as “The closer one looks at a real-world problem, the fuzzier
becomes its solution”. |

76.9 Mathematical modeling of fuzzy sets ‘
_The mathematical modeling of fuzzy concepts was presented by Zadeh in 1965. His contention
is that meanmg innatural language 1s amater of degree. If we have a proposition such as “Ram is old”,
then it is not always possible to assert that it is either true or false. When we know that Ram’s age is x,
‘then the truth" or more correctly, the “compatibility” of x with “is.old” is a matter of degree. It
depends on our understandmg of'the concept “old”. Ifthe propoomon is “Ram is under 50 years old”
and we know Ram s age, then we can give a yes or no answer to whether the proposition is true or not.
This can be formahzed a fit by considering possible ages to be the interval {0, o), letting A be the

subset {x xe [0 m)} and x<22}, and then determining whether or not Ram’s age is in A. But “old”

cannot be dgﬁned as an ordinary subset of [0; o). This led Zadehv was led to the notion of fuzzy
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subset. Clearly, 60 and 70 years olds are old, but with different degree as 70 is older than 60, This
suggests that membership in a fuzzy subset should not be on a 0 or 1 basis, but rather ona 0 to 1 scale.
So the membership should be an element of the interval [0,1].

An ordinary subset A of a set X is determined by its characteristic function y , defined by

lif xe A |
AL {Oifx )

The characteristic function of the subset A of the universal set X specifies whether or not an
element is in A. If the value of the function is 1 then the element is in 4 and if the value is 0 then the
element is not in A. There is only two possibility either the element is in 4 or is not in 4. The
characteristic function can take only two possible values 0 and 1, i.e. the range of the characteristic
function is {0, 1}. This notion is generalized by allowing range of the function to be the closed
interval [0, 1]. This generalized function of the characteristic function is called membership function
and is denoted by p, (x) and the corresponding fuzzy subset will be denoted by 4. Thus
by (%) X - [0,1] whereas %, (x): X —{0,1}.

Hence the functions whose images are contained in {0, 1} correspond to ordinary or crisp -
subset of X and the functions whose images are contained in [0, 1] correspond to fuzzy subset of X It
is common to refer to a fuzzy subet simply as a fuzzy set. henceforth we also will do that. ‘

Let us again-consider the set “old persons”. Here “oid” is not well defined in thei\js.:hse of classical
ﬁathematics and cannot be precisely measured.

If we know that age of Ram is 55 years, it is not clear if Ram is 6ld, also it is not clear whether
Ram s old ifhis age is 49 years or 61 yeérs‘ In classical set theory, we may draw a line at the exact age
of say 80. As a result, a person who is exactly 80 years old belongs to the set and is considered to be
“old” but another person of one-day less than 80 years will not be considered “old”. This distinction is

~ mathematically correct, but practically unreasonable. So we need to quantify the concept “old”, Instead

of a sharp cut at the exact age of 80, we use common sense and say “absolutely old” persons are those
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who are 80 year old or older and say “absolutely young” persons are those who are 30 years old or
younger. All the other persons are old as well as young at the same time, with different degrees of
oldness and youngness depending on their actual ages. Thus the membership function of the fuzzy set

4={old persons} may be defined as
0,x<30
u, (x)=12222 30 < x <80

50
l,x 280

The graph of 1, is given in Fig. 1.

|
!
|
t
|
f

0 30 55 80 | 120

Figure 1

A pefson of 55 years old is considered to be “old” with degree 0.5 and at the same time ‘young’
with degree 0.5. A person of 40 years old is considered to be “old” with degree %’1 and ‘young’ with

degree %/ . We note that a person of age 30 yrs to 80 yrs. is neither a member of 4 fully nor he is
5. W
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non-member of 4 fully. He has a partial membership to the fuzzy set 4.

Depending on the concept of “old” the membership function i, (X) will change. It may be
linear as well as non-linear. So the set A can have infinite possible membership function M., (x).

Figures 2 and 3 shows two other ().

l
l
|
|
l
I
!

A\ 4
*®

0 50 100

Figufc 3
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" Let B be the fuzzy set “young persons”. We take the universal set as persons of all ages i.e. set
“of all positive real numbers. The membership t}mction K, (¥) may be defined as

1,x <30

Rp(x)= 401;x,30<x< 40

Lx240

Figure 4 shows the graph of this function.

Hs
A

\J

v
=

Figure 4

Another membership function of B may be taken as

(1,if x<30
60-x

\ 30
Hy (x)=< 50-x

if30<x <40

if40<x <50

0if x>50
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Figure 5 shows the graph of this function. It is piecewise linear.

B

Figure 4

Let us consider another fuzzy set C' = “real numbers close to 5”. One membership function of
this fuzzy set C is given by

(0if x<4.09
x—-4.09

B
“?(x)_* 5.01-x

if4.09<x<5

if5<x<35.01

[0if x25.01

The graph of this function is shown in Figure 6.
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\d

Figure6 -

Another membership function (non-linear) of this fuzzy set C is giveninFig. 7.

1
!
l
I
|
I
]

0 , 5

Figure 7
One more membership function of the fuzzy.set may be taken as

1
Oy
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Figure 7

The graph of this function is given in Figﬁre 8.
76.9.1  Fuzzy sets with a finit;a‘snpport
So far we have considered fuzzy sets on infinite sﬁpport i.e. with the universal set as infinite set.
Now we consider situations where the universal set is a finite set. Let the finite universal set be
X ={%,%,,....,x,}. Let 4c X and grade of membership of x, € 4 be a,. Then the fuzzy set 4 is
expressed by the notation
{(x.a)e 4x[01]c X x[0.1]}

Here a, =p ,(,), So the notation becomes

(1, (5)) € 4x[o1] = X x[0.1]}
Oﬁen in the literature the following nofation is uséd ‘
4¥a,/x,+d2_/x2+.....+x,,/x,, | |
e, A=p,(x)/x g (x)/5 ot ug(%)/%,
Here the slash is employed to link the elements of the support with their grades of membership

in 4, and the plus sign indicates, rather than any sort of algebraic addition, that the listed pairs of
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:lements and memberéhip grades collectivley form the definition of the set A. For the case in which

a fuzzy set 4 is defined on a universal set that is finite or countable, we may write, respectively,

" X
4:Zaz‘/xi or, {1:2‘11/3‘:
i=]

=1

i=l =1

e, 4=2m,(x)/5 or, 4=3m,(x)/x.

76.9.2 Example

Let us consider the fuzzy set 4 consisting of six ordered pairs as

A= {(xl,O.Z),(xz,l),(x3,0. 8).(%4,0.3).(x;,0.5),(x,0.1)}.

The elements x, i = 1, 2, ..., 6 arc not nccessary numbers. They b'clong to the classical set
{x,%, %) which is a subset of a certain universal set X, Here the membership function p,(x,) of
4 takes the following values on [0, 1].

p4(xl) =0.2,n, (xz‘) =1, pd(x3)=0.8
B(x)=03, p,(x)=05 u,(x)=0.1

The following interpretation could be given to p,(x,),i=1.2,.....6. The element x, is a full
inember of the fuzzy set 4, while the element x, is a mémber of 4 alittle, x, and x, are a little more
members of 4 ;kthe élement x, is almost a full member of 4, whilé X, is more or less a member of 4.

Now we specify in two different way the element x, in 4. '

i)  First we assume that x, are integers e.g. xl'iz 1,x2 =2,x,=3,x, =4,x, = 5,x, = 6; they

belong tothe set 4 = {1,2,3,4,5,6}, asubset of the universe N = {1,2,3,....c}. The fuzzy
set 4 then becomes
4={(1,0.1),(2,1),(3,0.8),(4,0.3),(5,0.5),(6,0.1)}
The membership function B, (x) are shown in Fig. 9.
- ii)  Secondly, let us consider the universal set X as “All friends of Ram” & 4 be the set“close

friends of Ram”.
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i I 1 > x

- Figure9

'Let 4 = {(Rahim, 0.2), (Jadu, 1), (Kamal, 0.8), (Bimal, 0.3), (Amal, 0.5), (Tapan, 0.1)}
Here x, = Rahim, x, = Jady, x, = Kamal, x,= Bimal, x, = Amal and x, = Tapan.
We note that regarding closeness in friendship of Ram : Jadu is closest, Tapan is little close,

Rahim and Bimal are a little more close, Kamal is almost close, while Amal is more or less close.

76.10 Summary
In this module we have inroduced the notion of fuzzy sets, its necessity, its application area.
Also we have discussed the concept of uncertainty and its types. Finaliy, the mathematical modeling

of fuzzy sets is done.
76.11 Suggested Further Readings

1. Kaufinann, A [1975] Introduction to the Theory of Fuzzy Subsets New York, London, San Francxsco
2. Klir, GJ. and Folger, T.A. [1988], Fuzzy Sets, Uncertamtyand Information, Englewood Chffs
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77.1 Introduction | »
In this module we first consider the definition and anthmenc of Intgrvals. The notionof Interval
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arithmetic is then used to develop the arithmetic of Fuzzy numbers. Fuzzy numbers are nothing but
particular fuzzy sets. Hence operations on fuzzy sets are discussed first. Then the notion of Interval
arithmetic and opéraﬁons on fuzzy sets are used for the development of fuzzy numbers arithmetic.
77.2 Interval Numbers -
77.2.1 Definition
| An interval number is defined as an ordered pairs of finjte real numbers [a, b] where g< b,
When a = b the interval number [a, 5] degenerafes to the scalar reql number ‘a’.
Aninterval number can be thought as ~
(i) an extension of the concept of a real number and also as a subset of the rea Ime [Moore
1979, Alefeld & Herzberger (1983)].
(ii) a simplest form tolerance-type uncertainty w1th no information about the probabilities
within this tolerance range (Nauyen & Kreinovich, 2005).
(iif) a grey number whose exact value is unknown but a range within which the value lies is
known [Liu & Lin, 1998]. o
Thus an interval number represents a set of possible values that a particular entity or variable
may assume: without any prior assumption about exact value and probability measure. In other words,
interval numbers should be ;xscd whenever decision variables can assume different values, but a
probability measure on these values is not available or justifiable. In reality, inexactness of this kind
occurs in countless numbers. An interval number may also be called as an interval.
77.2.2. Set Operations on Intervals |
77.2.2.1 Definition
: ) Equélity - Two intervals [a, b] and [c, d] are said to be equal if and only ifa=cand b=d.

-

(ii) Intersection : The intersection of two intervals [a, b] and [c, ] is defined as

[a,b]N[c.d]= [max {a,c},min {b,d}]
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Note ; [a,6]N[c,d]=¢ ifand only ifa > d~0r c>b.
(iii) Union : The union 'of two intervals [a, 5] and [c, d] is defined as
[4.6]U]e,d]= [min {a,c}, max {b, d}]
provided that [a,6]N[c,d}= cb
(iv) Inclusion : The interval {a, b] is said to be included in [c, d] ifand only ifbothc<agand b<
d, Tt is written as [a,6] =[e.d].
For given two intervals /, = [a, ] and I, = [c, ]
the following six cases may arise :
(Na>d(ii)c>b(i)a>cand b<d
(iv)e>aandd<b(v)a <¢<b<dand (vi)c<a<d<b. |
Table 7 7.2.2.1 shows the various combinations of set-theoretic intersection and set-theqretic

union for these six possible combinations of @, b, cand d.

Cases Intersection () - Union (|J)
i) a>d ) - [e,d]U]a,b]
if) c>b . ¢ - [a.6]U[e.d]
iiya>c, b<d (a0 [, d]
iv) ¢e>a,d<b , [c,d]  [a,8]
V) a<c<b<d | [c;b] . [a,d]
vi)e<a<d<b [a,d] : N X

Table:77.2.2.1

77.2.3. Interval Arithmetic -
Let [a,,4],[a,,b,] and[a, b] be intervals. Then addition, subtraction, multiplication and division

are defined as follows;
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(iv)

v)

(vi)
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Module 77 : Intervals, Fuzzy Sets, Fuzzy Numbers and their Arithmetic

Addition : |
, [al,bl]+[a2,b2:] =[a, +a,,b +b,]

Subtraction :
[a.8]]-[ay,8,] =[a, = b,. 5, — a, ]
Multiplication :
[a,,8,]x[a;,5,] = [min{a]aﬁ,a,bz,b,az,'b,bz},max {a,az,a,bz,b,az,b,bz}]
Division : ' : |
[a,8,]/[a,,b,) =[ min{a,/a,,a,/b,.b,/ay, b /b,} s max{a /a,,a,/b,,b /2y, b, /b,} |
provided that 0 ¢{a,,b, ].
Scalar Multiplication :
k[a,b] =[ka,kb] for k20
=[kb, ka] for k <0.

Reciprocal : ,

‘ - 11 11

If 0 ¢[a,b] then [a,b]" =| min{—,~}, max{—,—
¢|[a,b] then [av] {ml {a b} {a'b”

If 0 e[a,b] then [a,b]" is undefined.

For non-negative intervals multiplication, division and reciprocal reduces to the following.

Multiplication :

[a,.6,]x[a;,6,] = [a,a., 5,5, ]

Division :

["nbx]/{azsbz] =[a,/b2,b1/a2]

Inverse:

[a,6]" =[Yb,Y/a]

Directorate of Distance Education 133



FUZZY SCIS vnvorivnisvisiinsis s s s s ees s es e ses s saes et s et s e sttt st ees et seesees oo

Remarks : : ‘

From 3, 14]+1{5,20] = [8,34] we note that for any x € [3,14] andany y €[5,20], itis guaranteed
that x+y e[8,34]. Also from [2, 8] - [3, 10] = [-8, 5] we note that for any x €[2,8] and for any |
y €[3,10], itis guaranteed that x~ y & [-8,5]. Sointerval arithmetic intends to obtain on interval as
the result of an operation such that the re‘sulting interval contains all possible solutions.

" Again interval arithmetic may produce some untlsylai,results that could seem to be inconsistent
with the ordinary numericéal solutions. As fcn: example ordinary results gives [2, 6]~ [2, 6] = [0, 0], but
from interval arithmetic we have [2, 6] - [2, 6]=[-4, 4] and not [0, 0]. Here we note that [0,0] € [-4,4]
i.€. [-4, 4] contains 0 but not only 0,,mahy others also i.e. 0 as well as all other possible solutions.
77.2.4 Algebraic Properties of Interval Arithmetic ~

We can easily prove the following properties of interval arithmetic.
LetX, Y, Z be intervals then we have ‘
) X+r=r+x
i) X+N+Z=X+(Y+2)
ili) XNZ=x(12)
i) XP=YX
V) Z+0=0+Z=2
and Z0 = 0Z =0 where 0 =0, 0]
vi) ZI=1Z =ZwhereI=[1,1]
) Z(X+Y)#ZX +ZY, excépt when :
(a) Z=[z,z]isapointor
® X=r=0or
(¢) xy=20forall xe X and ye?.
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In general, only the subdistributive law holds :
Z(X+Y)c ZX +2Y.

77.3 Operations on Fuzzy Sets |

Now we proceed to define certain standard set theoretic operations for fuzzy Sets.
77.3.1 Definition : Empty fuzzy set

A fuziy set 4 defined over the universe X is safd tb be empty if its membership function is
identically zeto, i.e. if b, (x)=0 forall xe X. - |
77.3.2 .Defmition : Subset

A fuzzy set 4 is said to be a subset of a fuzzy set B if by (x)<py(x) forall xe X, Thisis

denoted by 4 ¢ B.
77.3.3 Definition : Equality of fuzzy sets |
Two fuzzy sets 4 and B are said to be equal if 4 = B and Bc die.if u,(x)=uy(x) forall
xeX. ‘ (
77.3.4 Definition : Complement

The complement of a fuzzy set 4 defined over the universal set X is another fuzzy set 4
defined by the membership funcﬁon

H g (x)= I-p,(x) forall xe X.
77.3.5 Definition : Union

The union of two fuzzy sets 4 and B is another fuzzy set C defined by the membership
function -

ke (%)= max{pﬁ (x),1t (x)} forall xe X.

' 77.3.6 Definition : Intersection

The intersection of two fuzzy sets 4 and B is another fuzzy set C defined by the membership

function

Directorate of Distance Education - 135



Fuzzy Set. ' ' .
L O SOOI

| Hc (x) = min {p.é (x),pg(x)} for e;l'l xeX.
Befo‘ré studing the properties of fuzzy sets we state the standard properties of érisp sets.
77.3.7 Properties of Crisp Sets o
The following are the important properties of crips sets,
i) Commutativity: 4B =BU A
ANB=BNA4
ii) Associativity : (4UB)UC= AU(BU C)
(4NB)NC=4N(BNC)
iii) Distributive laws :  AU(BNC)=(4UB)N(4UC)
AN(BUC)=(4NB)U(4NC)
- iv) De Morgan’s laws : ( AU B)' = A'.ﬂ B

(ANB) =4 UB'
V) Law of contradiction: 4N A4 =¢

vi) Law of excluded middle: 4|J 4'= X.
77.3.8 Properties of Fuzzy Sets .

Using the definitions of union, intersection and complement of fuzzy sets we now prove the
. properties of fuzzy sets. It is seen that all the properties stated above for ériSp sets holds good also for
fuzzy séﬁs except the law of contadiction and tﬁe law of excluded middle. In the following theorem we
prove this.
77.3.9 Theorem : Prove that for fuzzy sets cdmmutative‘law, associative law, distributive law and De
Morgan's law gife true.

- Proof. We prove distributive law and De Morgan’s law. Cénﬁmulativc law and associative law

can be proved easily.
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Let 4 and B and C be fuzzy sets with membership functions p,(x),1;(x) and p.(x)
respectively. A | |
* 'We prove the distributive law
4U(BNE)=(4UB)N(4UC)
| We have | ' '
R axeng) (%) |
= max[ud (x)s“mc (x)]
=max| , (x), min{ug (x). g ()}
=max| a,min{B,y} | where a=p,(x),p= pp(x) and v =p (x)
=S [say] o |
Agiin |
W aupncauey (%)
= mi“[“m (")’”«.:uc'(x)]
= m.in[max {1 (6 11p ()} max i (), e (x)} ]
= min[max {o,B}, max{a,7}]
=g (x) [say] | |
For any fixed x € X, there arise following six cases
i) asp<y
ii) asys<p
iii) f<y<a
iv) Bsasy -
V) v d <p

vi) y<B<a
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We consider all these six cases in the following table : -

Case min {B,y} fx) max {o,B} max{o,y} g(x)
) aspsy B B B ¥ B
i) asy<p Y Y B Y Y
iii) Bs.ysa B a A} a o o
iv) Bsac<y B o o Y d
V) y<asB Y o B o o
Vi) y<Bf<a Y o o o o

In all these six cases we seé thét fx)=g (x). This is true for any x € X. Hence we have
b tang) (%) = e (¥) forall x € X.

This proves that | ‘
AU(BNC)=(4UB)N(4UC).

We now prove the De Morgan’s law
(4UB) =408

We have

=1-max {“4 (%) (x)}

=1-max {a, B} where = f1,(x) and B = (x)

- £(6) (say) .
and H,mg'(x)

= min {p (x), by (%)}

-
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i = min {1;“4 (x),1= 1y ()}

= min {1 - o, 1-B}
= g (x) (say)
For any fixéd xe X, two ;:aées will qﬁse'
Case () a<p
Case (ii) « > B
He consider these two cases in the following table
- Case  max{a,p} Ax) min{l-a,l-B} - g()
1  as<p B 1-p C1-p 1-p
i) asp o l-a  l-a . 1-a

In both the cases we see that f(x) = g (x). This is true for any x € X. Hence (4U g)'. =4 U.z_g'.
77.3.10 Theorem. Prove that the law of contraction and laW of excluded middle do not hold for fuzzy
sets. ' |

Proof. Law of contradiction is AN4'=¢

and law of excluded middle is AU 4 = X

We have u . (x) '

= min{u (), ()}
=min{p, (x),1-p, ()}
=min{o,1-a} where & =p,(x)

o p(x)=0forxeX |

Forany o.€ (0,1),min{a,1-a} #0

For =0 f;)r}a =] Only min {0, 1 — o} =0

Thus min {0, 1 — &} =0 is not true in general for all x € X.
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i.e. Wyng (¥)=1,(x) is not true in general for all x € X.
i.e. 414" = ¢.is not true.
i.e. Law of contradiction is not true for fuzzy sets.
Again By (%) l
= max {“4 (x),1- “? (x)}

= max{a,1-a} where o = i, (¥)

lfora Oorl
=<1- ocfor0<a</
Locforéé.oml

Shgue(x)=1is not‘t'ruAe in general for all a i.e: for all x e X.

ie.4U4 = X is not true.

Thus law of excluded middle is not Atrde for fuzzy sets.
77.4 Some Definitions A o |

To develop the notion of fuzzy numbers and for the study of the arithmetic of fuzzy numbers we
need certain crisp sets associatéd with fuzzy sets under consideration. These crips sets are called o-
cutand is defined below. |
77.4.1 Definition : a-cut of fuzzy set 4. _ .

The a-cut of the fuzzy set 4 defined ovér the universal set X is the crisp setA_defined by

4, = {x eX:p,(x)2 a}. Here a is any number in (0,1]. - |

77.4.1 Support of a fuzzy set . .

Let 4 be a fuzzy setin X. Then the support of 4, denoted by S( A) isthe cnsp set deﬁned by

S(4)={re Xin ()20}
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77.4.2 Height of a fuzzy set.
The height of a fuzzy set is 4 is defined as
h(4)= sup{uﬁ1 (x):xe X}
77.4.3 Normal fuzzy set
A fuzzy set 4 is said to be normal if its height is one i.e. if sup{;,t,_, (x):xe X} =1,
It fuzzy set 4 is not normal we can normalize .it by redefining the membership function as
w,(x)/n(4),xe X.
77.4.4 Convex fuzzy set A
A fuzzy set 4 in R"is said to be a convex s.et if ahd only if forall x,,x, e R" and 0 <A <1,
1y {7\xI +(1 v}k)xz} > min {“4 (xl),u,_;(xz)}
77.4.5 Fuzzy Number

A convex normal fuzzy set is called a fuzzy number.

The following theorem establishes a relation between the membership function and a-cuts of

fuzzy set.
77.4.6 Theorem. Let 4 be a fuzzy set in X with the membership function 1, (¥). Let A, be the o-

cuts of 4 and X, (*) be the characteristic function of the crisp set A _for a € (0,1]. Then for each

xeX
;.tc,(x)=s”up{oc/\)cﬂ,‘x (x):0<onsl}.

lif x € 4,
Proof. We have X4 = 0if x4

.. For xe A, wehave =]land p,{x)2a "‘
a X4, %

and for x ¢ 4, wehave y, =0 and p,(x)<o.

Nowsup{an,,“(x):0<asl}
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=sup{oc/\x,,u (x):0<a Sué(x)}vsup{a/\x,,“ (x):pd(k) <ocsl}

=sup{a/\1:0<aspd(x)}vsup{aAO:pé(x)<a$l}

=sup{a:0<oc$p4(x)}

=py(¥) .
Remark : For given a fuzzy set 4 in X'we consider a special fuzzy set denoted by oA, for a € (0,1]
whose membership functiori is defined as o |

;.L@ (x)=anA (x) forall xe X.

Let the set S, be defined as

S, = {a p(x)= a} for some xeX}

We call this set as level set of 4.

Result : From above theorem we now get the following theorem
77.4.7 Theorem. The fuzzy set 4 in X can be expressed in the form

A=U{ed, :aeS,}

where | denotes the standard fuzzy union.

This theorem is called the representatioﬁ theorem of fuzzy sets. This theorem essentially tell
that a fuzzy set 4 in X can always be expressed in terms of its o-cuts without explicifely resorting to

its membershlp function 1 ,,( )

Theorem 77.3. 7 is explamed in the following example.

77.4.8 Example
Let 4 be the fuzzy set defined by the membershlp function

0,x<1 _
-1/2,1<x<3
k() =15 /2.3 <x <5
0,x>5
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Its graph is shown in Fig. 77.1. )
Let us consider four o-cuts viz. A,LA,,A andA

~In the following Figures 77.2 — 77.5 their corresponding membershhip functions

\

Hag, ()M, (x),u.(, 4, (x) are shown.

Finally, in Fig. 77.6 the unior of these four fuzzy sets i.e. (-24,)U(-44,)U(-64,)U(-84,)
is shown

ie. U{ad, 10 =-2,-4,6,-8} is shown.

Itis seen thét this is close to the graph of 4 (Fig. 77.1).

This expléins the fact that if we considerall o e (0,1] then we get the graph of 4 i.e.

Hod, :0<a<l)=4

77.5 Some Useful and Important Fuzzy Numbers .
Triangular Fuzzy Number : The graph of the membership function of trinagular fuzzy number

is of triangular shape. It is described by a triplet i.e. 4 =(a,,4,,4;). The membership function is

given by
0 for x<a,
(x) (x-a)/(a,-a) for a,<x<a,
x)=<
“4‘ (a,-x)/(a,-a,) for a,sx<ay
0 _ forx=a,.

H
The graphisshown in Fig. 77.5.1 A
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~  Trapezoidal Fuzzy Number : The graph of a trapezoidal fuzzy number is of the shape of a
trapezium. It is described by a quadrupleti.e. 4=(a,,a,,4;,4,)

', - The membership function of such a number is given by

( 0 © for x<a
(x~a,)/(a,~a)) for a, <x<a,
M, (x) =1 1 fora, <xsa,
(a,-x)/(a,; - a;) for a, < x<a,
0 forx2a,.

- The graph of trapezoidal fuzzy number is shown in Fig. 77.5.2.

v

l l
| |
I |
l I
| |
| J
a, a

Y 3 4

Fig.77.5.2
Rectangular Fuzzy Number (Interval Number) : Its graph looks like a rectangle, Itis a .

special case of trapezoidal fuzzy number. It is nothing but an interval number. It is also represented by

a quadruplét i.e. 4=(a,a,,a,,0,) whose first two and last two compondnets are alike i.e.
4=(a,a,a,,a,). The membership function is given by

0 for x<q,
pi(x)=31fora sx<a,
0 for x > a,.
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Its graph is shown in Fig. 77.5.3.

~
L

Fig. 77.5.3
Note : We note the foliowing irﬁpoﬂant facts that
A trapezoidal number becomes 4 = (a,,4,,4;,4, ) becomes
i) atriangular numbrifa,=a,

ii} aninterval or a rectangular number ifa, =a,and o, =q,

iii) a real number if @, =a,=a,=a,.

Gaussian Fuzzy Number : It is described by a triplet 4 = (m.o,, G, ). The membership function
is given by | |

X—=m

e ° forx<m
Hy (x) =Y xem .

. 2 :
e “forx>m

Its graph is shown in Fig. 77.5.4. It is a symmetric curve about the linex =m if 6, = 0,. In

general it is not symmetric.
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‘Fig.77.5.4

m

77.6 Zadeh’s Extension Principle |
_ - Zadeh’s extension ‘principle is a very impbrtant.tool in fuzzy mathematics. This principle
provides a procedure to fuzzify a crisp function. This type of fuzzification helps us to study mathematical -
relationships between fuzzy entities, Fuzzy arithmatic with fuzzy numbers is based on this principle.
Let f: X Y bea crisp function. Let P (X) and P (¥) be the sets of all fuzzy sets of Xand ¥
A reSpectiQ_ely. The function f:X —Y induces the function f: P(X)—> P(Y) and the extension
principle of Zadeh gives formulas to compute the membership function of the fuzzy set f(4) in¥ in
terms of the membership function of fuzzy set 4 inX. |
77. 6 1 Definition : Zadeh’s Extensnon Principle
~ Let £:X — Y beamapping of the formy-—f(x) and A be any fuzzy set of the ﬁxzzypowerset
P(X) of X, If 4 ismappedto B byfi.e.if £(4)= B then the membership function of B is given by

“f(,{) (y) = “B(y) = sup{p.,,(x):x € X,J/:f(X)}
More generally, let fuzzy sets 4,, 4,,..., 4, be defined on the universe X, X, ..., X, respectively
’I’hemappmg SiXix X% xX,~»>Y of the form f(x} X35 X, ) = y allows us to determine the

membership function of the fuzzy set f (4,45 4,) = B as follows by the extension principle,
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g ()= sup| min {jr, (5ot (%)s oosbty, (£} 19 = £ (%3 5%,) ]

Zadeh'’s extension pirnciple is a very powerful idea and is one of the fundamentals of fuzzy set
theory. It gives us the ruie of calculation of an output of a fuzzy System when we know the structure of
the input fuzzy system. .

77.7 Arithmetic of Fuzzy Numbers _

Using Zadeh’s extension principle, the arithmetic operations on fuzzy numbers are defined as
follows.

Let 4 and B be two fuzzy numbers then additior; Subtracﬁon, multiplication and divisidﬂ are

defined as follows.

Addition : Fyeg (2)= sup [min{p, (x).1p (M)} |-

Subtraction : Hss(2)= i‘;‘f"[mm g ()11 ()} ]

Multiplication : Mes(2)= f:g[min.{“é (x). Hg (v )}]

Division : a3 (2)= ’s:?v[min {“d (%),1g (J’)H

77.7.1 Example. Using the addition rule for fuzzy numbers shqw that 3+7=10 for real numbers. |
Solution. We know that every real number is a particular ﬁJzzyAnumber. Let3=4 &7=B.
Then their membership functions are

“4'(x)‘={

lforx=3
Oforx #3

lfory=7
Ofory=7.

.-and By (¥)= {
From definition the membership function of 4 +§ is given by

hep(2)= sup [min{u, (x), 1 (1)} ]
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Forz 10 we havel 4,5 (Z)—- SUP [mm{u, (x) Kp ()’)}]

= sup[mm THEININ (10 x)}] = sup[B(x)](say

x 1y (%) 1y (10-) B(x)
x=3 1 1 1
x#3 0 0 0

“ Ryp(2)=sup{l,0} =1.

" For z#10 wehave B (2) = sgp[min{m (x).1tp (2~ x)} | = sup[ B(x)]. Gs2)

x ,(x) pg(z—x) B(x)
x=3 1 . ' R , 0
x#3 0 Qorl | 0

By (z)=sup{0,0} = 0.
Hence we have 1, 5(2) =1for z=10
=0 for z #10.
This proves that 4+ B =10 ,
77.7.2 Example. Usmg addition rule for fuzzy numbers, prove that [3,5]1+1[4,8]=17,13]
Solution. Let 4 =[3,5),8=[4,8] and C=[7,13]
[ofor x<3

Then 1, (x) = 1for3<x<5
 Oforx >3

(0for y <4
pp(y)=11forasys<8
' (Ofory >8
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Ofor z <7 ,
and Ho(2z)={1for7<z<13
' Ofory >13.

We have to prove that 4+B=C

From the addition rule for fuzzy numbers we have

e (2)= sup [ min{i (), 1g ()]

= sup [min {H4 (x),p.g (z —~x)}]

X+y=z

= sup g(x)where g(x) = min {u4 (x),p.,_, (z—-x)}.

xiy=z
Forany z <7 we have '
x - Hy(x) My (2 —x) g(x)
x<3 ’ 0 0orl 0
3gx<5 1 Qas-w0<z-x<4
- x>5 0 Oas-oo<.-‘z,-x<2 0

- Forz<7we have ,,,(z)=min{0,0,0} =0

For any z with 7 < z<13 wehave

x () pp(amx) g(x)
x<3 0 Oorlas 4<z—-x<w 0
3<x<s 1 Qorlas2<z-x<10  Oorl
5 | 0 Dorlas—®w<z-x<ow 0

. When 7 < z<13 then 1, ,(2) =sup{0,1} =1.
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For any z with z > 13 we have

x ky(x) K (z-x) g(x)
x<3 0 0as10<z-x<w 0
3<x<5 1 ‘ 0as8<z—x<m 0
x>5 .0 Qorlas —w<z—-x<® 0

-, When z> 13 then i ,,,(z)=5sup{0,0,0} =0

Oforz<7
Thus p,,, (2z){1for7<z<13
Oforz >13.
Note : In general using addition, subtraction, multiplicaton and division rule for fuzzy numbers

we can prove the laws of addition, subtraction, multiplication and division for intervals. This is shown

below.
77.8. Arithmetic Operations on Fuzzy Numberé. using a-cuts. |
In Theorem 77.4.7 we have proved that any fuzzy number can be expressed in the form‘
d=U{a4, :aes,}
where a4, is a special fuzzy set with membership function
Hoy, (x)=any, (x) for all xe X.
Since fuzzy number is norﬁaal convex set, it follows that a4, is nothing but aninterval number.
We denote it by (4), . |
‘Thus above result becomes 4 =U{(4), :0<a <1}

To perform arithmetic operations on fuzzy numbers using this result we proceed as fbllows.
Let 4 and B denote fuzzy numbers and * denote any of the four basic arithmetic operations
{+,= .4}

Thusforzg:U{(zg)a :O<a$1} and@=U{(§)4:0<a_<.l}.
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Using above result we get A
A*B= U{(A) *(B), :0<as<l}. .
77.8.1 Example: Letus consxder two lramgular numbers 4 and B with membership functions givenby

,

0 forxs—-l
(x+1)/2 for-1<x<1
(3-x)/2forl<x<3

0 forx>3

py(x) =1

0 forx<1
(x-1)/2 forl<x<3
(5-x)/2 for3<x<5

0 forx>S.

pg(x);<

_ Togeta-cut of 4 we have from i, (x)
(x+1)/2=0 & (3-7)/2=a
ie x= 20— 1 & x=3-2a
. a-cutof 4 is(4), —[2a 1,3-2a].
Slmxlarly, to get a-cut of B we have from 1, (x)
(x~1)/2=0 & (5-x)/2=0. |
ie. x=20+1 & x=5-20
. - cutof BIS(B) =[2a+1,5-2a]. |
Now (A) +(B), -[20, 1L,3- 2a]+[2a+1 5- 20:.},
=[4a,8-4a]
(4), -(B), =[20-1,3-2a]~[2a +1,5-2a]
=[4a~6,2~4a]
- 4+B=U{[40,8-4a]:0<a s}
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' and 4- B=U{[40-6,2-4a]:0<as1)
Now 4o =x gives o= x/4 |

and 8 4o = x gives a = (8—x)/4

r

0 forx<1
x/4 for 0< x <4
(8-x)/4 for4<x<8
0 forx28.

LA+ B=

Again 40~ 6 = x gives .= (x+6)/4

. 2-4q=x gives a=(2-x)/4

0 forx<-6 °
(x+6)/4 for —6<x<-2
(2-x)/4 for-2<x<2

0  forx22.

#4-B=

S N

In terms-of triplet notation we see¢ that |
4=[-1,13],B=[13,9]
and 4+B=[0,4,8], 4- B=[-6,-2,2]
' Note : We see that 4+B=[~1+1,1+3,3+5]
- and 4-B=[-1-51-3,3-1]
77 8.2 Rules for addltion subtractnon and scalar multiplication of triangular fuzzy numbers
Theorem : If 4= [a, ,b,¢,]and B= [az, by, ¢, ] then prove that
A+B=[a+a,b+b,c, +c,],4-— B=[a,-c, b -b,¢ -a,] and
{[kal,kb,,kc]fork>0 |
[ke,,kb,, ka Jfork <0

Proof.Here 4=[a,b,c ] and B=[a,b,¢,].

Directorate of Distance Education ’ 153



The mexhbership functions of 4 and B are given respectivcly by
{ o | forx<a
b, (x)=1 (x-a)/(b—a) fora <x<b
7 V@ - 2)(e, - by) for b <x<e
o 0 - forx2¢,.

(0 foi'x <a,
(x) = (x-a,)/(b,—a,) fora,<x<b,
& B (e, =%)/(c, —by) for b, <x<c,.
0  forx2c,.

To get a-cut of 4 we have from i, (v)

(x-a)/(h-a)=a and (¢ - x)/(c, b) o

" Fromthese x=c(b —q)+a and x=¢ - a(e - b)
.'.({,1)0l =[a(b-a)+a,c -—a(c, -5)]

- To get -cut of B we have from p,(¥)

(x~a)/(5, - @) =0 and (¢, ~2)/(;~b;) =t
From these x = a(b (.72)-*-a2 and x=¢, - a(c, - b)
(B\ [a( —-az) “ Gy Cy a(cz—-.)a)]
1 Tsmg addition rule for Inferval pumbers we get
(4), 4v(B’) =[o(b+b,~a~ az)-!-cz,J-az,c,-l-c2 a(q+ey~b=5)]
sA+ B U{[a(b +b,—a, - az) ¢+ 8,6 +Cy oc(c,-!-c2 b, 5,)]: 0<as‘}
From a(b -b,~ o, —a,)+a +a, =x wehave |
a= f*——"-(z)/fb -b, a-—f*)-
From x=¢ +¢, = c(c,-&-c, b c,\v(chaw

_a=(ara-%)/(a+e-b~b)
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Hence we have

0 forx<a, +a,
(x)= (x-a-a,)[(b+b,—a ~a,) fora +a, <x<h +b
x
e =Y e, —x) (e 4, ~b—by) forb +b, <x<e+e
0 forx>c,-t—c2
ie. 4+ B=[a+a,b +b,c +0,]
To get subtraction rule we have .
(4),-(B), =[:cc(b1 -a)+a -¢,+o(c, ~b_2),¢, —oc(lcl ~b)-o(b, —~az)—a2]
=[a(b, ~a,+¢,-b))+a —c,¢,—a,-afc - b +b, -az)]
. 4-B= U{[a(b —a +cy~by)+a, —cyc—a,—afc, - b +b, - az)] 0<(x<1}
From o(b, —a,+¢, ~b,) +a,—c, = x we get
*(x-a, +¢,)/(B +¢,~a,~b,)
Fromc, a,~ofc, +b,— b - az) x weget
a=(x-c+a)/(c,+b,~-b—-a,)
(0 forx<a -c,
(x~a +c,)/(b+c,—a,—b,) fora —c,<x<h -b,

(x-¢ +a)/(c,+b,~-b -a,) forb-b,<x<c~a,
0 forx2¢ -aq,

" Hyg (%) =1

ie. A-B=[a,-c,,b-b,c ~a,)
To prove the scalar mu_ltiplicaﬁon rule we note that the a-cut of 4 is
(4)0‘ = [a(b, -a))+a,c —afc —b‘)]
From the rule of séélaf multiplication of intervals we have
) _{[ka(b, ~a))+kay, ke, ~ kat(c, ~ b, ) ] for k20
e | [eey ~ kou(c, ~ 8, ), kau(b ~ a,) + ka, Jfor k<0
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.. For >0 wehave

kd =U{(ka (b~ a) + ka, ke, - ka(c, - §)]:0< e <1}
Now x = ko(8 —a,) + ka, and x = ke, — ka(c, —b,) gives
o =(x~ka, ) k(b - ;) and o = ke, - x)/k(q -5).

. For ‘(e > wehave

,

0 . foriska, L
(x—ka))/k(b,—a,) for ka, <x <kb,
(ke, — x)/k(c, - b)) for kb < x < ke,

0 forx 2 ke,

p.é(x)m

L
This gives k4 =[ka;, kb, kc, ].
Similarly for k£ <0 we have

: kzj:U{[kcl—-ka(c, ~b,),ko.(b~a,)+ka, |
Now x = ke, —ket(c, — b, ) and x = kau(b, — @)+ ka, gives
o =(ke,~x)/k(c,~b) and @ =(x~ka)/k(b ~a,).
- For k<0 we have

0 forx < ke,

(ke, ~x)/k(c, b)) for ke, < x < kb,

| ”M(x),m(x—-ka,)/k(b.—a;) for kb, < x < ka,
0 forx>2ka =

This gives k4 = {ke,, kb,, ka, |

[ka,, kb, ke for k20

t finally kd = 0.
Hence we get finally £4 {[kc',kb‘,ka,]fmk<0-

77.8.3 Rules for addition subtraction and scalar ninltiplicatio’n of trapezoidal fuzzy numbers.

Proceeding exactly in the same way as triangular fuzzy numbers we can casily prove the following
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rules.
Addition : If 4 =(a,,a,,a,,a,) and B =(b,,b,,b,,b,) then
A+B=(a +b,a,+b,,a,+b,a,+b,) |
Subtractioin : If 4 =(a,,4,,a;,a,) and B =(b,,b,,b,,b,) then
A-B=(a,-b,a,-by,a,~bya,—b)
Scalar Multiplication : If 4 =(q, ,az,a's,ad) and k is a scalar then

o~

_ { [ka,,kaz,ka3;ka4]for k>0
[ka,, kay, ka,, ka, | for k <O.
- 77.8.4 Rules for addition and subtraction for Gaussién fuzzy numbers
Addition : If 4=(m,,0,,,0,,) and B=(m,,o,,,0,,) then
4+B=(m,+m,,0,,+6,,0,,+0,) . |
Subtraction : If 4 =(m,,0,,,0,,) and B= (mb;cl,,,cz,,) then
A~B=(m,—m,,0,,+0,,0,,+06,).
77.9 IMustrative Examples o
77.9.1 Exzimple. Show that for interval numbers distribﬁﬁve law does not hold in general.
Solution. Let X=[1,4], ¥=[2, 5] and Z=[3, 8].
L X+Y=[1+2,4+5]=[39]
Now(X+Y)Z
=[3,9] [3,8]
=[9, 72]
and XZ+YZ
=[3, 32] + [6, 40]
=[9, 72]
(X+ NWZ=XZ+YZ
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Again let X=[-1, 3], Y=[2,4], Z=[-3,-1]
~X+NzZ .
=[1,7][-3,-1] 4
= [min {-3,~1,~21, -7}, max {-3, -1, -21,-7}]
=[-21,-1] |
XZ+vZ
- =[min {3, 1,-9, -3}, max {3, 1, -9, -3}] + [min {—6,'—2, ~12, -4}, max {6, -2, -12, -4}]
=[-9,3]+[-12,-2] | a |
=[-21, 1]
.'.(X+Y)Z cXZ+YZ.
Hence distributive law does not hold in general. .

77.9.2 Example, Show that the fuzzy set with following membership function is neither normal nor convex.

0 for xel
3(x-1)/8 forl<xs<3
(6-x)/4 for3<x<4
Re() =1 G2 22)/20 fora<x <6
3(7_—x)/5 for6<x <7

0 forx21.

\

Solution, We first d‘xlraw the graph of this fuzzy set.

N

|
I
l
I

N | .
of @) GO 40

b

f——>x

6,0) (1.0)

Fig.77.9.2 , :
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From the figure we see that the height of this fuzzy set is % which is less than one. Hence the

fuzzy set is not normal.

To show that the fuzzy set is non-convex we consider two points x,=3 and x, =6 -
Now i, (x) = ¥4 and w, (%) = %4
.'.‘ lnin{}lé (x| )7 p,g (x2 )} = min {y’%} K %

Agai’nfor?&=%
Ax, +(1-1)x, =-§»x3+~;—x6:4
.'.p/_,{?kxl +(1—'k)x2}=p.4(4)=%

- But %<% Py {Mi +(l',-}")x2} < min{pd CYNTY (xz)}'

This shows that 4 is not convex set.
77.9.3 Example. Evaluate the following
2(5,6,8,12)+ 3 (-1, 3,4)=5[-3,2] + 8.
Solution. 2(5,6,8,12)+3(-1,3,4)-5[-3,2]+8
2(5,6,8,12)+3 (=1,3,3,4)-5(-3,-3,2,2) +8 (1, 1, 1, 1)
= (10,12, 16,24) + (-3, 9,9, 12) - (~15, 15, 10, 10) + (8, 8, 8, 8)
= (15, 29, 33, 44) — (-15, 15, 10, 10) -
— (15-10,29-10,30 + 15,44+ 15)
= (5,19,45,59).

'77.10 Summary
In this module the notion of interval numbers is introduced first. Then operations on fuzzy sets

are introduced. Fuzzy numbers are defined and arithmetic operations on them are discussed. The
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famous extension principle of Zadeh is taken into account for this purpose. The arithmetic operations

on fuzzy numbers are considered as an extension of arithmetic operations on interval numbers by

represénting fuzzy numbers as union of a-cuts. All these are illustrated with the help of examples.

77.11. Suggested Further Readings

1.

(FS

© % N oA
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Module 78 : Application of Fitzzy Sets

M.Sc. Course
im0
Applied Mathematics with Oceanology
o and
Computer Programming
PARFD | |
Paper-VII Group—B

Module No. - 78
FUZZYSETS

(APPLICATION OF FUZZY SETS)

~ Content |
78.1 Introduction
78.2 Classification of fuzzy LPP
78.3 Bellman and Zadeh’s Principle
78.4 Verdegay's approach to solve fuzzy LPP
78.5- Wemérs’ method for solving fuzzy LPP
78.6 Zimmefmann’s method to solve fuzzy LPP
78.7 Illustrative Examples

78.8 Summary
78.9 Suggested further readings

77.1 Introduction

In the crisp linear programming problem, the aim is to maximize or minimiz¢ a linear obj ective

function subject to some linear constraints. But in many real life practical situations the LPP can not
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- he specitied precisely. The objective function and/or the constraint functions appears in the problem
in the fuzzy sense having a vague meaning. To handle such problems fuzzy linear programming problem
is introduced. In such problems the decision maker has more flexibility. Fuzziness may occur ina
linear programming problem in many ways. The objective function may be fuzzy, the inequalities may
be fuzzy or the problem parameters ¢, 4, b may be in terms of f‘uzzy numbers. Different methods are
there to solve fuzzy LPP depending on the character of fuzziness. Some of them will be discussed in
detail in this module. |
78,2 Classification of fuzzy LPP

The crisp linear programming problem may be stated as
Optimize z = cx | '
subject to the constraints 4x <=> 5
and x>0
where c e R". b7 € R™,x” e R" and 4 is mxn real matrix,
We shall use the following notations to represents fuzzy quantitites.
Z for fuzzy objcctive |
b for fuzzy resource
¢ for fuzzy costs
A for fuzzy coefficients matrix
 for fuzzy inequality.
In a fuzzy LPP, the fuzzy environment may occur in the following possible Ways
(i) Instead of maximizing or minimizing the objective function the decision maker needs to
achieve some aspiration level which itself may not even be definable crisply. As for example
the dgcisi,on maker may have a target to “improve the present sales situation considerably”.

(ii) The constraints appeared in the LPP might be vague . The inequalities « < or=or >” may
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not mean in the strict mathematical sense. Some violations may be acceptable within some

tolerence limit. As for example the decision maker might say “try to contact about 1800

customers per week and it must not be less than 1600 customers per week in any sﬁuatlon

(iii) The components of the cost vector ¢, the requirement vector b and the coefﬁc1ent matnx

A may not be crisp numbers instead-some or all of them may be fuzzy numbers. The

mcquaht!es in such situation may be mterpreted in terms of ranking of fuzzy numbers.

The class of fuzzy LPP can be broadly classified as follows.

i) LPP with fuzzy mequahtles and crisp objective function.

if) LPP with crips inequalities and fuzzy objective function.
iii) LPP thh fuzzy mequalmes and fuzzy objective function.
iv) LPP with fuzzy resources and fuzzy coeﬁiczent i.e. LPP with fuzzy parameters i.e. elements

of ¢, b and A4 are fuzzy numbers.

A We have noted that there are different types of fuzzy LPP. Dependmg on the types of the fuzzy ‘
LPPthe methods of solving them are also different. The following table shiows the types of the fuzzy
LPP and the standard available method for solving them. |

Types
I. CrispLPP
2. b
3. Zandb
4 €

Directorate of Distarice Education

Methods

_Simplex method

i)  Parametric Programming
i)  Verdegay’s method
iii) Chana’smethod’

i)  Werner’s method -

ii) Zimmermann’s method

itiy Laiand Hwang’s method

Parametric Programrning
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5. 4 )

6. . band &

7. Awdd r\ Carlsson and Korhonen’s method
8 Aand ¢ |

9. Adadbandé )

W. Zand 4 Lai and Hwang's method

1. ZandAdand b }

78.3 Bellman and Zade;,h’s Principle }

Let the fuzzy cnvironment has a set of pgoals G;,G,,...,G, along with a set of # constraints
€, o C, and each of them is expressed by fuzzy sets on the universal set X, For such a model of
decision making, Bellman and Zadeh proposed that a fuzzy decision is determined by an apbropriate
aggregation of the fuzzy sets G Gz, ,G and ¢, C, yoens C In this approach the: symmetry between
goals and constramts is the main feature. Bellmann and Zadeh suggcstcd the aggregalron operator to

be the fuzzy intersection. The fuzzy decision D is defined as the intersection of all G and C ie.

(G, NG, ﬂ NG )ﬂ(C neé,N..NE ) The membershlp funcuon of D is given hy

i (x) = min {“a (Mo ’"c‘fpm=“a<sr“éz(x>*“c;(x}} |
Onee the fuzzy decision 5 is found, the optimal decision x* is detenningd sy eX satisfying
Ro{") = max s (x)
78.3.1 {llustration of Beliman and Zadeh’s Principle
Zinnnermam) considered the ﬁxzzy decision problem in whlch we are to find a real number x

which is in the vicinity of 15 and is substantially larger than 10. The constaint of the pomt lying in the

wcxmty of 15 may be regarded as a fuzzy constraint ¢ and the goal ofhavmg its value larger than 10

164 Directorate of Distance Education



eeesseenensers Module 78 ; Application of Fuzay Sets

APRARSREANISISREIRAGERGAREOERALPRAPRATRECRAS AERAAPAS RS Tyvrvwr s eRAR PN

is regarded as a fuzzy goal G.
Let us take the membership functionof ¢ and G as follows. -

gé(x)={1+(x— 15y}
“ { 0 for x <10

He (%)= f1+(z-10)"} forx>10.

By the principle of Beliman and Zadeh, the fuzzy decision D is givenby ¢NG.
.+ The membetship function of D is givenby™ |

pp(x) = min i (). ()
" The following graph (Fig. 78.3.1) represents the fuzzy decision and optimal solution x" where

pb(x') = maxp, (x)-

S
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To get the optimal decision x* we proceed as follows,

Wehave iy (x') = maxp, (x).

For o (0,1) we first determine all points for which ., (x) > a.. These decisions x satisfying
u 5 ( ) 2 a will bave at least o degree of membership value. So particular x* for which a becomes
maximum will be the required optimal decision (as for o maximum H5(x) will also become
maximum). | |

Hence the optimal decision x* is the solution of the problem :

Maximize o

subject to Mg (x)2 oi=12,. D

He, (*)z20,j=1,2,..,n
0<a<i
and x>0,
78.3.2 Another classification of fuzzy LPP

The class of fuzzy LPP can be classified also as

(1) Symmetric fuzzy LPP and

(if) Non symmetric fuzzy LPP.

Symmeric fuzzy LPP : The symmetric models are based on the defi Inition of fuzzy decision as
proposed by Bellman and Zadeh. The basic feature here is the symmetry of objectives and constraints,
The decision set here is obtained as the intersection of the fuzzy sets correspondmg to the objectives
and constramts

Non Symmetric fuzzy LPP : In the non-symmetric fuzzy LPP the constraints and the objectives
are regarded as distinct entity. There are two approaches for non-symmetric model. In the first approach
a fuzzy set of decisions is determined first and then the crisp objective functlon is optimized over this

fuzzy set of decisions. This approach leads to a parametric LPP. In the second approach also a fuzzy

166 Directorate of Distance Education



-“"“".'"“—-u.-.-u.. weroy -nuuyn:usuuuN?'“'“’“"-';Aa-..«-.--;_-a:----;--vuununuuubiwoduie 78 N App'{icaﬁon Ofﬁz{ZWSGfS '. )

set of detlsmns is determined ﬁrst and then a s)ultdb]c mcmbcmhxp fanction is dctermnmd for the

objective funcnon The problem is then solved as the symmetric case, ;*
78.4 Verdegay’s approach to solve fuzzy LEP |

Verdegay considered the fuzzy LPP where the incquality is fuzzy or the resource is fuzzy.

The general model of fuzzy LPP with fuzz} inequality is

Maxinumz =cx .

subject to (Ax), $8,/=12,...,m

x=0 oo A . ,

Here the fuzzy constraint (f!x) £ b, has the meaning that the constramt (Ax) < b is absoluteh
satistied, whereas the constraint Ax} >'b,+ p, is absolutely violated. Here p 1s the maximum
tolerance from #, as determined by the decision maker. | »

The g_eneml mbdeI of f‘uzzy I.,PP with fuzzy resources is
Maximize z=cx
subject to (Ax), < 8,i =1,2,m
x20
where b, for all fare in [b,,b, + p,] with givenp,.
Ifin both the LPP with fuzzy constraints and in fu‘zz}f resources, the tolerance limit p is same
and both the LPP has same mombership function then Vardegay proved that both the probiems are
equivalent,
Verdagay showed that this fiizzy LPPis equivalent 1o a CI’iSp parametric LPP, The fuzzy constraint
or the fuzzy resources arc transformed into crisp constramt by choosing appropnate membetship

func,tnon for each constraint. Here (4x), €[8,,3, + p,] and the membership function is taken as a

monotonically decreasing function and the decrease is taken along a lincar function,
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Thus the membership function corresponding to the ith constraint is taken as -

. 1 for (Ax)i < b,' P
p(x) =1 {b, + p, ~ (4x),} /p, for b < (4x), <b,+ P,
0 for (4x), > b+ p,

The crisp LPP equivalent to this fuzzy LPP.is,,takén as -
Maximiie z=cx
subject to p,(x)2a,i=12,..m

, %20

"/ 0sasl.
i.e.;‘{Maxixnize z=cx"
subject to (4x), < b +(1-a)p,
x20
o~ 0<Lasgl. , ‘

This LPP is a standard parametric LPP with @ = | — ¢ as parameter. So the solution of the given
fuzzy LPP is obtained by solving this équivalen‘t crisp parametric LPP. |

Here, we note that we have an optimal solution for each a € [0,1]. So the solution with o grade
of membership is actually fuzzy Also we note that this. is a non-symmetric model.

To develop the idea of fuzzy LPP we consider the follomng problem. Also the notion of
determining the membership function of fuzzy constramt will be clear from this example.
78.4.1 Example. Three metals namely iron, copper and zinc are required to produce two alloys 4 and
B. To produce 1 metre rod of 4, 1 kg iron, 1 kg copper and 0.5 kg zinc and to produce 1 metre rod of
B, 1 kg copper and 1 kg zinc are needed. Total available quantitites of metals ranges as follows

iron : 3 kgto 9 kg, éop‘per :4kgto 8 kgand

zine : 3 kg to 5 kg. The profits of selling one unit of 4 and B are respectively Rs. 2 and Re 1,
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Find the maximum profit.

Solution. All informations of the problem can be put in the following table.

Alloy . A B ' Available quantity
Iron ~ 1kg Okg | 3kgtod kg
Copper kg kg | 4kgtobkg
Zinc 0.5kg - lkg 3kgtoSkg
Profit ~ Rs.2 Rel

Here the available quantities of the metals are not a fixed amount, they are givenina rangc So
the problem is not a crisp problem, it becomes a fuzzy problem To formulate this problem as a LPP,
let x, metre of alloy 4 and x, metre of alloy B be produced.

Then the fuzzy LPP becomes

Maximize z = 2x, t+x,

subject to x, +ox, <3 to4

X +x, <4106

0.5x, +x, <3to5

X%, 20
78.4.2 Membérship function of the ith constraint
| The graph of the LPP with lower limits of the available quantities of iron, copperandzinci.e.3 .
kgiron, 4 kg copper and 3 kg zinc is given in the Fig, 78.4.2. Also lines are drawn with quantities as
upper limits i.e. 4 kg iron, 6 kg copper and 5 kg zinc. The thick lines 4B, BC, CD represents respectively
the lower limitsi.e. 3 kg iron, 4 kg copper and 3 kg zinc whereas the dotted lines 4'B’, B'C" and cD

- represents respectively the upper limits i.e. 4 kg iron, 6 kg copper and 5 kg zinc.
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In the Fig. 78.4.2 the line DM represents zinc = 3 kg and the line D'M' represents z_inc =5kg.
Sd in the region ODM zinc < 3 kg which is always available and hence in this region the membership
function p, (x) should have a value 1. Again in the region beyond the line D'Mf’, amount of zinc is
more than 5 kg which is not available, hence in this region the membership function should have a
value zero. In the region between the lines DM and DM, the value of the membership function
should lie in the interval (0, 1), as the availability of zinc there is in between 3 kg to 5 kg whichis a
doubtful situation. The membership function U, (x) should change its value there linearly from 1 on
DM to 0 on D'}’ . Hence the membership function i, (x)is defined as

i for x e region ODM

iy(x) =1 (5-x)/2forx € region DM M'D'
0 forx e beyondD'M’
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| 1. for0.5x, +x, <3
i€ py(x,%,)=1(5-0.5%, = x,)/2for3<0.5x +x, <5
0 for0.5x, +x, 2 5.

Similarly, the membership fungtion p, (x) corresponding to the metal iron and i (x)

corresponding to the metal copper are defined as follows

[ 1 forx <3
t(x,x,)=4(4-x,) for3<x, <4

(. 0 forx, >4

(1 forx, +x,<4
o (%,%,) =4 (6—%,—x,)/2 for4<x,+x,<6
| | o forx, +x, 26.

To discuss Verdegay’s approach we consider the following example.
78.4.3 Example. A company produces four items 4, B, C and D. The inputs for the production are
man-weeks, material X and material Y. The availability of the resources and profits corresponding to

the items 4, B and C are shown in the table below. Using Verdegay’s method find its solution.

Item | ManWeeks ~ Material X ~ Material ¥ | Unit Profit
A 1 7 3 4
B 1 5 5 5
C ] 3 10 9
D R 2 15 11
Availability | 1510 18 120 100 to 120 Maximize

Solution. Here the availability of the material X'is 120 unit which is a precise quantity. But the

available total man-weeks and material ¥ are imprecise and their maximum tolerances are respectively
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3 and 20 units respectlvcly as 18-15=3 and 120- 100=20. Letx,,x,x, and x, be the amount produced
for the items A B, C and D respectively. Then the problem can be formulated as the following fuzzy
LPP. A '
Maximize z =4x, + 5x, + 9x; +11x,
subject to X, + X, + %, + X, S15t018
Tx, +5x, + 3%, + 2x, £120
3x, +5x, +10x; +15x, < 100t0120

XpsXp %y, X4 2 0.
Let g (x)=x+x,+x+%,
g, (x)=Tx, +5x, +3%, + 2%,
8,(x)=3x,+5x, +10x, +15x,
ex = 4x, +5x, +9x, +11x, ’
Hence the pfoblem becomes
Maximize z =cx
. subjectto g, (x)<15t0l8
g (x)<120
g,(x) £100t0120

x20.

The membership functions of the first and third constraints are given by

B for g,(x)<15
u(x)=1{{18-g,(x)}/3 for15<g(x)<18
0. for g,(x)218
1 for g, (ijIOO
y(x) = 1{120- 8, (x)}/20 for 100 < g,(x) <120
0 for g, (x)2120.
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The graphs of 1, and , are shown below.

4 28
A
1
> x
0
Fig. 78.4.3.1
H;
A
1
|
|
|
|
A l > x
0 100 120
Fig. 78.4.3.2

Using Verdegay’s method the crips parametric programming problem equivalent to the given

fuzzy LPP is given by
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Maximize=z=cx
‘subjectto p,(x)20
g, (x)<120
p(x)zo
. x20
0gaxl
i.e. Maximize z = cx
subject to g, (x)<15+(1-0)3
g,(x)=120
g,(x) 100 +(1-0)20
x20
0gas<l.
i.e. Maxmize z = 4x, 4;5x2 +9x, +11x, |
subjebt to X, +Xx,+x; +x,<15+30
Tx, + 5%, +3x, + 2x, 120+ 00
3x, +5x, +10x, +15x, <100+206
Jc,‘;xz,x_,,,x4 20
where @ = - g is the parameterand 0< 8 5 1.
To solve this parametric programming problem we first solve the corresponding LPP obtained
by taking 6=0 using simplex method. The tables are shown below where the variables x,, x; and x, are

slack variables.
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4 5 9 1 0 0 0
¢, X, b ¥y, ¥, Y b2 ¥, ¥ ¥, |min ratio
0 g 15 [ 1 1 1 1 1 0 0| 15
0 x| 120 7 s 3 2 0 1 0] 60
0 x, | 100 | 3 s 10 [15] o . o0 1| 100/ |
z2=0 “|z-¢,| -4 -5 -9 -1 0. o0 0
L I /1 B T S I B B 7 RO VA
0 x, 32% 3% 133 ' % 0 0 1 A,%S 160%9
R N A A L B S A R
=29 Nz, | -%  -Y % 0 0 o ULl
4o B0 % Y, 0 ¥ o W] 2
N /Y B AR PO N A B /A
I x, 5%2, I A b a0 %24 %
=172 0 % -, 0 % o 1
SO B/ B /NS A A I
0 s, 200 =% 0 sy oy
9 x| %o ¥ o1 1y o A
2= |z ¢ [ 0 % 0 1%' A

Using parametric programming technique the final table of this simplex method can be used to
get the optimal values of the basic variables and the corresponding value of the objective function for

the parémetric LPP as follows.
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. The optimal values of the basic variables for the parametric LPP are given by
X, = b+30y, + 00y, +200y, '

% 5% —'l%- | 0] —"%q
on, |5 |=| 3254 |+30| 617 |+ 08 1 |+ 208) 3

x;.' [ 5%;10%‘ T
or, | x, |= 32% *103%
The oﬁtimal valué of the objective ﬁmctic.m.is given by
Z' = Z+30(Z, - Cs)+08(Z, - C;) +208(Z, - C;)

- =695/ 430(13/ ),+0+209(%).

=(695+1390)/7

‘Hence the optimal solution of the parametrlc LPPi.e. of the gzven fuzzy LPPis

x, = (50+108)/7
x2 =0 ‘
x, =(55+118)/7

x,=0
 and Z,, =(695+1396)/7 where 0 <0 <1
We note that the answer depends on the choice of the value of © by the deCISIOIl maker.
‘78 5 Werners’ method for solvmg fuzzy LPP
‘The general fuzzy LPP with fuzzy inequality is

‘Maximizez=cx
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_subject to (4x), £b,i=12,..,m
~x20. _
Weniers proposed that because of fuzzy inequality constraint its effect will fall on the objective
unction and as a result the objective function shouid also be.fuzzy.

Let the tolerances for the m constraints because of fuzzy inequailities bep,, D,y .o b, SO the
:ywer and upper limits of the resources will be b, and b, +p, foreachi=1, 2, ..., m. Here we note that
.he given fuzzy LPP may be given ¢quivalently also as fuzzy resource lying in (6,4, +p)

.. The constraints (4x), $b,i=12,..,m are satisfied completely and the constraints
- Ax). > b, + p,i=12,..,m are never satisfied. The constraints (4x), <& where b (5,5, + p,)
re satisfied partly. Thus the value of the membcrship function for (A4x ),. < b, should be 1 for :
. 4x), S b,b, < b/ < b, + p, should lie in (0, 1) and for (4x), > b, + p, it should be 0.

Hence the membership function for ith constraint (i = 1,2, ...m) is given by

1 "~ for (Ax)i < b;
K (x)=i{bi + P "(Ax);}/pi for b; <(Ax),' <b+p )
0 ~for (4x), 2 b + p,

To construct the membership function for the objective function Werners suggested to solve
wo LPP one with lower limit of resources and other with upper limit of resources. These two LPP’s
e thus | |

Maximize z =cx

subject to (Ax)j <b,i=12,.,m e (1)4

x20 |

and Maximize z=cx

subject to (Ax) <b + p,i=12,...,m e )

x20. |
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. The optimal values of the basic variables for the parametric LPP are given by

%, = b+38y, + 08y, +200y,

%, .-5%‘ g‘l%- o1 |H
or, |z, 32% +30 —/ +00| 1 |+208 %

sl 5] g

L [ 504108/
o1 [ 59510 ]
or, | x, 32A1~103/7.

X.
3 i 5% +1 l% |
The oﬁtimal value of the objective functic;n is given by
Z' = Z+30(2, - C;)+00(Z, - C,) +208(Z, - C;)
=69 13 5/
= %+39( A)+0+206(%)
=(695+1390)/7 |
‘Hence the optimal solution of the parametric LPP i.e. of the given fuzzy LPP is

x, =(50+100)/7
' x,=0 '
x, =(55+110)/7

1l

x,=0
- and Z,, =(695+1396)/7 where 0 <0 <1.
We note that the answer depends on the choice of thc value of @ by the declswn maker
78 S Werners’ method for solvmg fuzzy LPP
“The general fuzzy LPP with fuzzy inequality is

. Maximize z = cx
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5.1 Example to explain Wefners’ method

Let the LPP with fuzzy resources be

Maximize Z = 4x, + 5x, +9x; +11x,

subject to g, (x)=x +x, +x, +x, <15

g, (x)="7x, + 5x, +3x, +2x, <80
g, (x)=3x, +5x, +10x, +15x, <100
XpsXps X3 %, 20

and the tolerances as p, =5, p, =40, p; = 30. _

To get membership function for the objective function we have to solve two LPPs one with the:
er limits of fuzzy resources and other with the upper limits of fuzzy resources. These two LPP are
ollows.

Maximize Z = 4x, +5x, +9x; +11x,

subjectto x, +x, +x, +x, 15

7%, + 5%, + 3%, +2x, <80
3x, + 5x, +10x, +15x, <100
. x,,xz,x;,x4 >0
and Z =4x,+5x,+9x; +11x,
subjectto X, +x, + %, +x, <20
Tx, +5x, + 3%, +2x, <120
3x, +5x, +10x, +15x, £130
XpsXgs X3, %, 2 0.
The optimum value of the objective function of ‘thes’e LPPs are respectively z,=99.29 and z,=

1, The membership functions of the objective function and the costraints are as follows.
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’

1 for ex 2130

Mo (x) =1 (ex~99.29)/30.71 for 99.29 < cx <130
' 0 for ex <99.29
{ 1 for g, <15
#(x)=1(20-g)/5 for15<g <20
0 for g, 220
1 for g, <80
by (x)=<(120-g,)/40 for 80< g, <120
0 for g, 2120
1 for g, <100

By (x)=4(130-g,)/30 for100< g, <130

0 - forg, 2130,

Using Werners’ method the crisp LPP equivalent to the given fuzzy LPPis

. subject to p, (

‘Maximize z=q

x)za

m(x)2a

Pvz(

x)?_q

M (x)z «

x2

0<

0

a<l

i.e. Maximize z =

subject to 4x, +5x, +9x, +11x, —30.71c £ 99.29

X+ Xy + X3+ %, + 50 <20

7x,

+35x, +3x; +2x, + 400 <120
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3x, +5x, +10x, +15x, +30a <130
Ox, +0x, + 0x; +0x, + . <1
and  x,%,%;,x,020.
The optimum solution is obtained as
x, =857,x,=0,x,=893,x,=0
z  =114.64,0.=0.5.
Actual used resources are found as
17.5, 86.78 and 115.01 respectively.
78.6 Zimmermann’s method to solve fuzzy LPP
The general model of a LPP with fuzzy objective and fuzzy constraints is given by

e

max z = cx
subject to (A4x), < b,i=1,2,...m
x20. | »
The fuzzy constraint ( Ax)i < b, foreachi=1,2, ..., m has the meaning that if ( Ax)i < b, then
' the ith constraint is absolutely satisfied, if ( 4x), 2 b, + p, then the /th constraint is absolutely violated,
where p, is the maximum tolerance from b, If b, < (4x), <&, + p, then the ith constraint is satisfied
partially. For (4x), € (8,8, + p; ), the membership function is monotohically decreaéing as a linear

function. The membership function is defined for each i= 1,2, ..., n, as

1 for (4x), <b,
(x)= {bi +p, -(_Ax)i}/p, for b, <(dx), < b +p,
S 0 for (Ax)l‘z b, + p.

The fuzzifier max is understood in the sense of the satisfaction of an aspiration level z, as best
as possible. Let p, be the permissible tolerance for the objective function. The membership function

Mo (x) for the objective function is taken to be nondecreasing and continuous and is defined as
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. 1 - for mrzzo
p.ﬂ(x) (wc+ po—-zo)/ p, for z, - p0<(:x<z0
. .0 for cx$20 Po

To identify the fuzzy declslon memennann ernployed Bellman and Zadeh o aciple; This leadé -
1o the following crips LPP R
- Maximize z=q -
_subjectto py(x) 2o
- B (x) 2 &, i=1,2,..,m
- x20
0<a51 ,
Ma;umme z=a L
subject to ex>z,— (1 oc) P
(Ax) <b+{(1-a)p, i=], 2, ,m
- x > 0 .
. 0<a<l ‘. . .
Wc note here that 1f (x o ) is thc op'amal solutlon of thxs cqmwxlcm cmp LPP th**n o 1s the
" degree upto whlch the aspnratnon level z, of the decision maker is met. o
o 'IbexpamZnnme:mann smethod for so}vmgthzzyLPP Zlmmennann ¢ fnu ed FI'h;". “onammg ‘
".examplc o | ‘ S
78, 6.1 Example. memermann considered the example )
Max z = ‘c! +x,
‘subject to —x, + 3x, 521
| ! +3Jc2 527
| 4x, -i~3x2 < 45
| A3x, + Jc2 < 30

'-x,,xzz()
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The aspiration level z, and tolerance levels p, are taken as z, =14.5, p, =2, p, =3, p, =6 and

p;=6. )
Using Zimmermann's method the crisp LPP equivalent to this fuzzy LPP is given by

Maximize z = o

sxzbject to x,+x,214.5-2(1-a)
-x, +3x, S21+3(1- )
X, +3x,£27+6(1-a)
4x, +3x, <45+6(1- )
3x, +x, <30
asl
X, %y, 00 20

or, Maximize z = ¢

subject to 2a-x, ~x, $-12.5
3o~ x,+3x,<24
60 +x, +3x, <33
6o +4x, +3x, <51
3x, +x,<30
a<l
XXy, 00 20

Using simplex method the optimal solution is obtained as x| = 6,x; =7.75,z, =13.75 and
o’ =0.625.
78.7 Mustrative Examples
78.7.1 Example. Using Verdegay’s method solve the fuzzy LPP considered in example 78.4.1
Solution. The fuzzy LPP is '

Maximize z = 2x, + X,
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subjectto x, +0x,<3to 4

x+x,$4t06
0.5x, +x,<3t035

C X%, 20,

The membership functions of the constraints are given by

1 for x, £3
p(x,%)=1 (4-x) for3<x <4
0 for x, 24
' 1 . for x+x, <4
”z(xtaxz)“" (6-—x,-:~x2)/2 ford<x +x,<6
- . O for x, +x,26
[ 1 for 0.5x, +x, <3

y(%,%,) =1 (5-0.5x-x,)/2 for3<0.5% +x,<5

0 for 0.5x,+x, 25

~

Using Verdegay’s method the crisp parametric programining problem equivalent to the given

fuzzy LPP is given by

Maximize - z = 2x, + X,

subject to g, (¥)2
Hy(x)za

ps(x) 2

ocZ‘OA

a,x>0 where x=(x,x,)
or, Maximize z = 2x, + X,
subjectto x <3+(1 —‘a)

x+x,<4+(1-0)2

184
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0.5% +x, <3+(1-a)2
a<l |
®, X, X, >0,
Letf=1-q. Since 0sa<lwehave 0<0<1
= The LPP becomes
Maximize z = 2x, +x,
subject t0. x, <3+6 '
- X, +x, $4+20
0.5x, +x,<3+20
020
06<1
X%, 20
or, Maximize z = 2x, +x,
subjectto x, <3+6.
| X +x,<4+26
X +2x,<6+40
X,% 20
0<0<1.
‘To solve this parametric LPP we first solve the LPP taking § = ( i.c. we solve the following
LPP by simplex method.
Maximize z = 2x, +x,
~subjectto x, <3
X +x,<4
x +2x,56

X,%20
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Introducing slack variables x,, x,, x, we get

Maximize z = 2x, + x, + 0x; +Ox, +0x,

subjectto  x, +0x, +x, =3

+x,+x, =4
X +2x,+%x,=6

Xy, Xy, X35 X4, % 2 0.

......................................................................................................................................................

c, 2 1 0 0 0
G % b Y, Y, Y3 Ve ¥ min ratio
0 Y 3 0 1 0 0 3
0 Y, 4 1 1 0 1 0 4
0 ¥, 6 1 2 0 0 1 6
z =0 z,—¢, -2 -1 0 0 0
2 ¥, 3 1 0 1 0 0 -
0 Yy 1 0 1 -1 1 0 1
0y, 3 0 2 -1 0 1 A
z=6 z,-¢c, | 0 -1 2 0 0
2 », - 3 1 0 1 0 0
1 ¥, 1 0 1 -1 1 0
0 Vs 1 -0 0 1 -2 1
z =1 z,-¢; 0 0 1 1 0

186

From this final table we get the optimal valus of the basic variables for the pararhetric LPP as

x8=b+9’y3+29-y;+49'y'5
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[ x, |=[37+6[ 1 ]+26[ 0 ]+46[0
L fx, | |1 -1 1

| x5 | |1 1 -2

[x ]=[3+6
o, |x,| |1-0+20

| x; | [1+6-406+46

%, |=[3+6
o, ix,| |1+86

x| |1+0

The optimal value of the objective function is given by
2" =2+0(z,-¢,)+20(z, ~c,)+46(z,—¢,)

- =7+0-1+20-1+46-0
=7+36.

Hence the optimal solution of the parametric LPP is

X% =3+6
x,=1+6

and z,, =7+30 where 0 <6 <1.

Module 78 : Application of. Fuzzy Sets

78.7.2 Example. Using Werners® method solve the fuzzy LPP considered in Example 78.4.1.

Solution. The fuzzy.LPP is

Maximize z = 2x, +x,

subjectto x, +0x, <3 to 4
X, +x,<4t06
0.5% +x,£3t05

X%, 20.

In the Werners’ method the membership function of the objective function is found with the

Directorate of Distance Education
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help of optimal values of the objective function of the following two LPP.
M axim izez=2xr +x,
~ subjectto x, +0x, <3
x+x,s4
0.5x+x,<3
X,% 20,
and Maximize z = 2x, +x,
subj ect to X, + O‘x2 <4
X +%,<6
0.5%+x,<5
XX, 20,
The optimal solution of the first LPP is ¥|=3, x,=1 and maximum value of zis 7 . z, = 7.
The optimal solution of the second LPP is x, =4,x, =2 and the maximum value of z is 10
.z, =10, “ |

The membership function of the objective function is given by

| 1 for 2x +x,210
Ho(x)={ (2x,+x,-7)/3 for7<2x +x,<10
0 for 2x, +x, £7

The membership function of the constraints are given by

1 for x, <3
p(x)=4 (4-x) for3<x <4
. 0 for x >4
I for x, +x,<4
uy(x)=1 (6-x, —x,)/2 ford<x +x,<6
0 for x, +x,26
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1 for 0.5x +x,<3
py(x)={ (5-0.5x -x,)/2 for3<0.5% +x, <5
' 0 for 0.5x, +x, 2 5.

Using Werners’ method the crisp LPP equivalent to the given fuzzy LPP is giyen by
Maximize z = o,
subject to cx>z (1 —‘on)(z, -2y)
(4x),2b,+(1-a)p,
x20
0<ac<l.
or, Maximize z =g '
subject to 2x, +x, 210-(1-a)-3
x <3+(1-a)1
X +x, $4+(1-a) 2
0.5%, +x, <3+(1-a)2
X,%,20 |
0<a<l.
or,Maximize z=0a
subjectto 2x, +x, -3 27
% +0x, +a 2 4
X, +x%,+200£6
X, +2x, +40. 510
asl '
o, X, X, 2 0.

Solution of this crisp LPP gives the optimal solution of the given fuzzy LPP.
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- 78.7.3 Example. Using Zimmermann’s method solve the fuzzy LPP considered in the example 78.4.1
Solution. The fuzzy LPP is ' A

Maximize z = 2x, +x,

subjectto x, +0x,<3to 4
x+x,<4t06
0.5x,+x,<3t05
X%, 2 0.
Let us take here the aspiration level of the objective functi on valué as 12 and the permissible

tolerance of it as 3.
According to Zimmermann’s method the membership function of the objective function is

given by
| 1 for 2x, +x, 212
Ho (%, %) =4 (2x, +x,-9)/3 for9<2x +x, <12
> 0 for 2x, +x, <9

The membership functions of the constraints are

1 for x, <3
B (x,x,) =14 (4-x,) for3<x <4
0 for x, 24
1 for x, +x,<4
B (xe%)=4(6-x —-x,)/2 ford<x +x,<6
0 for x, +x,26
I for 0.5x,+x,<3
s (x,%,) =4(5-0.5x, - x,)/2 for3<0.5x +x, <5
0 for 0.5x, +x,25
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Using Zimmermann’s method the crisp LPP equivalent to the given fuzzy LPP is given by
Maximize z = ¢ '
subject to o (x,%,)2
| w(xx)za, i=123
o, x,%, 20
asl.
or, Maximize z= ¢ ‘
subject to 2x, +x, 212~ (1-a)3
X <3+(1-a)-1
X +xS4+(1-a)-2
0.5% +x, s3+(1-a)2
0,%,X,20
a<l
or, Maximize z = ¢
subject to 2x, +x, -3 29
X +0x,+a<4
X +x,+200<6
0.5x, +x, +20. <5
o<l
o, X, X, 20,
Using simplex method we get the optimal solution of this crips LPP and that is the optimal
solution of the given fuzzy L.PP. |
78.8 Summary
In this module we have discussed applications of the fuzzy set thcory developed in the carlier

modules. Applicatons area are confined here mainly to fuzzy linear programming, Classification of
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fuzzy LPP is discussed. The pioneering work of Bellman and Zadeh for getting decision of fuzzy

environment is considered for solving fuzzy LPP. Different methods developed by Vcrdcgay; Wermners

and Zimmermann are discussed in details with examples to explain the methods.

78.9 Suggested Further Readings

1.

W
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| PARTII |
Paper-VII ‘ ' Group-C
Module No. - 79
IRROTATIONAL MOTION

Objectives
The main objective of this module is to find the complex potential for the motion of
circular cylinder in a uniform stream or liquid streaming past a fixed cylinder. the complex
velocity potential for a circulation round a cylinder is also obtained and discussed.
Structures
1.1 Introduction
1.2 VeIocit'y\PotentiaI : Irrotational Motion
| 1.3 General two-dimentional Motion
1.4 Motion in two-dimension
1.5 Physical significance of stream function
1.6 Complex Pdtential
1.7 Motion of a circular cylinder inn a uniform stream
1.8 Fixed circular cylinder in a stream

1.9- Circulation about a circular cylinder
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1.10 Circulation about a fixed circulgr cylinder in a uniform stream
1.11 Equations of motion of a circular cylinder

1.12 Keywords

1.13 Exex:cises

1.14 Further Readings

1.1 Introduction

| We shall consider an irrotational rﬁotion of a liquid in two dimensions. -
Let u, v be the velocity components and are functions of x, y only. The
component w is zero. The motion takes place in a series of planes parallel
ﬁo xy and is the same in each of these planes. This type of flow is said to be
two-dimensional. All physical quantities say, velocity, pressure, density, etc.
are independent of z-coordinate. In this module, we consider _sﬁecial methods
for the solution this class of problem and confine attention to inviscid
incompressible fluids throughout. The solutions of several proBlems are
obtained analytically and are of gréat interest. First, we shall discuss
irrotational motion in two-dimensions and the motion of a cylinder in two-
dimensions. In this module we mainly discuss the general motion of a cylinder
in two-dimensions. The ideas of velocity potential, stream-function, and

complex potential are presented first.
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The necessary and sufﬂcient condition that the right hadn side of (3) is an

exact differential, is that
rotg=0,0r, VXg=0 : (5)

The function ¢ (x, ¥,2,t) givenby (4) is known as the vefbcity poential for

the flow field G and the surfaces
#(x,y,z,t) = constant | - (6)

are called equipotentials. Equations (1) and (2) show that at all points of the

field of flow the equipotentials are cut orthogonally by the streamlines.
‘The negative sign in equation
G=-V¢ | | NG
is a convention. It ensures that flow takes place from the higher to lower
potentials. When (7) holds, we get
b~ A — .
rot § =-Vx(V'g) =0 ®) .
i.e., the vorticity vector vanishes. Such types of motion in which the voftiqity

vector vanishes through out the flow field is known as Irrotational Motion.

‘This type of flow is called potential kind.
Ifisaregion of flow rot g does not vanish, the flow is called rotational
- flow field.
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1.2 Velocity Potential : Irrotational Motion

Let the velocity at time ¢is § = (u,v,w) in Cartesian co-ordinate system.

Then the equation of the stream lines at that instant are given by

& dy dz

PV W ®
_These curves cut the surfaces

uds-+ vy +wez =0 D ¢

orthogonally, provided they exist.

Suppose that at the instant t, we can find a scalar function ¢(x, y,z.¢)
uniform throughout the entire field of flow, such that

—d@ = udx +vdy + wdz 3)

ie., udc+vdy+wdz= [a¢dx+ aj/-!- ¢ ]

d dy
Therefore,
__ a¢ _ 8¢ __9¢
8x By 0z - )
ie., g =—grad¢
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In an incompressible flow, the equation of continuity is
divg=0 ®

L Ou v ow
Lo 9x dy 9z

If the motion be irrotational, then putting g = -V¢ inequation (9),
we get
divgrad =0
ie, V=0 - | . (10)
Thus, the 'velocity potential ¢ -~atisfies the Laplace equation (10) ‘in an
incompressiblg: fluid.

Note : In spherical polar co-ordinates, if 4,.9,.9, be the velocity
components in the r,8,w directions, respectively, then in terms of velocity

potential, we have -

9 _ 0 ___ 9
Qf“ ar’qa— raﬁ’qw_ rsinBdw’

Problem -1:

Ata point in an incompressible fluid having spherical polar co-ordinates

(r,8,w), the velocity components are (2Hoosﬂ/r3,ﬂsin9/ r’,O). Show
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that the motion is irrotational and the velocity potential ¢(r,, w) is given

by
¢>’(r, 6,w)= ﬂcgsg'

¥

Find also the equations of the stream lines.

1.3 General two-dimensional Motion

The fluid motion is said to be two-dimensional when the flow pattern
in a certain plane, say XOY plane at any given instant is same as that in all
other parallel planes within the fluid. In this case, all physical quantities, say
velocity, pressure, density, etc. are independent of z. So, the velocity |
componenté u, v are functions of xy and 7 and w = 0 (ther¢ is no velocity

perpendicular to the X-¥ plane) for two-dimensional motion.

1.4 Motion in two-dimension
If (u, v, w) denote the velocity components then
U=V, 2),v=v(,y,2),w=0

and all flow variables are independent of the z-co-ordinate.
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The stream lines in the x-y plane are given by

fk—m@ =vdc—udy=0 )

U v

For incompressible flow, the equation of continuity is

.a_u.*.-a..-v-zo M _aizi(—-u)
x dy O Yy ox @)

The condition (2) shows that the left hand side of (1) is an exact differential,

dy, say
ie., vdx—udy=dy : | (3)
Then (1) gives us
dy =vdx—udy =0
By integration we get
visnz)=c(l) | @

where ¢(¢) is an arbitrary function of time 2.

The function z//(x, ¥,2), defined by the equation (3) is called the stream
ﬁinc'tionkand the stream lines are given by equation (4). Also from (3), the

velocity components are given by

_9y oy
"o T o . )
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Thus whether the motion be steady or unsteady, rotational or irrotational, a

stream function always exist for a two-dimensional incompressible flow.

1.5 Physical significance of stream function

Volume flux of liquid across any curve joining the points 4 and B from

right to left as an observer moves from 4 to B is given by
B 2
| e = [ dw=w,-,
= (Value of yat B) — (Value of yat 4)
" Thus the flux depends oxi the poéitions of the poinfs A and B and is
independent of the curve joining there.
If g, be the velocity normal to an arc ds from right to left,

_w
qn_.as‘,-

Equation of continuity in polar co-ordinates is

- %(m,)+5%(qe)=a

If i be the stream function, then
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This gives us the velocity components in polar co-ordinates.

. )
Along a stream line = constant and hence ‘ész =0. But ¢, =—£.

Hence thete is no flow across a stream line.

1.6 Complex Potential

Let us consider a two-dimensional irrotational motion of a liquid. If ¢

be the velocity potential, the velocity components are given by

dgp  d¢
=%y )

Equation of continuity gives us

divg=0
) du dv _
1€ ax+ ot ‘ | 2) '
Putting.( 1)in(2) we get
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i.e. ¢satisfies Laplaces equation. Let ybe the stream function.

Then

__oy _dy »
- ay’v"&c | (+

The condition of irrotationality gives us

rot §=0
o . 5
e, 3o ¥y | | &)

" putting (4) in (5) we obtain

Fy &
V.V ' ©

o o
Thus both gand y satisfy Laplaceé equation.
Also from (1) and (4) we get

8¢3I;// 92?.1’.’—..“1, -v)(—u)=
L ()=

This shows that the families of curves ¢= constant and = constant

cut one anotherorthogonally.
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The equations (1) and (4) shows that

a¢ ay/8¢ ay/ ‘
® ¥y x o

Hence @, satisfy Cauchy-Rlemann s conditions. This shows the

e#nstence of a complex function ¢+n// of the complex variable
z=x+iy,i =y-1 |

ie. p+iy=f(z) | . - ®
If we write w=¢+iyf, then the complek function w(zi is known as-theAk
complex potential. The function #,¥ are complex conjugates w is analytic -

at all points where the motion is continuous.

"We have
do_dy 0 90
ak’dz("’””) FYRLIFY

=-u+ iy - )
aw| _ 5.3
== VUt +v =g,
ldz' !
where g vis the magnitude of the velocity..
If @be the angle made by the velocity with the x-axis, then

. uzqoosﬁ,véqsine =
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-‘—ﬁ—v =—qo_os¢9+i'qs‘m6? :

&
=—ge™ =g
aw . . : . :
s known as the complex velocity. Thus any relation w = £ (2) ie.,

@+iy = f(x+iy) represents a two-dimensional irrotational motion in which

the complex velocity is - ei(f-e)

Example-1:
Consider the complex potential
W= Uz N | | W
where Uis real | |
Now, @+iy=U{x+iy)

ie, ¢p=Usy=Up

This gives us
oo .
u=——={, v=0,
ox |

Thus the complex potential gi{rei; by (1) represents a uniform flow in the

negative direction of the x-axis. -
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Example»l :

Considered the uniform flow U making an angle o with the x-axis.
Find ¢ and .

Here the complex velocity is given by

v
&

— L%i(i:—cz)

ow=UE 9,
and ¢ +iyr =-U{cosa~isina){x+iy)

L g=—U(xcosar—ysina)

w=U{xcosa - ysinaz).

. 1.7 Motion of a circular cylinder in a uniform stream

To obtain the motion of a circular cylinder moving in 8 infinite mass of

liquid at rest at infinity, with velocity {in the direction of x-axis. -
‘The velocity potential gsatisfies the Laplace’s equation

V=0

cetarate of Distance Education 205



SCU-INSIUCHONGL MAIEFIQLS ........ooeeveeeeereveiierereie e e sb s sss s ssestsres s st et saaesssent i ssensmsenssssnes

at every point of the liquid. In polar co-ordinates in two dimensions v?g =0

takes the following form
2 1 2 . .

* ror P
Hence the sum of any number f terms of the form

A" cosnf, B,y sinnf
isalsoa solution of (1). Here nis any integer, positive or negative.
Prescription of boundary conditios :

(i) Normal velocity at any point of the cylinder = Velocity-of the liquid at

that point in that direction, i.e., we have

-%Q=Ucosl9at r=a, 2

>

the radius of the circular cylinder.

(i) Since the liquid is at rest at infinity, velocity must be zero there. Thus,

we get
29 0 and 1920zt r=ca 3)
ar . r al‘
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Solution :

The above considerations suggest that we must assume the following
suitable form of ¢. Since the equation is linear, a more general type of

solution is as follows.
¢—Ar_oos6+7cos9. | @)

From equatioh (4), we get

d¢ ‘B ,
5 ~(A~;;)oos¢9. 6y

Putting r= a in equation (5) and using equation (2), we get

Ucos@= -(-A~—£;)cos¢9.
, a

or, .—-U =(A—-§)

Phttin'g ¥ =<0 in equation (5) and using the condition (3), we get
4=0

Then from equation (6), we get the constant B as
B = Ud’.

Hence from (4), the velocity poential ¢is given by
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1 = o - .

. 2
¢=y§-—cos9 » (7

It may be noted that (7) also satisfies the second condition given by (3).

‘Hence (7) gives the required velocity potential. But we have the relation
= 8

where i be the stream function.
Therefore,

oy Ud .
—;=—;‘2*—8m0.

After integrating, we obtain

W= '-li“;-sme )

which gives the stream function of the motion. The complex potential w is

givenby

U

¥

W=

s

(cos@—ising) =—, - (10)

where z=ré” =r(cosG+isind),i =1,
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1.8 Complex potential for a fixed circular cylinder in a stream

Let a circular cylinder having radius ‘a’ be fixed at the origin and x-axis
be chosen in the opposite direction of the stream {7, We shallf ind the

velocity potential stream function and the corresponding potential
Let R be the region r > g. Now theﬁvel‘ocity potnetial ¢ satisﬁesvthe
equation |
V’¢=0inR. | (1)
The boundary. conditioﬁs are given by
¢ ~US atinfinity,

o¢ .
- and "'a‘; =0 on the boundary of cylinder.

The flow is irrotational kind and two-dimensional. The velocity potential
due to the uniform stream is (Urcos 6). When the cylinder is placed, it will
produce a perturbation of the flow. This perturbation must satisfy Laplace

equation and become vanishingly small for large r.
Let us take the velocity poential gas

p=UrcosO+d, | Q)
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where g, is the contribution due to the presence of the cylinder.

The boundary conditions give

¢, — 0 atinfinity ' : (3)
and *29-=Ucos6‘0n cir=a. . 4)
p ‘ : :

Now sirice ¢ is harmonic so ¢, is harmonic and its normal derivative

- prescribed on the boundary.

Now, let us assume g, to be of the following form

r

@ =(Ar +£)oosc_9.
From equation (3) (boundary condition) we get,
A=0,
and ffom equation (4) (another boundary'conciition) we obtain

B = a*U.

Hence the velocity potential is given by

¢(r,9)£(#oost9+£?oos€.

Hence the velocity compyonents at any point P(r,6,z) are
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9 eosol 122
“= ar——Ucosa(l rz)
19 a
q0=—;é-g=ﬂm6(l+?J
_ %,
q,= az- . '

As ro oo,q —>-Ucos,q, — Usin8, approximately.

Again, we have the relation

This gives the stream function yas

2

w=Ursin6—22siné.
r

Hence, the complex potential

2
w(z)= Uz+—U-r—a-in R’(since z=rd?,z =re™ i= \/:I)
_ z

Therefore, the equaﬁon of stram line is’

¥ = constant

a2
So, |7 = constant
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P gt

or, = constant

a* y
or, |JY ""xz‘:;; = constant.

The complex velocity is given by

| 2
~%=—U (1-9-2-}

Z

d
So, _»_v_ =0 gives z=1a.

Therefore, ; = »ia are stagnation points of the flow.
1.9 Circulation aboaut a circular cylinder
The circulation I'" round any closed curve ¢ surrounding the origin and
in the plane of flow is given by I' = <j’>q;ds. Let k be the constant circulation
[ . .

about the cyhnder Then the suitable form of veloc1ty potential ¢ may be |
obtained by equatmg to kthe circulation round a circle of radius r. Thus, we

have the relation

'(fégﬁg)(m) —k.

Integrating this, we get
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Again, we have

_Qg/_= 1d¢

— ey OM————

or ro@’

This gives

l//“-&-lnr
2r

Thus, the complex potential due to the circulation about a circular cylinder

is given by
w="% (tnr+i),i=V1
27 :
k. ’. -
o, w=—- Inz, sincez=ré’ =r(cosO+isinb).

This gives the complex potential for the circulation of strength & round the

circular cylinder. It impﬁes that we may introduce a solid boundary on the

S ik '
. = . . w= . 2z Za .
circle r = a. Thus the complex velocity potentlal MZHlogz ] | will

give irrotational flow outside.the cylinder |z| = a of infinite length. The fluid

is atrest at infinity and having a circulation of amount & about the cylinder.
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1.10 Circulation about a fixed circular cylinder in a uniform stream

The goniplex potential (w)) due to the circulaton of strength £ about

the cylinder is given by
ik '
=—Inz, :
W =——lnz o (1)

i =\/~1, k being the strength of circulation round the cylinder.

Again, the complex potential (w,) for streaming past a fixed circular
cylinder of radius g with velocity U in the negative direction of x-axis is
given by

w, = (Uz-&-—(@—z-J | ' Q)

Zz

Hence the complex potential w due to the combined effects at any point z is

given by
w=w +w,
a) ik | _ :
=U|z+— [+=—Inz. _
[Z ZJ e 3)

Also, we know that the complex potential w can be expressed as

w=g+iy,i =1, | ©))
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where gand  be the velocity potential and stream function respectively.

Comparing the equatioﬁs (3)and (4), we obtain

¢=,U(r+"“2) 610
) or pa/ 4

2

a k
=U| r—-— |sin@-—Inr.
and | v (r r]sm Y r

. Since the velocity will be oﬁly tangential atthe boundary of the cylinder, |

(a¢) 0 and hence the magmtude of the velocxty qis glven by

or
(_léﬂ _
rob )|

Ifthere are no cylinder (k= 0), there would be points of zero velocity on the~ '

U sin6+-—l—c-—— .
27ta

cylinderat =0 and g__ s, the former bemg the point at which the i mcommg
~ stream dlvxdes However, i in the presence of circulation, the stagnatlon points

are given byg=0..

ie.,

k
47Ua

NoN

sinf=-—

and such points exist when fhe following inequality holds.
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b < 4nUa. - ' )
. We now determine the pressure at points of the cylinder: The pressure

is given by Bernoulli’s equation

2_cin-l, -
p'jc(’) 27 N Y,

Let  be the pressure at infinity. Then g = U, so that from (7)

n 1 : ' :
5 C=3” < ®)
Then, from (7) and (8) we get
p_II 1., 3
2 7)
PR O P BN G I
or, Ap-—p+2pU‘ 2p(2(1sm6+2w) o ’ )

~ If X, Y be the components of the thrust on the cylinder, we have

2z

X= —J"p.cosﬁade, (10)
0 .
2% T
Y =-{ psin6ads. 1)
. ! | .

. Using (9), the components of the thrust are given by |
X=0 |
and Y = pkU,
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Thus the thrust on,the cylinder acts }Serpendicularly to the unifomi stream at
infinity. We can show that no couple acts on the cyli_ndef. So, the cylinder

~ experinces an upward lift.
1.1 Equations of motion of a circular cylinder

* .Acircular cylinder is moving in a liquid at rest at infinity. The forces
“acting on the cylinder due to the pressure of the fluid are"caléulat'ed_in the

following Way._ ,

Let U, V'bé' the components of the velocity of the cylinder when the

centér of the cross-section Ois (xo, yo). Then, we have _
U=5% and ¥ = 3, | | | W
Let z,=x,+iy, and (z—z,) =re®,i=v-1 | (2)
- Here r denotes the distance from the axis of the cylin;ier.

On the surface of the cylinder r = @, we must have, vélbcity of the
~ liquid normal to the cyl inder = normal velocity of the cylinder, i.e.
| ._%? =Ucosf+Vsing 3)

~Since the liquid is at rest at infinity,
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_9¢ _ v
ar_o asr—oo, (4)

The conditions (3) and (4) suggest the velocity potential #may be takenas |

follows.

¢ =(Ar+§)cosé’+((}+£)sﬁl'& | 6)
r r B
We have to find the constarits A, B, C, D in the following way.

Now?

o6 B (., D). o |
_éz_’ -_-( A*;?)oosaﬁu(c-;;)sme. ‘ ‘ 6)

Using the boundary condition (3) in (6), we get

and V==5-C
Again, from (4) and (6) we obtain
A= ‘O and C=0.
Thus, we get
B=4%U and D= aéV.
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Hence, the velocity potential ¢greduces to the following form as

2

¢=2-(UcosB+Vsinb).
r .

Again, we have the folloWing relation

y__12¢

— o ottt

o ro@’

" Using (7) and integrating this equation, we obtain
a2
y =—(-Using+Vcosb)
' r

‘Hence, the complex potential is given by

2 -if

(U+i¥),i=v-1

w=
r

then using (2), we get

a (U+iV)
W= ——,
(z-2,)

w_d (U+iV)+a2(U+iV)2
| Now, o '(z-zo) . (Z"zo)z .

e,
Also, S o

Comparing the equations (11) and (12) we obtain
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2
%?=9;(U0059+Vsina)f§-[(uz-V2)cos28+2UVsin29]. o 13)

The velocity g is given by
' | oy _dU+r?)

aw 4 ,
) A -

&

2

q:

o

Omitting the external forces, the pressure at any point is given by

Bernoulli’s equatioh as
%=€(t)+-—-——q S (15)

Using (13) and (14), (15) reduces to

3

2 .
;=c(z)+9—(Ucos9+Vsme)+i‘;[(U?—Vz-)cos29+2UVsinza] (16)
r . 4

f%%((/z +V2) |

- Let p, be the pressure at (a,8) on the boundary of the cylinder. Thé p, is
_given by putting » = g in (16), thus we get |
p=pC(t) + pa(Ucos§+V sind)+ p[ (U2 V) cos 20+ 2UW sin28 | (17)

1
-*z-'(Uz-i-Vz)

. Let X and Y be the comp.ohents of the force on the cylinder due to fluid

thrusts. Then, we have
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' e o
X=—-v0 ap, cos 6d, (18
27, . f :
Y=~-j0 ap,sin6d6. | | (19)
Using (17), (18) gives
’ 27 . 2
X=—pd [ Ucos’ 640
=-zripU

=-MU, | | (20)

where M’ = za’ p = the mass of the liquid displaced by the cylinder of unit

length.
Similarly,

Y =—mad oV =M. @1)

1.12 Keywords

Irrotational motion, velocity potential, équipotential stream function,
complex velocity potenﬁal, motion of a cylinder in a uniform stream,

circulation round the cylinder.
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1.13 Exercises
1. Show that for an incompressible two dimensional irrotational flow the
stream function and the velocity potential satisfy Laplace equation.

ax—b +bx e : . '
A J;, V= "f >» w=0 investigate the nature of the motion.
*+y X +y . ,

2. Ifu=

3. Prove that the stream function for a two dimensional flow is constant

L4

along a steam line.

4. Prove that if the Co-ordinates (x, y) of an element at any time in a two-

dimensional motion be expressed in terms of initial co-ordinates (xp

¥,) and the time, the motions is irrotational if (%) + 9(y) =0,

a(xo’yo) a(xosyo)

. _dx Ly
‘where x= = @d y—dt'

5. Show that in two-dimensional motion htere exists a stream function

whether the motion is irrotational or rotatipnal.

6. Show that a stream line cuts itself at a point of zero velocity in a
twodimensional motion and the two branches are at right angles when

the motion is irrotational.

7. Show that whe,n a cylinder moves uniformly in a given straight line in

an infinite liquid, the path of any poini is given by the equations
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where V = velocity of cylinder, a its radius, and z, 2/ are x + iy, x — zy
where x, y are the coordinates measured from the starting point of the

axis, along and perpendicular to its direction of motion,

8. Ifalong circular cylinder of radius a moves in a straight line at right
“angles to its length in liquid at rest at infinity, show that when a particle
of liquid in the plane of symmetry, initially at distance 4 in advance of

- the axis of the cylinder has moved through a distance ¢, then the cylinder

has moved through a distance

o b +d
b+acoth(c/a)

9. Acircular cylinder of radius @ and infinite length lies on a plane in an
infinite depth of liquid. The velocity of liquid at a great distance from
the cylinder is U perpendicﬁlar to the generators, and the motion is
irrotational and two-dimensional. Verify that the stream function is the
imaginary part of w=7al ootﬁ(ﬂa/ z), where z is a complex variable
zero on the line of contact and real on the plane. Prove that hte pressure

at the two ends of the diameter of the cylinder normal to the plane

differs by-
(1/32)7* pU?,

Diréctorate of Distance Education



SElf-INSTUCTIONAL MALEPIQLS .........ice..ocvosveeescer s ssessias e sssssse s es s s sss st s sssssss s srasans

224

10. The space between two concentric spherical shells of radii a and &
(a>b) is filled with an incompressible fluid of density p and the shells
suddenly begin to move with velocities U, V in the same direction; -

prove that resultant impulsive pressure on the inner shell is

2mpb’ |
36 =@\ 3a°U - (a* +26°)7 |

11. Find the equations of the stream lines due to uniform line sources of

strength m through the points 4'(-C, O),‘B (C, 0) and a uniform line
sink of strength m through the origin.
12. Describe the irrotational motion of an incompressible liquid for which
the complex potential is w = ik log z.
1.14 Further Readings
i . Milne-Thomson, L. M., Theoretical Hydrodynamics, Macmilan & Co.
* Ltd., London, 1955. |
2. Ramsey, A.S., A Treatise on Hydromechanxcs CBS Publishers &
Dlstributors New Delhi, 2000. |
3. Chorlton, F., Textbook of Fluid Dynamics, CBS Publishers &
| Distribufcors, New Delhi, 2003. |
4. Panton, L. Ronald, Incomprgssibl‘e Flow, A Wiley-Interscience

Publication, New York, 1984,
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Paper-VII ‘ ' Group-C
" | Module No. - 80
MOTION OF AN ELLIPTIC CYLINDER

Objectives

The main objective of this module is to find the complex potential due to the motion of
an elliptic cylinder in an inﬁnite mass of liquid at rest at inﬁnity or When a elliptic cylinder is
inserted in a uniform stream. |
Structures

2.1 Introduction

2.2 Elliptic Co-ordinates

2.3 Motion ofan Elliptic cylinder

2.4 _Liquid streaming past a fixed elliptic cylinder

2.5 Rotating élliptic cylinder

2.6 Motion of a liquid in rotating elliptic cylinders

27 Keyiwords

2.8 Exercises

2.9 Further Readings
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2.1 Introduction

The present unit is devoted to study twd-diinensional irrotationﬁ motion
produced by an elliptic cylinder in an infinite mass of liquid at rest at inﬁnify. |

. We discuss mainly motion of an elliptic cylinder in an infinite liquid. The
equatioﬁs of motion of an elliptic cylinder rotating in an infinite mass of

liquid at rest at infinity are obtained and discussed. .

2.2 Eliptic Co-ordinates

We use elliptic co-ordinates for analyzing the two-diniensional irrotational
flow produced by an elliptic cylinder. Let Zz =_COQSh; ‘where
E=Evin,i=-1.

So,
x+}zy=c}cosh(§+i77)
| =c(cosh&cosn+isinh £sing)
.;.xzccoshfcosrf,y=sinh§sirlr7 : | | .(1)
Eliminating n from (1), we get

Wl 2
X y 1

-+ . ==
c?cosh®¢  csin’é

@)
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Again, eliminating & from (1), we get

2 2

X .
3 2 2)-12 =1 3)
ctcos’n cisin’y

If a and b are the semi-axes of the ellipse (2) when &= aand 2¢ be the

distance between the foci. Then we get the following relations as

a=ccosha,b=csinha,d -b =¢

' ' a+b
b — a, “‘b —_ (*4 a=_______
(a+B)=ce",(a-b) =0, =2

The paramefers &, nare called elliptic co-ordinates.

2.3 Motion of an Elliptic eylinder

(1) Find the velocity potential and stream function when an elliptic cylinder
moves in an infinite liquid with velocity U parallel to the axis plane through

‘the major axis of a cross-section.

For any cylinder moving with velocfities U and V parallel to axes and -
* rotating with an angular velocity o, the stream function is given by
o 1
y=-U+ o +)%)+4,
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A being a constant.

Since the cylinder moves with velocity U parallel to the axial plane

through major cross-section, so we get

.V= 0, w=0.

Hence, the stream function is given by

w=-Up+A. o 6]

Let the cross section be the ellipse
2 2
+ —2—’5- =1

], %

This is the same as £=¢, if @ =ccoshaa,b = csinher and ¢ = ¢*- b?, where
x=ccosh&cosn, ‘ - ‘ ) |
and

y=csinhgsin7. | _ | 3)

Using (2) and (3), (1) becmes

w=-Ucsinhasinn+a. | ‘ -4

Since i contains sin 7 and the liquid is at rest at inﬁnity, y must be of the

form e sin7. We therefore, assume that-
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G+iy = Be ™ ®)
sothat W=-Besinn.

(6)

- Then at boundary € =, we must have
~Be™® Sin n=-Ucsinhasinn + A.
This gives the values of 4 and B as
4=,

B=Uce’ sinhe.

So, y =-Uece”* sinharsing

(7
is a stream function which will make the boundary of the ellipse a stream

line, when the cylinder moves with velocity U.

But we have

csinha=b

«_(atd
and e -[a-—b]

Using (8), (7) can be written in the form

L
W= —-Ub(i-f—z)z e sin7.
a——-

t2}—

@)

©)
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Also from (5),
o
¢=Ub(g)i e° cos7). . (10)
Hence we obtain
| A
w=¢4i1//=Ub(§—}g-)ie'(m") L | (11)

(b)Find the velocity potential and the stream function when an elliptic cylinder
moves in an infinite with velacity ¥ parallel to the axial plane through the

minor axis of a cross-section.
Solution :

Proceeding as case (a), we can obtain the velocity potential and stream

function as
1
vl 223 ) oo | (12)
| 1 |
« 3 , |
w;Va(-Z—}gJ & cos1, (13)
. b ' 1 . _
- . 2 . e
and w=g¢ +iy =i Va(%) g, " (14)
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(c) Find the complex potential when an elliptic cylinder moves in an infinite
liquid w ith a velocity v in a direction making an angle @with the major axis
of the cross section of the cylinder.

Solution :
* The components of v along coordinate axes are given by
U=vcos@
and V =vsinG.
Let w, and w, be the complex potentials corresponding to the motion

. of the cylinder with velorities U and ¥ respectively. Then from the above

, problem we obtain w, and w, as follows.

i
w) - Ub(gié)z e—(m‘ﬂ).
a-b

]
=bvcos H(E—ﬂ-’-)z g (e
| a-b | ‘

?

i
S AN
and w, =iVa(3~—lZ) g e
a—

a-b

1
2 ,
=javsin H(ﬁé) g e+

Hence, the complex potential due to velocity v is given by
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where Thus, we get

Ww=w W,

3
1

. _l. : . )
= v(gj—é)z e (beos@ +iasin),

i .
= v(ﬁ—é)z e (esinha cos @ +iccosharsinf)
a-b

where ¢ = ;‘ +in7;b = csinha,a = ccosha. Thus, we get

2.4 Liquid streaming past a fixed elliptic cylinder

To obtain ¢ and i for a liquid streaming past a fixed elliptic cylinder

with velocity U parallel to majro axis of the section.

- Let us consider a velocity U on the cylinder and on liquifd both in the
sense oppoéiie to the velocity of the liquid. This brings the liquid at rest and
the cylinder in motion with velocity U. Hence, some suitable term must be
added to each 6f the expressions for gand obtained in the case (a) of the

previous section. When the stream flows from positive x-axis to negative x-.

axis, we get the following equations as
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d ' S
9PV -U. | : '6))

ax - oy

- Accordingly, We must add a term Ux to ¢-and Uy to . Thus, we have
o= w+w(“+: ) e sy

}

U(a b’)zceshfoosn-rUb( I;] e“sing. V3]

and the stream function as

!
w= Lg:-(/b(fi’-’l)’ e sinn
, a-b ~

. 4 b 3

- ’ 2 . .
;U(a’,-—a’)zsixﬂxfsinn—yb(%) ¢*sinn. (3)

- The complex potential is giveh by

w=@+iy =Uz+ Ube™* | - | @

Another form of ¢, and complex potential w, we can be obtained as

follows.

¢ =Uce” cosncosh (& -a), o o 5)
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. (a+b)§
e p—
a-b

and,  w=Uessinysinh(¢-a), @
and

w=gp+iy=U(a+b) cosnoosh(£—) +isinnsinh(é ) |

- UarHo[(E-a)en)

=U(a+b)eosh(§~-a). | | @)

2.5 Rotating elliptic cylinder

Find the velocity potential gand the stream function ywhen an elliptic
cylinder is rotating with angular velocity @ in an infinite mass of the liquid at
infinity.
Solution :

For any cylinder moving with velocity U and V parallel to axes and

rotating with an angular velocity o, we know that the stream function wis
, | _
W:Vx—w+§w(x2+yz)+/1, o | (1)

- A be thie constant.
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Let the cross-section be the ellipse, as

X )
LA
a b»¥ -

This is the same as & = ¢, if a=ccosha,b=csinha and ¢ = @* — b The

elliptic coordinates (£,7) are given as follows.

4

Let z=ccosh{, where { = +in. Then

x+iy = ccosh(£ +in)

=ccosh{ cosn+icsinh£siny.
Then, we get‘ '
x=ccosh&cos7, | @
y=csinh§sin7). : o 3
Here
U=V=0.

So using (2) and (3), the stream function y of (1) reduces to
p= :;-a)c2 (co'sh 2 +cos27) +A @

Since, y contains cos2 77 and the liquid is at rest at infinity, must be taken

in the form

Directorate of Distance Education
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v =B cos2n | ®
and hence the velocity putential
¢ = Be* sinh 27, ! - (6)

~ So at the boundary ¢ = &, we get the following relation

s

Be™” cos2n = —‘lia)c2 (cosh2ar +cos27) + 4
This gives

B= 1 wcle®®

4
N
and 4= ~7 we” cosh 2ax.

Then gand yreduce to

o= % w(a+b) ¥ sin2z, - 0

y;_.—.'—}‘- w(a+b)’ ¢ sin2y, - »' 8
Thus the complex potential function w is

w= ?41""” (a+b)e, since ¢ = (&+in),i=-1. | ©)
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2.6 Motion of a liquid in rotating elliptic cylinder
Let the elliptic cylinder containing liquid rotate with angular velocity .

The stream function y must satisfy the Laplace’s equation given by

Vig =0

and on the boundary it satisfies the condition

l//=-;-w(x2 +y)+ 4 N " (1)
vWe aSsumg that
w=B(2-y). o | )

On the boundary of the cylinder, we must have
(B-‘—l—a))xz —(B-}--l-a;) V=4
2 ' 2 '

2 2

| X + b4 ~1
o -A/(B—lw) A/(—Bml-w)— . | ®)
2 2

We also know that the boundary of the cylinder is

2 2

+5=1 | @

Q.QI =
_ °§»|“‘
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Comparing the equatons (3) with (4) we get

az__bz

1

27

So that

v :

) a2+bz(xz—3’2,)‘ . (5)

The expression of  suggests that we must take velocity potential ¢as

_ az_bz‘ . .
¢-—*me- ‘ (6)

The velocity g is given by
2 2
o-(22) (2
ox dy
2 2 .
2 a "'b 3 ‘
= [a2+b2)(xz+y ) : (7)
The kinetic energy of the liquid contained in rotating cylinder is given by

r=2pf[ sy
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where p being the density of the liquid.
N R 1 |
[.. J[ #ddy=_Tlab ’ff’}‘b“'j’fznb"}] |
Example - 1:
If an elliptic cylinder having semi-axes a, b filled with a liquid rotates

with a uniform velocity about its axes. Prove that the kinetic energy of the

liquid. Contained is less than if it were moving as solid in the ratio
| 2

(-5} (d+5).
* Solution :

Let T, be the kinetic energy of the liquid contained in the Cyliﬁder and
T, be the kinetic energy. When the liquid rotates with the boundary as rigid

mass with angular-velocity .

So,

o
ﬂ”ﬁndWAEHE;‘
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i
and T, =50
2 2
=-—{]1ab —)
- (Mabp) 207
=%Habpa)2 (af" +b2)
o 2 2
[:’.'M=Habp,k2=a ';b ]

So, : G, =(a ~#) :(a +) .

. Hence proved.

2.7 Keywords

....................................................

.......................................................................

“Motion of an elliptic cylinder, Motion of a liquid in a rotating cylinder,

Velocity potential, Kinetic Energy.
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. 2.8 Exercises

1. Provethatif 2a, 2b are axes of the cross-section of an élliptic cylinder
placed across a stream in which the velocity at infinity isU parallel to
the major aicis of the crosé—s’ecfion, the Velocity ata point (acos 7,bsinn)
on ﬁe surface is

U(a+b)sinny -
(b2 cos® 77+ a’ sin’ 17)

&

1)

and that, in consequence of the mot'ion,‘ the resultant thrust per unit-

_length on that half cylinder on which the stream impinges is diminished

by

PR vz N2

2b* pU 1__(a+b) tan"A(a b) ’

a-b a-b) a+b
where pis the density of the liquid.

2.- An elliptic cylinder, the semi-axes of whoée cross—séctions are a and
b, is moving with velocity U parallei to the major axis of the cross-
section, through an infinite liquid of density pwhich is at rest at infinity,
the preésure there being I1. Prove that in order that the pressure may

everywhere be positive

Directorate of Distance Education ..
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2a°I1
gt 291
Py < ab+ b

3. An elliptic cylinder, semi-axes a and b, is held with its length
perpendxcular to, and its major axis makmg an angle Awith the direction
Oof a stream of velocxty V. Prove that the magnitude of the couple per

unit length on the cylinder due to the fluid pressure is
l'I,o(a2 —[;»2)1/'2 sin@cos @
and determine its sense.

4, Ifanelliptic cylinder of semi-axes q, b filled with a liquid, rotates with
a uniform velocity about its axes, show that the kinétic'energy of liquid

contained is less than if it were moving as solid in the ratio
(a" —b’)z :(az2 +b2)2.
5. Iftheellipse a(x’ - y2)+2bxy—~;—w(x2 +y*)+c=11isfull of liquid and is
rotated round the origin with angular velocity w. Show that the stream
- function v is given by l//=a(x2 -y )2 +bey.

6. A thin shell in the form of an infinite long elliptic cylinder with semi-
axes g and b is rotating about its axes in an infinite liquid otherwise at

Jest. It is filled with the same liquid. Prove that the ratio of the kinetic
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| energy of the liquuid inside to that of that of the liquid outside is
2ab : (@* + b%)
2.9 Further readings

1. Mine-Thomson, L.M., Theoretical Hydrodynamics, Macmilan & Co.

Ltd., London, 1955.

2. Ramsey, A.S., A. Treatise on Hydromechanics, CBS Publishers &

Distributors, New Delhi, 2000.

3‘. Chorlton, F., Textbook of Fluid-Dynamics, CBS Publishef_s &

Distributors, New Delhi, 2003.

4. Panton, L. Ronald, Incompressible Flow, A Wiley-Interscience

Publication, Néw York, 1984.

5. 'Raisinghania, M.D: Fluid Dynamics, S. Chand, Sixth Edition, 2005.
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l PART-II
Paper-VII Group-C
' Module No. - 81 » ‘
BLASIUS, KUTTA-JOUKOWSH THEOREMS

AND CONFORMAL MAPPING

oooooooo

Objectives __
~ The main objective of this module is to prove Blasius, Kutta and Jukowski theorems.

Applications of conformal mapping are given. |
Structures

3.1 Introduction

3.2 Milne-Thomason’s circle theorem

3.3 Uniform flow pastacircle |

3.4 Blasiustheorem |

3.5 d’Alembert’s paradox

3.6 Conformal Mapping

3.7 The Schwarz-Christoffel Transformations

3.8 The Joukowski Transformations

3.9 The aerofoil

3.10 The theorem of Kutta and Joukowski
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3.11 Applications of conformal mapping to flow past two-dimensional bodies
3.12 Flow pastan Bliif)tical Cylinder

3.13 Fiow past a Flat Plane

3.14 Keﬁor@

3.15 Exercises

3.16 Further Readings

_ 3;1 Introduction | | |

Blasius (1910) developed an elegant method of computing the force

| and torque exerted on a body that is he‘ldl stationary .in an -ambient ‘steady
flow. A long cylinder is placed with its generators perpendicular to the incident |

stream of a moving inéompressible fluid containing hydrodynamical

sirxgularities. The cylinder experiences forces tending to pfodﬂce translation

as‘well as rotation. The forces are calculated using a theotem due to Blasius.

Confbrmal rnappiné allows us to calculate potential flows in two-dimensional

dpmains with compléx geometrics from a knowledge of elementary flows in

. domains with simpler geometricé. The 'confoﬁnal mapping is discussed in
brief and has many applications in fluid flow problems. Some problems are

worked out;
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3.2 Milne-Thomson’s circle theorem

Statement : Let us consider a two-dimensional irrotational motion of an
inviscid liquid in the x — y plane. Let there be no rigid boundary and the -
complex potential of the flow be f{z). Further we assume that all the

similarities of f(z) be at a distance greater than ‘a’ from the origin.

If a circular eylinder whose eross-section is |z]=a be introduced in the

flow field the complex potential of the modified flow is given by
s
w= f (Z ) + f (—Z—J

where f is the complex conjugate of £,
Proof.

The complex potential w of the modified flow has to satisfy the

following conditions :

(i) Asthere can be no flow across the circle C: |z} = a, therefore the circle

is a stream line, say = 0 and hence w is real on the circle C.
(i) wandf(z) have the same singularities outside C.
The function f(z)+ f(Z) is real every where.

Alsoon, C, zZ=ad’ | )
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If we take

w= f(z)+7(%—) | Q)

- 2
then w is real on C. If the point z lie outside C, the point %— is within C and

vice-versa, Since, by hypothesis, all the singularities of /(2) are exterior to

2. 2

| : Ja ) ' =l a
C, all the singularities of / (";) are within C and hence f.(‘;) has no
singulérity outside C.
Thus all the conditions are satisfied by w given by (2), so that (2)

represents the required complex poténtial of the modified flow.

3.3 Uniform flow past a circle

Let there be a uniform two-dimensional flow parallel to the x-axis. The

&

complex potential due to the uniform flow is

f@)=Uz
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when . the circle {z]=a is introduced, by the circle theorem, the complex

potential is given by

we 17 %)

="-UZ+U(£2-)=U(Z+£J A (1)
z z

| Introducing polar co-ordinates (r,0) by we get

2
. a
w=U[re’g e @ '9)

r

ooy, U g
= Ur(cos @+ isin 8)+~—(cos 6 +isin )
o .

2 2
= {(r +9—Jc039+1‘(r ‘——q—]sin 6}.
r r

Hence the velocity and the stream function are given by

. . | |
¢(r,9)=U[r+—;~Joost9 | )
W(r,9)=U[r-g;)cos9 3)
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2

2
=U(1—a—2)rsin6

The stram line = 0 given by rsin §=0,i.e.,y=0and r=a.

Hence thé line = 0 consists of the circle » = g and the part of the x-
axis outside the circle, it advances from —< along the x-axis towards the
circle, until it meéts the circle at 4 (—a, 0), say, where it divides and proceeds
in the dppOsite directions round the cylinder, j dins up again at B and moves
off along the x-axis to +°2 This stream line which divides on the contour is

called the dividing stream line.

From (1), the complex velocity is given by

2
%v=—u+iv=U(l—g—z—]

aw .
;’; =0 where z=1taq, i.e.; at B (a, 0) and 4 (-, 0).

The points 4, B where the velocity vanish and the stream line divides are

called the stagnation points.

v =U{1—~9-j-(00526’—-’isi1129)}
& z
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3.4 Blasius theorem

Statement : In a -stready, fwo-dimenéioﬁal- motion of an inviscid liquid
under no external forces past a fixed infinite cylinder, if
w= f(2),ie. ¢+u// Flx+d)i=v=-1 represents the complex potent1a1 of
the flow in a plane perpendlcular to the axis of the cylinder, thus the
‘- component p,X Y of the thrust on unit length ofthe cyhnder and he couple

M on it about the origin are given by
1 efdw)
X-iY==ip®| — | dz
eyl )

M—- Real part of -A@Z(W—'-)zdz
M= Real part of ~7 Yo\ )%
~ where the contour ¢ rei)resents the section of the cylinder, pthe density of

fluid,
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Proof :

- The components of the thrust on an element ds of the conform ¢ of the

cylinder (per unit length) are given by
dX =-pdy, dY = pdx | | | e
and the couple about the origin is |
dM = x.pdx+y.pdy
=p(,@;+yay)' - o )

where p represents the fluid pressure.

Since the motion is steady, by Beroulli’s equation, the pressure is given

by
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_ __1_. 2
p=A 2,061

L |dwl? ol |
:A—-—- —— ‘l. :‘.—-

ch& [ lél ldz” ' :

aw
"‘A‘Ep“;g L Abeing a constapt

Since the contour ¢ is a stress line, on c,
i =const w hence dy =0 mc.

Onc, dw=do+idy=d¢

=d@+idy = dw
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1, ¢fawY
- 51%)43(;,;] dz | G)
From equétion (2),
dM = p (xdx + ydy)

= Real part of pzdz.

The result and couple about the origin is given by |

1 awaw
M = Real part of @(A--z' pzzjzdf

1 aw
=Re-spbz v [occuc dy=0,dw=di]

::Ref-_-'z- C Z(E] dz v (4)
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Note : The cont‘our integrations in (3) and (4) may be takes about any other
contour ¢’ which is reconcilable with ¢, provided there is no singularity of

the integrands between c and ¢’ .

Such singularities can only occur in hydrodynamics when the fluid

contains sources or vortices.

Example -1 :
. | | | N
A source and a sink of equal strength are placed at the points (1—2— a, 0)

within a fixed circular boundary * +)7 =4’: Show that the stream lines are
. AT 2 (a2
given by, | 7 -—Z- (r —402)—402)/ =ky(r —a’), k being an arbitrary
constant.

Solution :
. N . 1 .
The complex potential due to a source of strength m at (5 a, 0), anda
sink m at (“50»0) in the absence of boundary is-

f(z)= fmlg(z—%a)+mlog(z¥%aJ

Aol
z . z 2 z 2/
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when the boundary is inserted; the complex potential is given by

wfe)=rlehe7| £
| ;..,,,log(z-.;.a)mlog(ﬂga)
el pemn{Z
ot

;mlog(z~2a)+mlogz+mlog(z+2a)

~mlogz+ constant

=m | (x'+f+" )—1' (x-—3+")
=m 10g > Iy |—l0g 5 k4
+log(x+2a+iy)—log(x—2a+iy)+ constant

2 Y

oy =m] tan™
v m[ x+af2 x~af2

4 Y a4y
tan™ —— —tan™ —L—
* x+2a x—Za}
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N x+al2 x-a2| . i x+2a x-2a
=m) tan™ " +tan™' XT<d ;zc
I-—5+— I-— 2
] *+d /4 x*—4a” |

Example-’i :

Within a circular boundary of radius a there is a two dimensional liquid
motion due to a source producing liquid at the rate m at a ditance ffrom the
centre and an equal sink at the centre. Find the Velocify potenti'atl and show

that the resultant of the pressure in the boundary is

pm’ f°
V1 (q2 _fz)'

where pis the density of the liquid. Deduce, as a limit the velocity potential

due to the double at the centre.
Seolution : -
The cOmpiex potential is given by
om, m.
=——0>Iog(z~ f)+-—Ilog(z
w(z) =~ log(z~ 1)+ - logz)
m y
——log(z—a’ ' = |
2 Ble=al) o

(%) _-;-_2”7’_{[1og(op')} 1og(m) ~log(P4)]
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_m o ( OP ]
27 T\ PAPA

dw__my + 1, 1 -
dz  2m|lz-f z z-d/f (2)

If X, Ybe the components of the thrust exerted on the boundary, then by

Blasius theoren, we get

o 1 efdw)
X-IYZEI@(ZJ (ﬁ

<

Lo ; aw) e
=‘§l;0><2m [sum of the residues of = P at the poles within the circle]

G)

Now,

J’_[ L 11 2 2 o
W) 7 (-dlf) £ N

i
.
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. : dw 2 ' _
The singularities of (-‘};) within the circle |zj=a are atz=0 and z = f(<a).
Residue atz=0is (coefficient of 1/2)

{2 Zf} Z+f
A A3

L L. 2,2
Re51u<=:a’cz:~-fls--4722 7 T—2lF

o
A

« Sum of the residues

i)

2ﬁn2f —d+d 1112f5
A a’(f az) ZJIzdz(dz—fz)'
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Hence, we get

(n'f) __prf
foaz(az-fz) Zxaz(azfz)

X——iY=-p7z=

Hence the force components are

X 2ma* (a* —fz)’y >

Second part :

The combination (source and sink) forms a doublet if f—0and m—a

such that
Iim% f =4, strength of foublet | (@

Expanding (1) in powers of £, we get

w(z) =~——2%[1ogz+log(l ~-f2-)flogz

f)} (neglectig other terms)

-.-_--..T_ __f._.}.ﬁ_. | - _j_%...;._l._iz_i.;. ‘
22|\ z 22 T)\d 24

+
=3
e
—t
|
o
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!

I z k. i - 9
£ + "’%‘* in the limit
z a

L3

Example- 3:

A source of fluid situated in space of two dimension is of such strength
that 27z,0,u represents mass of the fluid of density p emitted per unit of
time. So that the force necessary to hold a circular disc at rest in the plane

of source is

2mouta?

r (r2 -a* )
where a is the radius of the disc and r be the distance of'the source from its
centre. In what direction the disc and r be the distance of the source from

its centre. In what diréction the disc is urged by the pressure?
Solution :

Since 27204 is the mass of the fluid emitted per unit time, then the
strength of source is u. Let 0 be the entire of the disc whose radius is a. The
source of strength A is situated at the point S whose distance from the

centre is ri.e., OS=r,

Let 8’ be the inverse point of S with respect to the circular disc.
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0808 =a* or, OS' =— [OS = r]

i _a
os r
The system can formulate as follows.
(i) asource of streﬁgth patz=r,

(i) a source of strength x# atz=0.

Taking OS as real axis, the complex potential at any point is given by

2

. :
W:uylog(z—r)—,ulog[z———;—)+,ulogz (1)

Let X and Y represent the components of the resultant force on the circular

disc along the coordinate axes.

| Then, by Blasius theorem, we havé
io o dWY
X"”’"‘E?(z)”‘* @

wa, from (1), we have

2

W = -—,u,log(z—-r)-,ulog(z———q—~)+/,tlogz
r
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or, (——) =p |t

adz z=r 4 z
r
, i
o ;’%(CZ): et
T
r
2 2 -2
+

(z-r)(z-ﬁrf)_ff" _r)—_z(z—a;}

1 (aw
Clearly, the function ?(-EZ—J haspolesatz=0, z= _z_zr_ inside the circular

disc.

Now the residue at z = 0 is the coefficient of -Z— whenz =0

i.e.,
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.. . a ., .
Similarly, the residue at z= P the coefficient of e when z= -

2 2
a’ a.
r r
_ 2 2r
aZ _rr a2

Hence the sum of the residues

2r 28 -27+2r

Z--.—
: r

24

2 - 2

2 2r 2r
r a a-r a

r(a*-r?)
By Cauchy’s residue theorem, we have

1 (awY , . . 22"
?;‘F(E) 6f2~2m.%r(a2—r2)
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(aW\ | aAmid
or, 43(_&..)&:__@_1&

| CefawY
now putting the above value @ Z & in (2) we have

':}E.M

_X_iY ‘2' r(az—-rz)

, o 10 4ﬂ“ia2,u2
X—iY ="
b j -2 ,r(az——rz)

. 4 2 .
R =

Now, equating real and imaginary parts of both sides we get

27 W |

X -a) nd Y=

“This implies that hte force is purely along 0§, so that the disc will tﬁove_

along OF,

3.5 d’ Alembert’s paradox

If we place an obstacle in the middle of the tube in which an inviscid

liquid is following with constant speed U. The flow in the imme&iate
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' neighbo_urhoéd of obstacle will be deranged, but at a great distance either
upstream or downstream the flow will be undisturbed. A force and a couple
re_éuired to hold the obtacle at rést. Let F be the component of t_he_ forcein
the direction parallel to the ﬂow,'we can prove that F =’O..’-I‘his., is known aé
d’ Alembert’s paradox. In case of flow of an ideal fluid past a cylindgr, we

get F=(M+ M’)%g—. Here Fis the force acting per unit length of the cylinder ;

fnoVing with velocity U, M’ the mass of fluid displacéd by the unit Iengthf -v
of the cylinder and M the mass of the cylinder per unit length. This édué.tibn
has the form of Newton’s second law of motion‘ with (M +M’) appearing
instead of mass of the cylinder. Oﬁe surprising conclusion from the above
equation is that there is no force exerted on a cylinder moving through é
fluid with unilform speed U. This result is not followed our everyday
experience that a fluid exerts a drag force o any object moving thrdugh it.

This paradox arises because we have neglected fluid viscosity.

~ 3.6 Conformal Mapping

A transformation or mapping is mapped the point '(xo, yo) of the xy

»

plane into the pbint (u();v()) of of the uv-plane through the set of equations‘

~ 'repreented by
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u=u(x,y)}
' - (1)

v=v(x,)

The curves ¢, and c,, say interSegting at (xO, yo) are mapped into curves ¢
and ¢. If the transformation is such that hte angle at (x,,y,) between ¢,
and c, is equal to the angle at (uo,vo), between both ¢ and ¢ both in

magnitude and sense, then the transformation or mapping is said to be

conformal at (%0, ) -

Important results of conformal transformations

(@) In a conformal transfomation, a source is transformed into an equal

- source, a sink into an equal sink.and a doublet into an equal doublet;

(b) The complex potential w=¢@+ily is invariant under a conformal
- transformation;

(c) Leté=f (z) be the conformal transformation. The total k. E. of fluid

in z-plane (per unit depth) = Total kE of the liquid in &plane (per unit

depth);
(d) A stream line in z-plane is transformed into, a stream line in &-plane.

We begin developing the method by introducing the complex variable

4 =§+i77, where &, 7 are two real variables, and the complex function F(z)
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that is analytic ina certain region of the complex z plane, and maps a point

in the z-plane to another point in the &-plane, so that { = F(z).

Where the function F(z) is multivalued, we introduce an appropriate
branch cut in the z-plane so as to render the mapping udique. Furthermore,
we introduce the inverse mapping function that maps a point in the C plane

back to a point in the z-plane z=f({ ).

3.7 The Schwarz-Christoffel Transformations

Consider a polygon in the w-plane having vertices at #;,w,,...,w, with
correspondihg interior anglé @, ,,..., 0, respectively. Let the points
W, W,,..., W, map into points x,,xp_,...,aicn as the real axis of the z-plane. A
transformation which maps}the interio; R of the polygon of the w-plane on
the upper half R’ of the z-plane and the boundary of the polygon nonto the

real axis is represented by

n

% — A( z—x, )(0’1/7:-1) (Z“ xz)(a_»/ﬂ—l) (wa )(cg,./zr-l) |
or, w= A_[(Z-Aa )W’H)J‘(z~x2)(%'m—])...f(z—xn')(a"m)c& +B

where, 4, B are complex constants.
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- 38 The Joukoswski Transformations

The transformation

: o2 v , ,
=Z+-—
=2+ R O

is one of the simplest and most important transformations of two-dimensional
‘motion. By means of this transformation we can map the Z-plane on the z-
plane, and vice verse. It can be shown Ithat when |z| is large; we have Z=z.

" nearly, so that the distant parts of the two-planes unaltered. Thus, a uniform
stream at infinity in the z;plane'will correspond to a uniform stream of the

same streﬁgth and direction in the Z -plane.

- 3.9 The aerofoil

The aerofoil used in modern aeroplanes has a profile of “fish” type as
depicted in the following figure. Such an aerofoil has a blunt leading edge
~and é sharp trailing edge. The projection of the profile on the double tangent,

. "as shown in the diagram, is the éhord. The ratio of the span to the chord is

the aspect ratio.
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The following assmﬁptitms'are made for the theory of flow round the

: aefooil.
| ( Thatthe air behaves as an incompressible inviscid ﬂuid; |

(ﬁ) Thgt then'aerofoil is a cylinder whése cross-section is‘ a curve of t'he

" above type;
‘(iii) That the flow is two-dimensional, irrotational cyclic motion.

| Thg above assumptions are qf course only approximations to the actual

state of affairs but i)y making these simplifications it is pqssible to arrive at
a general undgrstaﬁding‘of the principles involved. There is a cqnsiderabié
and inté;résting l'iteratﬁre on this subject which i.s not possible to discuss in

the present.

It has been found that profiles obtained by conformal transformation
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of circle by the simple Joukowski transformation make good wing shapes,

and the lift can be calculated from the known flow with respect to a circular

cylinder. &

3.10 The theorem of Kutta and Joukowski

An aerofoil at rest in a un'iform wind of speed V, with circulation K
round the aerofoil, undergoes a lift K pV’ perpendicular-to the wind. The
direction of the lift vector is got by rotating the wind velocity vector through

aright angle in the sense opposite to that of the circulation..

Proof :

Since there is a uniform wind, the velocity at a great distance from the

aerofoil must tend to the wind velocity, and therefore if |2] is sufficiently

large, we may write
v « A B h
— =V =+ +...
& z 7 | M

where «is the angle of incidence or angle of attack (see figure below).
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Thus, we have

w=Vze'“—A1nz+§+...
: z

and since there is circulation K, we must have

‘ iK
_—
2 4 @

for Inz increases by 27 when we go once round the aerofoil in the positive

sense.

From (1) and (2) ‘we get,

dw KV . K 8BV
— | =V ¢ e
(dz) ¥ 7z 477 3)
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If we now integrate round a circle whose radius is sufficiently large for the

expression (3) to be valid, the theorem of Blasius gives

so that, changing the sign of / we obtain

' . , jor
X«iyz(i zpjzm'(’m c J
2 /4

= —~iK oVe'®

so that, changing the sign of i we obtain

(n O
il ——a}

X +iY =iKpVe™ =K pVe'*
Comparison with above figure shows that this force has all the properties
stated in the enunciation. The moment about'the origin is obta,ihed from the
theorem of Blasius as M = Real part of
27t pBVe",
'3.11 Applications of conformal mapping to flow past two-dimensional
bodies |
To compute the velocity field corresponding to uniform flow past a
two-dimensianal body with an arbitrary cross-section, we map the exterior
of the body ifn the z plane to the exterior of a disk of radius ¢ centered at the
origin in the ¢ 'plane, and then recover the flow in the physical pléne from
the flow in the image plane using the exact solution, which in this case

becames
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2 AL AN
w(l)=V'{+V fzmm\c . )

To ensure that the far flows in the two planes behave in a similar manner, so
that uniform flow in the {'plane is also uniform flow in the z.plane far ﬁom
the body, we require that the mapping function {=F (z) and its inversez=
f(&) behave in a linear manner fap from the body as |z| tends to inﬁnity; S0

that their first derivatives tend to a constant.

3.12 Flow past an Elliptical Cylinder

As afirst application, let us consider uniform flow past a cylinder with
an elliptical cross-section. One may readily verify that the inverse mapping
function

&

éf 2y

Z=f(§):§'+:

2
bY | . . : o
where e= [1 .,(,.) j’ is the eccentircity, maps the exterior of a disk with
a

1 . .
radius € =—2—(a+b) centered at the origin to the exterior of an ellipse with

major and minor semi-axes equal to @ and b also centerd at the origin.
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Furthermore, f exhibits the required linear behaviour at infinity and is thus

- acceptable for the study of uniform flow.

Decompdsing Eq. (2) into its real and imaginary parts, we obtain the

explicit coordinate transformations

S R

The inverse transformations are found by solving the quadratic equation (2)
for . Since the root with the negative sign corresponds to a point inside the

ellipse, we maintain the root with positive sign and obtain
' 1 2 2. g\
§=F(z):—é[z+(z -4 +5’) } o @)

The value of the square root on the right-hand side of Eq. (4) becomes

unique by introducing a branch cut along the x axis extending from —ae to

ae.

The complex potential of the flow in the z plane is fouﬁd readily by

substitutiong Eq. (4) into Eq. (1)and setting yielding

1 y1 (a+8)’
z)=V =(z+Vz —-c12 b
" 2( ' ) 22+\/zz —d+b
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Setting @ = b produces the solution for flow past a circular cylinder.

3.13 Flow past a Flat Plane

Letting b/a-tend to zero, in which case e tends to unity, reduces the
ellipse to a flat plate of length equal to 2a. The transformation (2) becomes
.

a

1
z=f(§)=¢+; 7 ©6)

which maps the exterior of a disk of radius ¢ = a/2 centered at the origin to
the whole complex plane; the contour of the disk is mapped to the flat plate.
A different method of arriving at Eq. (6). The inverse transformation (4)

becomes
{=F(z)=5| s+ - )| | %

_The branch of the square root coincides with the length of the plate.
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Substituting Eq. (7) into Eq. (1) and setting ¢ =‘a/2, or applying Eq. (5)

with b = 0, yields the complex potential of the flow in the z plane

.1 v 1 a’
w(z)=V 5[4 +(ZZ j-czz) ]Jr V~z+(32 .,a2)'/2
k z+(z2 ~a2)V2
o a (8)

which may be simplified to

vz k In Z+(z% -;Lf)"fz

w(z)=Vz-iV (2 -d?) + gy - 9)

X 3

The velocity field is given by

L dw k 1 ' '
u-—zv-—?a;wV,r f(ff}.z“*‘g)m , (10)

The tangential velocities on the upper and fower surface of the plate,
designated, respectively, by the plus and minus superscripts, are given by
a —x°

. AN
u *Vx+(Vyx+§;)(—:‘T (11)
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where —a < x <a. Note that the velocity diverges at both ends at x =+qa.

;3.14 Keywords
Blasius and Kutta-Jukowski theorems, D. Aiemberts paradox,
| Cbnformal mapping and its applications. |
3.15 Eiercise
1. State and prove Blasius theorem.

2.  State and prove Kutta-J oukm;vski’s theorem.

3. A circular cylinder of radius ‘a’ is placed across a uniform stream of
velocity U with circulation  round the cylinder. Find the ‘lift’ on the
cylinder. Also find the maximum velocity of the liquid on the surface of

the cylinder assuming | k |< 2aU.

4. Forauniform flow about a fixed circular cylinder, about which there is
a circulation, find the complex potential and hence obtain the stagnation

points in different cases. Also, find the thrust on the cylinder.
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~ 3.16 Further Readings

1. Milne-Thomson, L. M., Theoretical Hydrodynamics, Macmilan & Co.

Ltd, London, 1955.

2. Ramsey, A.S., A Treatise on Hydromechanics, CBS Publishers &

Distributors, New Delhi, 2000.

3. Chorlton, F., Taxtbook of Fluid Dynamics, CBS Publishers &

Distributors, New Detlhi, 2003.

4. Panton, L. Ronald, Incompressible Flow, A Wiley-Intefscience

Publication, New York, 1984,
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Module No. - 82
VORTEXMOTION

Objectives
The objectives of this module are to discuss the different types of vortex motion and Helmholtz’s

theorems on vortex dynamics, to find the velocity vector from known vorticity vector. The Karman

vortex street is also discussed.
Structures
4.1 Introduction
4.2 Vortex Motion
4.3 Vortex tube and Vortex filament
4.4 Helmholtz’s Theorems on vorticity
4.5 To determine the velocity vector when the vorticity at every point of a fluid is known
4.6 Velocity potential due to a single closed vortex filament ‘
4.7 Circular Vortex
4.8 Vortex pair
4.9 Vortex doublet
4.10 Infinite row of parallel rectilfnear vortices
4.11 Karman Vortex Street

4.12 Keywords
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4.13 Exercises

4.14 Further Readings

4.1 Imtroduction

" The vorticity in fluid motion is very important and the corresponding
dynamics even in case of irrotation fluid motion is very interesting and
helpful to undefstand the flow dynamics physically. In this unit, we shall
discuss the fluid motion in terms of vorticity vector. The first a vorticity
dynamics was given by Helmholtz and later by Kelvin, Kirchhoff and others.
Kelvin’s theorem indicates that the vortices move with the fluid. The evidence

for this is found by observing that voracities in rivers are carried with the

general flows of the rivers.

4.2 Vortex Motion

If 5 (x, y,z) be the velocity vector at a point P(x, y, z) is a moving fluid,

then the vector rot 7 is called the vorticity vector at that point. .

A fluid motion is said to be rotationa] if the vorticity vector does not

vanish in a region R.
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A vortex line is a curve drawn in a moving fluid such that the tangent to

it at each point is in the direction of the vorticity vector at that point.

If (£,7,¢) be the components of the vorticity vector (7)=Vxg then

the vortex lines are given by

dx _dy dz

— T e ns T

& n 4

4.3 Vortex tube and Vortex filament

If through each point of @ closed curve, we draw the vortex lines we
obtain é tubular region which is called a vortex tube. A vortex tube of very
small cross section is known as a vortex filament or simply a vortex. It is to
be noted that vortex lines and tubes cannot originate or terminate at internal

- points in a fluid. They can only form closed curves terminate on boundaries.

Further vorticity vector Q =24,% being angular velocity.

If through each point of an open curve we draw vortex lines, we get a

vortex surface.
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4.4 Helmholtz’s Theorems on vorticity

We shall now give some remarkable theorem on vorticity.

Theorem - 1 :

The product of the cross-sectional area and the magnitudes ‘of the

vorticity at each point of a vortex filament has the same value all-along the

filament and for all times.

Proof:

Let us consider a portion ¥ of the vortex filament between two cross-

sections of areas o, and o,. Applying Gauss theorem to the vector rot

(§)(= W,say) in this region, we get

‘ W
: S S,
or, 0=whno,+wno,+0 , 2)

Since div(ﬁ)zdiv(rotfj)=f7-(€7x§)=0 and on S,, % is perpendicular to 7

and 0,0, are very small.
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ie., -wo +wo,=0 w0, =wo, = constant
along the tube, since ¢,,o, are taken arbitravily.

If the external forces are conservative and the pressure is a funetion
density only then from Kelvin's theorem, the circulation in any closed
circuit moving with the fluid is constant for all time. Let G be the curve

bounding the section ¢,. The circulation about G is given by

I'= J.e}c_f:s = U rol grds
G

sa0r,

T'={gds= (] rotgids
[

s+,
w,0,, [since ¢, is very small all the filament by equation (1).]
= constant.

By Kelvin’s theorem ", i.e. {aw) remains constant for all times: Hence
the theorern. The product vorticity X cross-sectional area of a vortex filament

is known is the strength of the vortex.
Theorem - 2 :

“Vortex lines move with the fluid i.e., the vortex lines are composed of

the same fluid particles.”
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Proof :

Let s be a surface with ¢ as its rim in a moving fluid. Circulation along

Cis given by

If s be a vortex surface, then w.7 ons,ie. =0, Conversely, if I'=0 on
every circuit ¢ drawn in certain surface s, then w-7 =0, i.e., & is a vortex

surface.

At Time ¢, let T be the circulation along a closed circuits ¢ and a

. vortex surface s, then I'=0.

Attime (¢+8¢) the pérticles that formed the surface s now be on another
surface s° and the circuits ¢ on s becomes ¢’ on 5. By Kelvin’s theorém,
the circulation along ¢’ remains zero. This is true for every circuit ¢’ on,
s’,s0that 5" isa vortex surface. Hence vortex surfaces move with the fluid.

The interaction of two vortex surfaces is a vortex line and hence vortex

lines move with the fluid.
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Theorem - 3 :

“Vortex lines must either form closed curves or have their extremities
on the boundary on the liquid, i.e., they cannot begin or end at any point

within the liquid.”
Proof.

Suppose a vortex tube terminates abruptly at a point P within a liquid.
We consider a circuit C embracing the tube and let s be a surace with C as
since, which partly lies out side the tube and the rest forms the part of the

tube. If ' be the circulation along C, then
r=96q-£is =ﬂ(rotij)~ﬁds

But (Vxg)-7i=0 on the tube and rot =0 outside the tube, so that the
surface integral vanishes. This shows that T' = 0 which contradicts. The

Theorem 1 one vortex motion. Hnce the theorem.
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4.5 To determine the velocity vector when the vorticity at every point

of a fluid is known

For an incompressible flow, the equation of continuity is

ou Ju
M ~ — M ...--+___.. ::0
divg =0, t.e, a3y (1)

Equation (1) suggests the existence of a vector function such A that
g =rot A | Q)
If & n, ¢ be the vorticity components then we get

&En)=rotg

|1

w

ﬁx(ﬁxA)

V(V-4)-V'4

i.é., {= %(div ;1) - VZAY |
1= (i)~ 54,

4

{= %(din) - V2A,z where A= ('A,a Ay’ A)
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Eqp. (?) can be satisfied if we can determine Ax, A}_, A_such that
dis0 ®
=—E V4 = VP4 = “)

The solution of (4) is of the form

I ’ ’ / 7
A,(x,y,z)=a—;f—€—dxab)dz

= 1 W J RN
i.e., A(x’yaz):: 47Z'J‘v: b ©®)
%

where %’ denotes the value of w .at the point Q(x’; y’,z’),V the volume of

‘the fluid and
P =(x-x) +(x—y) +z—2)’
= (x~x’,y—-y’,z—z’)

We now show that solution given by (5) satisfies the condition (3). We have

div2-~L j-’f-d dr’ = ad'dy'd’|
14

=Z17; J' ;‘;;’-‘—C"G]dr’[n' V apply to x, y, z]
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=t [v(f‘i)iv W |dr

a7, r) v

1 = (W ’ NI
—;—Z;iv [I:Jdr [V =0]

i being the outward normal to ds, s = boundary of V.

“ " If'#% vanishes on s and if 5 bé such that W7 =0 on s, then the surface
inegral vanishes and the condition 4= 0 is satisfied. Finally, the velocity at

P is given by

= 21—7;}[ W;: r dr’ [ rot (¢;1) = ¢r012 + grad@ X Z]

where 7= (xmjc’,y—y',z - z’)
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The above result means that the velocity 4 at P (x, y, z) can be regarded
as the vector sum of clementary velocities d¢, that corresﬁoﬁding to the
vorticity % in the volume element & ata (x',",2"), the elementary velocity
is given by

W XF

i~ dr’.

- dg=
4.6 Velocity potential due to a single cloSed vortex filament

Let then be a single élosed vortex filament of strength K in a given
mass of liquid. If ds” be an arc, 0’ the cross-section of the filament at a
point Q(x’,)’,2’), the elementary velocity dg atapoint P (x, , z) in the fluid

is given by

 P(x,y,2)
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W XF

py— dzr’

dg=

_WXFCd _WOERF
4zr’ - A [-

W 11d5]

k d§’xr

47:

where k= w0’ strength

*95-'—*—{(2 2)d/~(y-y)&'}

=cg{%(-::)é>~;{-s)f}

K
=2 { X' + Y’ + Zde’
?4”{Xa5c+ dy’ + Zdz'}

| _a] 3 (1

Applying Stoke’s Theorem, we get

uk H ?_Z._E’.Z | (Qf_{_é_z_).,. o ).,
@) azl azl &I &I a.yl
where S'is ahy open surface, within the fluid with ¢, the ﬁiament as its rims

and (I, m, n) are the of the d.c.’s of the normal to ds”.

Putting for X, ¥, Z we get
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il L) e )
i;ﬂ/(gi— méi-m—a?ﬂai,(l)d« [’.'Vz(%)=0j|

Kog(,d 9 o).
= 12 amLin |2as
47zaxﬁ( ax'+may+”az']rd”'

__9¢
ox
where
Kef,d 9. aN
== (fl1 2 nl |-as
4 47z”( Bx'+may'+naz’)r )
Similarly,
b 00 09
dy’ 0z

Thus the velocity corresponents ¢an be obtained from a velocity potential ¢

given by
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where @is the angle P (x, y, z) between the normal 7 at ¢’ and 7.

wo=tg
47

where Q is the solid angle substituted at the point P (x, y, z) by a surface s
whose rim is the vortex filament.

The velocity potential is a multi-valued function.

4.7 Circular Vortex

Let there be a cylindrical vortex column whose cross-section is a circule
- of radius “a’ in an infinite mass of inviscid liquid, otherwise at rest. We
assume that the vorticity over a circulr section of the column has a constant

value, outside the circle, the vorticity is zero.

PO
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Taking the centre 0 of the circle as origin, the x — y plane along a
section of the cylinder, z-axis along the axis of the cylinder, the components

ofthe vorticity are given by

PR
dy oz
_du_ow_
S0z ax
OV _Ou
dx N

Introducing the stream function  as

9y dy
U= = V=
dy dx
Py Oy
We get {z-é:; 5;7

If (r, 6) be the polar co-ordinates of a point in the x — y plane with 0 as pole

the n from the given conditions
Vig={ forr<a : (1)
=0 for r > a )

Since the motion is symmetric about 0 in the x — y plane, in polar co-

ordinates we get from (1) and (2)

Directorate of Distance Education 293



Self-INSIUCHIONAI MOIEFIQLS ........c.ooovoeo oot

w10y ' .
_._+...___.....~—
37 r or $ forr<a (3)
=0forr>a ‘ 4)
since -———3?—%:0.

We can write (1) as

Sy _ :
- (r:{;—) gr,r<a (5)
- Integrating (5) we get
dy 1 |
=— A |
73 5 + | 6)
and V/=Z§r2+A10ge+B forr<a - (7

where 4, B are <arbitrary constants,
Since for » > a, {= 0, we get ﬁ;()m (%)
w=clogr+D, r>a | (®)
for r > a, C, D being arbitrary constants. |

Velocity components are given by

W 0 g, =3 ©
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From (6), for r < a,

oy 1 A . |
dr -f2§r+ r | | : ,(10)

‘Since the velocity is finite at the cenJre r=0, from (10) we get 4 =0.

d , - ,
Also ¥ ,E‘% are continuous across » = a. We take w=0on r=a.
Then B=—%§f,-D=-—bloga.

| 1
From (10) -547 a

Thus, Y= ¢ - )forr<a | a11)

~and y/'.—_%fcﬂ log r/a for r$a : o (12)

The velocity components are givenby

Also atr= 0, Hence the center of the circle remains at rert.
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We shall now calculate the pressure. The Euler’s equation of motion

viz.

Q—g—-—c}xmﬁj=~—€7 £+—1—q2
ot £ 2

given as

' ofp 1,
—— 2 e i | e v e (T L _—:-_0
23 ar[ +2qg] [+q.=0]

By inegrating, inside the vortext, we get

p. 1, ] é’z"z
—t—=gy =1 =Gk =———"tcont
2% f§2 72
E*é’zrz—éfzrz*‘&
ie, ==
o 4 8 p
__(27.2_{__1_10_
8 0

where p, is the pressure at the center.

Outside the circle, » > a we have

2 4
£=§gg_...=m,=f£
p 24 P
) _}_9____75__?204
1.e., p““ 0 87‘2
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where [T is the pressure at infinity.
Since the pressure is continuous at » = g, we must have

ga p 1 &

8 p p 8
2 2
i.e., p():n_é,j IO’

Since p >0, we must have

{*a'p
>
>

The circulation of circular vortex is obtained as follows.

If K be the circulation about a circle of radius » > a, we have

K.—_fg-ds”:fc;[,rdQ, r>a
c 0

Il
~
NS
S8
i
X
o

n=nld

Outside the circle ».= a, the motion is irrotational, with a velocity

potential ¢ such that

9 _,

%= or
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a¢=§a2

ror 2r

49 =
" p=—~{a
AN "3 .
The complex potential is given by
. : 1,5, .1, |
w=¢+zl//=—§ a 9+z—i§'a logr +constant
i .
) fa* [108" +i6], neglecting the constant
=i§a2 logz
Pkt
If we make ¢ — oo and a—0 such that
n{a® = finite = K, then
ik

w=—1Iogz,
2 5

This gives the complex potential due to a straight vortex filament with .

circulation £.
Example-1:

. Find the necessary and sufficient conditions that vortex lines may beat

right angles to the streamlines.
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Solution :

In Cartesian co-ordinate system, the streamlines and the vortex lines

afegiven_by
& & _d&
u v Tw (l)ﬁ
d dy &
and ﬁ;‘@’z"@ | ¥}
These will be at right angles if
WD+, 92, =0 BN
- But
ow ov) . (ou ow ov du N
-G 2a-3Pa s o

using. (4), equation (3) may be written as
(@2’_?"_) (i“ ___q_vg)+ ?_"_5.3’_‘) 0

which is necessary and.sufﬁcxent condition that udx +vdy +wdz may bea

_perfect differential. So we write

_udx+va))+walz;—;zd¢=y(%cbc+gfa}:+ )
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Thus the necessary and sufficient condition that vortex lines may be at right

angles to the stream lines are

¢ ¢ o9
u—/,:axv ﬂdy m’a&'

4.8 Vortex pair

Consider the case of two vortices of strengths £, and £, at a ditance 7,
apart. Let 4, B be their centers az_ld 0 be the center of the system. The point
0 divides 4B in the ratio &, : k,. The motion of each vortex as a whole is
entirely due to the other, and is therefore always perpendicular to AB. Hence

the two vortices remain always at hte same distance from one another, and

rotate with constant angular velocity about the point 0, which is fixed. The

k, k,
velocities at the two vortices at 4 and B are respectively 5"*"‘ and 5" To
0

obtain the angular velocity w of the system, we divide the velocity of the

vortex A4 by the distance AO where

kgt

0=k

- The angular velocity is given by
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_velocity of the vortex at Ak +k,
AO 27Z‘i‘02 '

w

Ifk, k, be f'the same sign, i.e., if the direction of rotation in the two vortices

be the same then O lies between 4 and B, otherwise O lies in 4B or BA,
produced.

[fk, =~k,, O is at infinity. However, 4, B move with equal velocities

ki

2 At right angles to AB, which remains fixed in direction. Such a
0 .

combinatin of two equal and opposite vortices may be called a vortex pair.

4.9 Vortex doublet

Consider a vortex pair, k at ae” in the complex z-plane where z=x +
iy. If we let a—0 and k—oo so that 2ak = 4 is a finite constant, we get a
vortex doublet of strength # inclined at an angle « to the x-axis.

The direction of the doublet is determined from the vortex of negative

rotation to that of positive rotation. The complex potential is given by

w= £i1_£%{log(z~—ae‘”) - log(z +ae’"’)}

301
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The stream function is ¥ = —-éf‘”—;cos(a—e).

If, in particular, we take the vortex doublet to‘t')e the origin and along

’ ' usind |
the axis of y, we have ¥ =—,” . If we put £ U, we obtain
| . 2nr 2 R

2 a: : : . .
V= -w which is the stream function for a ¢ircular cylinder of radius

‘b moving with velocity Ualong the x-axis.

Thus the motion due to a circular cylinder is the same as that dueto a
suitable vortex doublet placed at the center, and with its axis perpendicular

to the difection of motion.

4.10 Infinite rqw of parallel rectilinear vortices
We shall find the cqmplex potential for single infinite row of vortices.

Let us consider an infinite row of vortices each of strength k at the

points 0,*a,12a,...,naq,.... (as shown in the figure below).
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The eomplex poiential of the (2n + 1) vortices nearest to the origin is

w, =%Iong§k;log(z—a)+...+§%log(z-—na)

'+§i§z-lqg(z fa)+.:.+—2i—]€7;10g(z +na)

The constant term may be omitted, so that we write

LIV P P ) P |
P I Ll Tl o R | )
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Now, sin x can be expressed as an infinite product in the following form

Sinx=x1~3-c-2— 1-———5-6.-2——‘ 1—-—26— 2
2\ 72\ AR @

Thus, letting n — o in (1), we get by using (2),

w~—iic—lo sin(f-zw) :
=-log | 0

a

Now, consider the vortex at z = 0. Since its motion is due to the other

- vortices, the complex velocity of the vortex at the oritin is given by

dik, . nz ik k(x|
~—3—Ilogsin~—~—Ilogz} =--—|=.cot————~
a 2r =0

dz 27 0 27\ a a z),.

27 =0| agsin(zz/a) z

. =“_{if_}im{zcos(7z‘z/a) 1]

ik . mzoos(mzla)-asin(7zla)
= lim -
277 =0 zsin(7zz/a)

7 .
- ~—§—7-; X0 [by using 1’Hospital’s rule]
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‘Hence the vortex at the origin is at rest. Similarly it can be shown that the
remaining vortices are also at rest. Thus the vortex row induces no velocity

- onitself.

To determine the stream function we note that

wz)=p+iy, WZ)=¢~iy

so that we get
2w, wiz)-(Z) =i@-zog{sm@smﬁ},
' 27 a a
k 1 2Ty 27x
=—log| —{ cosh ~Co
o vl o222
or, Y= i]ogl(cosh 27y ~COS Z”x).
4r 2 a a

The required stream lines are given by

2# 27x ) :
COSh(";X)“OOS(“;') = constant.

y 2x .
For large values of o we neglect the term GOS'-;”, for its modulus never

exceeds unity, and therefore along the streamlines y = constant. Thus at a

great distance from the row the stream lines are parallel to therow.
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Again, ifv,, v, are the complex velocitieis at the points 2, Z respectively,

wehave
ik 7z d|ik /3
v+ =——1-—logsin—; ——{——logsin—
. 2z al,, &\2z al,.
» 36in 27
«_iwt?_{..ﬁ EZ— ik o -4
2¢ a 2a a zacoshzjry;-cosmx
' a a

which is purely imaginary and tends to zero when y tends to infinity. Thus
the velocities along the diétanct streamlines are parallel to the row but in

opposite directions.
4.11 Karman Vortex Street

~ Let there be two parallel rows of vortices of equal but opposite
strengths. This consists of two parallel infinite rows of the same spacing,
say ;a’, but of _opposite' vortex strengths k and £, arranged that each
- vortex of the upper row is difecﬂy ébove the mid poiﬁt of the line joining .
f\ﬁo vortieces of the Iowef row and vice-versa. Taking the configuration at
time t=0, we také the axes as shwon in the following figure, the x-axis being -

midway between and parallel to the rows which are at the distance b apart.
At this instant the vortices in the upper row are at the points ma+ Elb, and
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g

_ " 1 1. A
those in the lower row at the points (’” +"2')a ) ib, where m=0, +,32,...

.‘:' K S V' ¢ K f 4

| 28 < .. . L ; -

Now, the complex potential at the instant ¢ =0, is given by

W —l-lf-l sm—f—[ z—-l-é -ik—l sm-’f(z-—l-k-léJ
DT G B ST

[since lower vortices are of opposite strength] -

Since neither row induces any velocity in itself, the velocity of vortex at

z= (3-———) will be given by

—t +iv, = -é--z—]f-l sinz( ___z_lz)
A P U g b
‘ : _ 22
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speed in time

= —Cot 2= = tanh —,
2a 2a a

Sy . Moo

ik (fz'iﬂb} k b
2 a

" Thus the lower row advanced with velocity

V%itanhzé,
2a a

and similarly the ‘upper row advances with the same veiocity. The rows will
advance the distance a in fin;e; T =‘§ and the configuration will be the same
aﬁer this interval as at thé initiai instant.
Examy?g .-l : |

Thr:ee‘ paraliél rectilineaf "vbrtices of the same strength K and in the |

same sense meet any plane perpendicular to them in an equilateral friangle of -

-side a. Prove that the vortices all move round the same cylinder with uniform

2xa’

3K

Solution 3
* Let r be the radius of the circumcircle of the equilateral triangle ABC.
a a |

Lt 0 be the circumcentre. so, r= 03:(—2-) SQOBQO = 5 There are three

vortices of strength K ('-- 5%) at A, B, C which are simated at the points
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z.ré™",m=1,2,3. Then the complex potential of the vortices at B, C, 4, is

given by

- A on
w:-—-[log(z'—re } )Jrlog(z-—re? ]+log(z-—re 3 H
ik !
| =(5;)log(z3-r3) |

Now the velocity induced at z =re? =, by other vortices is given by

ik 2z+4r
- 2m P ta+r?

' ' l . I k[ 2z+4r
: Thus, I=ph=mI=5 Ereel

kf__y_] & _k
27| 3r° r

circumference of the circumcircle
velocity at z=r

So, the required time =

27:-3-~
= ﬁxzﬂaz "rz-——a--
ko3 3
r .

Directorate of Distance Education A u 309



Self-Instructional Materidls ...... R et eee st e eeee e e

~Example - 2:

An infinite row of equidistant rectilinear vortices are at a distance a
apart. The vortices are of the same strength k but they are alternately of
opposite signs. Find complex potential and the stream function. Show also

that, if o be the radius of a.vortex, the amount of flow between two vortex

; (E]ldcot(—@—]
and the next is o g 20 )

]

Solution :

Let the row of vortices be taken along the x-axis. Let there be vortices

of strength k each situated at the points
(0,0), (24,0, (44, 0),...

Accor;iing tot };e problem the strengths is —k eah at the point
(£4,0),(134,0),(154,0),...

The complex potential of the entire system is given by
w=%[{logz+log(z-—2a)+log(z+2a)+log(z—4a) +log(z+4a)
+..}~{log(z—a)+log(z +a) +log(z~3a) +log(;+3a)+...}:l

ik z(zz—2za2)(zz;~42a2).../
T2 a7 7).
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Z
an——-—
2a

“om S(_’L] o7 (1)
"
This is the complex potential of the problem. From (1), we get
ik T,y
+iy =—log tan—(x +1i
o-+iy =——logtan—(x+1y) )
ok, m,
— iy =~—logtan—(x—~i
end @iy = logtan-~ Jf)
2= togtan % (x-+1y)+logtan % fx—i )}
Sy oy 2L oy Y oy y
._"y/;_-_v—lc_log sin—zg(xﬂy)sing;(x_—zy)
M cos - (x+ip)oos 2= (x—iy)
2a 2a
cosh(QJ~cos[ﬂ]
g e p )
COSh(-—"—X)-kCOS(—“) S
a a
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Since the motion of the vortex at the origin is due to other vortices only, the |

velocity, g, of vortex at the origin is given by

Hence the vortex at origin is at rest. Similarly, it can be shown that the

remaining vortices are also at rest. Thus we find that the vortex row induces

no velocity on itself.

We now determine the amount flow between two vortex. For any point .
on the x-axis, y=0 and hence ¥’ at any point on the x-axis is given by

[putting y = 0 in (2)], we get

k 'logtanﬂ

=2
or, W ar 2%

The amount flow between two consecutive vortices is given by
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2a
. Hence proved.
- Exémple,- 3:

An infinite street of linear parallel vortices is given as x = ra,y = b,
strength k; x = ra, y = ~b of strength = ~k, where r is any positive or
negative integer or zero. Prove that if the liquid at infinity is at rest, the

vortex street moves as a whole, in the direction of its length with the speed
ap=)
- Solution :
The vortices of strength & each are situated in the first row at pdint_s
(0,6),(a,b),(124,5),...
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and the vortices of strength - each are situated in the secénd row at points
(0.8)(4,-8), (228, D)...
Hence the complex potential w of the above system of vortices is.
given by

JZ(Z*lb)_ik_l in 7(z+ib)

(M

w= -f-]-c—lo sin
27 &

Let w' be the compléx potential of the vortex at z = ib due to vortices
situated at the remaining points. To find the motion of vortex at z = ib, we

must omit the part due to it. From (1), we get v’ as

w’-——k-logsm 7z hlb)—ilogsinmmz—lf—lo (z- zb)
a 27 2

Let u, v be the velocity components of the vortex at z = ib. So we have

o (dw’)
R 4
a ) .

:"‘”g:‘r[gmt n{z—ib) ﬂcotrz(zﬂb) 1 l
271 a Qa a a z—-ib | _,
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Su= i(301;1‘1-2—-75-1—)- and v=20.
2a a

b d

Hence the required velocity of the vortex street is

qg= (u +v2)=u=—2-%cothz-§é._

Hence proved.

4.12 Keywords

Vortex motion, Helmholtz’s theorem, circular vortex, Infinite row of
parallel rectilinear vortices.

-

4.13 Exercise \

1. If ucbc+vdy+wdz=dt9+/idz, where 6,4, y are function ofx, Vs 2, ¢,
.prove that the vortex lines at any time ar the lines of intersection of the

surfaces 1 = constant and ¥ = constant.

2. Define a ‘vortex tube’ and a ‘vortex filament’. Find the velocity field

9 dueto aclosed vortex filament in an infinite liquid at rest at infinity in the

form,
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__ k pdsXF
9 . P

where the integration is taken along the filament and 7 is the vector to te

field point from the elements ds” of the filament.

3. State and prove Helmoholtz first and second theorems connecting the

fundamental properties of a vortex motion.

4, The velocity vector in the flow field is given by

G=[(4z—By),(Bx—Cz),(Cy— 4x) ] where 4, B, and C are non-zero constants.

Find the equations of the vortex lines.

5. Inan incompressible fluid, the vorticity at every point is constant in
magnitude and direction. Show that the components of vorticity are the

solution$ of Laplace’s equation.
6. A velocity field is given by
G=(h+x)/ (7 +y)
Find the circ;ilation round a unit circle with center at origin.

7.  Prove that for an inviscid fluid moving under a system of conservative

forces, the vorticity vector w satisfies the equation

Directorate of Distance Education



Self-Instructional Materials

......................................................................................................................

provided the pressure p is a function of the density palone.

8. Ifthe vortices are of the same strength and the spin is in same sense

both, show that the relative streamlines are given by
log(r* +b* - 2b%r c0s26)~( /26)' = constant.

9. Three parallel rectilinear vortices of the same strength X and in the
same sense meet any plane pexpendiculai:.to them in an equilateral triangle of
side 2. Show that thte vortices all move round the same cylinder with uniform

27a’

speed in time

10. If (1,),(15,6,),.... be polar coordinates at time ¢ of a system of

rectilinear vortices of strength &, k,, ..., prove that
_ . I
Y kr? = constant and ),k’0 =(-2~;;)21qu.

11. An infinite street of linear parallel vortices is given as : x = ra, y=b,
strength = £, where r is any positive or negative integer or zero. Prove that

if the liquid at infinity is at rest, the street moves as a whole, in the direction

, : k 27h
of its length with the speed (EJEJ coth (—;—)
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Paper - VII, Group - D, Marks - 20
MAGN ETOHYDRODYNAMICS

1. INTRODUCTION

Magnetofluiddynamics (MFD) is the study concerning with the motion of electrically conducting fluid
subjected to a magnetic field. Ifthe fluid be incompressible, sﬁch as liquid mercury, and its other properties like
viscosity, thermal conductivity, electrical conductivity etc. be regarded as constants, then we use the word
Magnetohydrodynamics (MHD) of Hydromagnetics. On the other hand, if the fluid be compressible such as
ionized gas, and if its other physical properties ‘:specially temperature, be variable, then the title
magnetofluiddynamics is selected. In the study of MFD we generally consider the continuum approach regardmg
~ the flnid to be a continuous medium.

Faraday (1832) observed that if an electrically conducting fluid moves in a magnetic field then electric
currents are induced in the fluid producing their own magnetic field, called induced magnetic field, thereby modifying
the original magnetic field. In addition to this, the induced currents interact with the magnetic field and produces
electric magnetic force that pertrb the oﬁginal motion, Thus the two important basic effects of magnetofluid
dynamics are (1) the motion of the fluid affects the magneti‘c field, and (ii) the magnetic field affects the
motion of the fluid. In fact the motion of the fluid slows down due to these electromagnetic forces unless we
apply sufficiently large electrical field opposite to the direction or the induced magnetic field to overcome its effect
as aresult of whidh the net electromagnetlc force accelerates the fluid motion.

Although some interesting results of MFD can be achieved in laboratory, its importance lies in cosmic -

problems in geophysics and astrophysics. These are the problems of earth’s interior, of the sun, stars or interstellar

space. Some of the application of MFD are :

(i) MHD power generator
In turbogenerators electricity is generated by the motion of a conductor through a magnetic field
(Faraday’s law). The conductor is moved by a compressible fluid which expands through a nozzle which transfers
the internal energy into mechanical energy of the conductor and this in turn is transformed into electrical energy.

(it). MFD flowmeter. | |
MFD flowmeter is used to measure ship’s speed and is based on the principle that the induced voltage
is proportional to the flow rate. This technique is widely applied in oceanography.
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(iii} MFD submarines.
MFD submarines obtain their thrust from the Lorentz force which is produced_by tranverse electric
and magnetic fields. These pump the electrically conducting sea water through or past the submarine.
Some more applications of the subject are ; radio wave propagation in ionosphere, space communication
system, diagnostic techniques, solar flares etc. ' ’
2. OBJECTIVES ’
| Our main objectives are to apply Faraday’s laws of electromagnetism to the motion of conducting fluids,
€.g mercury, liquid sodium, human blood etc. In the case when the conductor is either a solid or gas, electromagnetic
forces are generated which may be of the same order of magnitude as the hydrodynamical or inertial forces, Thus -
the equations of motion for the fluid must take these electromagnetic forces into account in addition to other
forces. | ‘
MHD effects in conducting liquids have been studied in the laboratory by Hartmann and Williams. It isseen
that the viscésity of mercury or molten sodium is enhanced when the flow takes place in a strong magnetic field.

3. KEYWORDS

Alfven waves, Ferraro’s law of isorotation, Hartmann numBer, Lorentz force, magnetic diffusivity, magnetic
energy, magnetic Reynolds number, Maxwell’s equations.
4. MAIN DISCUSSIONS |

4.1 MAXWE}LL’S ELECTROMAGNETIC FIELD EQUATIONS OF MOVING MEDIA ¢

Before we proceed with the mathematical theory of magnetohydrodynamics, we summarize
Maxwell’s electromagnetic/ﬁeld equations whose derivations may be found in any standard book on electromagnetic
theory (e.g. V.C.A. Ferraro-Electromagﬁetic Theory, Athlone Press). Throughout our discussions we use
rationalized (m k.s.a.) quantities, based on length, mass, time and current.

Inan inertial frame of reference the magnetic ahd electric fields B (=uH) and E satisfy the equations
V.B =0 (magnetic field continuity equanon) : H

V.E= % (differential form of Gauss’ law
or charge continuity équation) 2

B ;
VXE=—— (Faraday slaw) 3
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Vx Hb=j (differential form of Amper'e’s law). 4
In the above equations, E is the electric field intensity, € the pénnittivity, B the magnetic induction vector, pthe
permeability, q the charge density of the medium per unit volume, t the time and j signifies the electric current
density vector. The permeability jt and the permittivity e are taken to be those pertaining to free space so that
p=4nx 10" henry/meter, ) |
£ = (30m x 10°)! farad/meter . - _ 6

1 .
and o eEE O
where ¢ (~ 3x10° meter/second) is the velocity of light. In all these equations all vectors and scalars are taken

tobe collective, i.e., they are all averaged in large-scale quantities over regions in comparison with the scale of

random fluctuations.
Let usnow transform the different quantities to a frame of reference moving with a fluid element. Since the

velocity v relative to the inertial frame is supposed to be small compared with ¢, we may neglect vZ/c? in relativistic

transformation formulae given approximately by

E/ =E+vxB, ‘
B/=B——pevxE, (7)
/ v.j
q =q——, .
cZ .
, )
. .] "—"j"qV,

where the accented quantities/arc measured in the moving system. We also need one more equation, namely the
law of md&ctiqn. For stationary conductor, Ohm’s law is. |

| j=oE, | ©
o being the elecfn'cal conductivity. Now since the conductivity depends on the local state of the conducting fluid,
sb it must be evaluated in the moving frame of reference. Thus using the first of equations (’}), the modified Ohm’s
lawis : ' ‘ o .

j=oE'=o(E +v xB). “ (10)

Simplification of ele;:tromagneﬁc field equatio‘ns' |

In magnetohydrodynamics, we deal with conducting fluids of very large conductivity but finite electric
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currents. It, therefore, follows from equation (10) ﬂlat forlarge o, the electric field E/ ina frame moving withthe
bulk velocity is very nearly zero and we may set E'=0;, where by the first equation of (7) we get
E+vxB=0, ap
Substituting this in the second of equations (7), we see that the second term is‘of order pev’B = -:-j— B whichis
i neéligible oompﬁed to B. The equation (7) can now approximate& as
' E'=E+vxB, B=B a
Thus we may consider amagnetic field without specifying the frame of reference in which it is measured. However,
the electric field is not invariant but transforms according to the law given in(12). | '
To estimate the order of mﬁgnitude of the derivative of any quantity Q with respect to a length .x, we

. R d .
suppose that L is a characteristic length so that KN ~ Q . Then by (2) and (1) we get .

& L
. vH
qz—-p.av.(vx H)z;—z-i- . (13)

The coxivention of this space charge by the fluid mo,tioﬁ yieldsa contribution to the total current-density
2 2
v‘'H v
V| & —— =~ —|V x HJ, 14
v~~~ 51V xH| (14)

But the total current density is j = v x H by (4). Thus the equaﬁdn (14) implies that the convection of the net
charge_ makesa negligible contribuion to the total current. This is, therefore, mainly due to the conduction current,
i.e., the drift of electric charges in the conducting fluid.

Again we have.
9, YH v vV : ,
ne c2L.ne c2ne cc’ (15)

where e is the electronic charge, n the electron density and V is the drift velocity of the electrons. In most cases’
- 'V<<v so thatthe charge separation is small in non-relativistic theory. |
Let us now proceed to justify the neglect of the displacement current in equation (4), Let T be the fime

: SE
characteristic of the temporal variations of the field quantities. Then the displacement current & 5t ywhich has

been omitted in the right hand side of the equaﬁqn@), isof order
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}E elE| -
A |
sl T

and this is negligible in comparison with [V X Hf if
€[E|

T
Using (11), 1.e., [E| » pvH the above condition becomes :

SHVH <_.I:.I_. ie _Y._.I:’.
T L’ ¢'c

<<|Vx H}~——~.

- (16)

on using the relation &} = :‘ . For quasi-stationary states T >> e , 1.e. the time that an electromagnetic wave

takes to txavcrse adistance L must be short compared with the time variations of the field quantmes, the rclanon
{(16)only introduces an extra small factor numerically less than unity.

With these approximations, Maxwell’s equations are

() V.E=3,
(i) V.B=
- (i) VxH=j,8B | ) S 17
iv) VxE=—-—,
(iv) Vx E

pm

P

These equations are invariant under the Galilean transfromation

r/=1".'“Vt," : ' 18
V=t . | (18)

provided that E and B transfoim according to (12) and g and j according to

A
q'=q-3,
g (19)
i=J
{since the convection current qv is negligible). Since j/=j, we have by using (10)

j=o(E+vxB). ' (20) .
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4.2 THE ELECTROMAGNETIC EFFECTSAND THE MAGNETIC REYNOLDS NUMBER
Combing equations (4) and (20) we get '
VxH =6(E+vxB). @n

Multiplying both sides by y1 and then operating with curl we obtain
VxVxuH= uG{VxE+Vx(v>< B)},

o, VxVxB= —uc%—?— +poV x(vx B)}, [using (3)]

or, V(V.B)- v’B= ~uo'%?- +poV x(vx B)},

so that
5B 20 fu
—=Vx(vxB}+nV’B, [since V.B=0by(l)]  (22)
where
{ n= ;f; ‘ ' | (23)
is called the magnetic diffusivity ot magnetzcwscoszty
Now, let L be a characteristic Iength and V be a characteristic velocity. Then the order of the magmtude of

VB
the first and second terms on the right-hand side of the e;quation (22) are - and _I?“ respectively. Their ratio

VL .
Rp=— 24
m= | | (24)
is called the magnetic Reynolds number.If R_<< 1, we can neglect the first term on the right hand side of the
equation (22) leading to
; B 2

—=nV*B. ' ‘

3t i 25) _
On the other hand, if R >> 1, the first term onthe right hand side of (22) is predominant and the equation reduces
o . N

5B

=V x{vxB). (26)
_ : ot

. 43LORENTZ FORCE

Itis known that the electric field strength E is defined by the ratio E = . where F is the force experienced
by the charge density q initially at rest in the field. We now generalize the expression for electrostatic force F=qE
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to mclude the effect of moving charges, i.c. F=gE+F, :

- Now the interaction of currents or charges in motion is described in terms of the magneuc field B. It is
known from very precise measurements that a test particle moving in this field experiences a force F/ proportional
tothe strength of the magnetic field B and perpendicular to the velocity v of the particle. Thus, we may define

¥ =q(vxB). @7
Hence the total acting on the chargeq movmg with velocity vis
F=gq[E +v xB]. : (28)

The vorce F is known as the Lorentz force.
4.4 THE EQUATIONS OF MOTION OF ACONDUCTING FLUID

So far we have considered the electromagnetic field equations of a moving conducting fluid. Now we
derive the concerned hydrodynamical equations of motion,

We have that the Navier-Stokes equatxon of motion of a veicous ﬂuxd is given in vector form by

% =F-Vp+ l va(V.‘v) + vaz Vs (29)

-

Dt
pressure, vthe kinematic coefficient of viscosity.
Now ifthe fluid moves in an electric and magnetlc field, then the body force F per unit volume consistsof
three parts : (i) gravitational force p g, g bemg the acceleration due to gravity, (i) electrical force and (jii) magnetic
force. An elemental volume &1 of the fluid contains a charge of amount 8t so that the force on it due to an

electric field of intensity E is ( q6t)E and hence the eletrical body force per unit volume is gE.

D 5
where —= 5 +(v.V), pisthe fluid denszty, v the ﬂmd velocity, F the body force per unit voluma, pthe ﬂmd

B
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For the magnetic body force per unit volume, we note that the total current density vector is j+qvinwhich
the fluid element chosen moves along with local velocity v. Thus the conductive component j makes an effective
contribution to the magnetic body force but not the convective part qv. Let &S be the nohnal cross-section of a
fluid element whose length 3s lies along the direction of j. This element moves along with the local fluid velocity v

ina magnetic field of intensity H. Thus the current flowing through the elementis i = leSS . The Biot-Savart law
then gives the magnetic force in the element as |
| 8F) =i85% B =835 x B= (jx B)8s0S,
* 50 that the magnetic body force per unit volume is
| ixB=pjxH.
Hence the total body force per unit volume is
F=pg+qE+pjxH

We can now rewrite the equation (29) as
Dv , 1 o2 v
p~5t-=pg+qE+p_1xH-Vp+-§va(V.v)+va V. (30)
In addition the equation of continuity is

op '
- Vn = 0-
StV 3N

4.5 ALFVE' N°S THEOREM
Statement : In a perfectly conducting fluid moving in a magnetic field, the viux of magnetic f leld

intensity through any closed circuit moving along with the fluid is constant.
Proof : Consider an open surface 3 of fluid particles which at time ¢ is bounded by a closed curve C (Figure-2).

Then the flux of the magnetic field B(r, t) through the surface ¥ attime tis given by
F= j B(r,t).dS, 32)

where ris the position vector of a point lymg on the surface 3. and dSisan element of’ areaof 3, oriented along the
“normal to the surface associated in the sense of description of C. Now the surface 5. and the curve C wxll move

with the fluid to new position 3/and C’
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Figure2 .

respectively at time t + 8t (Fig.-2). Let ' be ve the position vector of a point of 5/, Then the change of the flux
Fas 5, moves with the fluid is

sF= [ B(r ,t+8t).ds —[B(r,t).ds
5 %

-= j 'B(r’ ‘,t+6t).dSé— f B(r,t).dS
z

3/

+ i B(r, t +5t).dS - )j: B(r,t).dS

=1, _ 1, say. : o (33)
Here], rcpresents the change in the flux F at time t + 5t due to the displacement of 3° whlle 1,is the changeinthe
flux through s during the time interval 8t, i.e. it represents the local rate of change of F. Thus

1= j{B(r,Hat) B(rt)}.d8 = atj—— ds s

to the first order in 8t.
Now consider thc volume T enclosed by surface 3, z/ and the cylmdncal surface S traced out by C asit

moves to C’. Then we have at time t + 8t,
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[B.ds-[B.dS+[B.dS=[V.Bdr=0 o
R R y(l (%)
in which dS in cach case is oriented in the oriented in the sense of the voctor  as shown in Fig.-2, Suppose an
element ds of the curve C undergoes, to the first order, a displacement v 3t in time 5t and this displacement traces
outavectorial area ds X v 5t. Thus, to the first order in 5t, we have _

f B.dS = §B. (dsx v-)8t = 6t§ (vxB).ds

S [+ C :

= Stj Vx(vxB).dS.  (by Stokes’ theorem)

* Hence from (35) we get, to the first orderof ot,
I = [B. dS—jB ds—-—&j‘Vx(vx B).dS
o >

attime t + 8t. Thus, we have finally
SF=I+Iy = Stj{%—v x (vx B)}.dS
z

which, on proceeding to the limit ad §t — 0, gives

j{—-vX va)} dS=0  [by 26)]

Hence the flux F is constant; in other words, the magnetic lines of force are ‘frozen’in the fluid provided the
equation (26) holds. The fluid, therefore, flows freely along the lines of magnetic force but any motion of the ﬂuid .
perpendicular to the lines of force carries them with the fluid.

Ferraro’s law of isorotation .

Asaconsequence of the Alfvén theorem, we consider the motion of a rotating conducting fluid permeated
by amagnetic field. This is of great interest mainly in astrophysics. Consider a star of high eléctrical conductivity
possessing a magnetic field and suppose that the star rotates non-uniformly about the axis OZ with angular
velocity @ . By Alfvén’s theorem, the lines of force are frozen in ihe material and so are carried round by rot4tion.
Hence the magnetic field of the star can only be steady if it is symmetrical about the axis of rotation and each line
' of force lies wholly in a surface which is symmetrical about the axis and rotates with uniform angular velocity, This

is Ferraro’s law of isorotation of the magnetic field.

¥
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Asimple analytical derivation of the law is given as following. Assuming axial symmetry about the z-axis
(Fig.-3) and taking cylindrical polar coordinates (r, 6, z) with origin at the centre of the star, all variables are

: S s :
independent of 0 and t, i.e., 50 =0, 5 = 0 Ifthe star has a poloidal magnetic field, the equation V.B=0

implies the existence of a scalar function y(r, z) such that

' 1dY 1dY
B=(B,, 0, B,)=[1%% o, -19Y
: (By, 0, B;) (r dz rdr) (36)
We call y the magnetic stream function. "
Z .
0
O
N Figure -3
We assume that the fluid velocity v at-a point P(r, 6, z) is ,
v=ro, | ' o : (37
. . . . . 6B .
where ® = o(r,z). Since B is independent of time, the equation (26), viz., S Vx (vxB) gives
Vx(va)=0 - (38)
| A (18y. 18y, Sy, By,
Berofx|- 2L W5 )a W V5
Now vxB=ro x(rxﬁzr‘ - z) o——f-0—-2

+
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so that
iz
1 L S 6
v Bz —rf —  — =
Bl w %
—-co—a-—lg 0 -co—8——l?—
8r - dz
r .
| 6r\ 6z ) dz\ or
_[30dy 8o syl
| or &6z Oz or
=6((D,W)é
8(r,2)
giving with the help of (38)
6(0),1(;)=
8(r,z)
so that ‘ :
o =f(y) (39

orthat m isa constant on the surface y = constant, that is, the angular velocity is constant over a surface generated
by rotation of a line of magnetic force about the axis. Such surfaces are termed as isorotational ot isotachial or
magnetic stream.surfaces. Any violation of the law will cause the lines of force to be drawn out in the direction
of motion asaresult or which there arises an azimuthal component of the field. '

In a frame of reference rotationg with an isorotational surface, the electric field E/ vanishes and hence inan
inertial frame of reference E +v x B=0. Thus the lines of force of the electrostatic field E are perpendicular to
those of the magnetic field and, therefore, the electrostatic potential over an isorotational St}rﬁzce is constant,
4.6 MAGNETIC ENERGY .

The magnetic energy is defined by

1 r2
WM =—| Bt .
om I
 where integration is taken over the volume occupied by the field. The rate of change of this expression with time
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is

=-JH.(VxE)d1‘ [:Bwﬁ, %?:—SxEJ

T

= -—J' V.(Ex H)d",“-j E.(VxH)dt

-§(ExH )-dS— j[~—-va) jdt [-,-,-=<;(E+va)]

1

=_§(Ex H).dS-—Ji;—df~fV-(j" B)de (40)

s
The first term on the right hand side of equation (40) represents the flow of Poynting vector over the surface ¥
bounding the field. Ifthe field extends to infinity, then this surface integral vanishes because |E| and |H] are at most

of order (distance)? in hydromagnetics. Thus in this case

——g-—,«—{—&—dt-j‘[v.(ij)dt. : 41)

. 2
The first term on the right of (41) represents the loss of magnetic energy as Joule heat at the rate of L per unit
: . . ‘ [0
 volume while the second term represents the work done by the material against the force exerted by the magnetic
field on the currents during the motion. ‘

4.7 MAGNETIC BODY FORCE |
Using the equation (4), viz., j= V x H , the équation (30) can be written as

p%t‘i =pg+qE+p(VxH)xH- VP*%DVV(V'V)*'PVVZV‘

Now

SH

| (VxH)xH*z-—HxZ{;x-é—-}

X
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= -V(%- HZ) +(H.V)H.
To interpret the magnetic body force, we integrate (VxH)x H throughouta volume v+ bounded bya closed

surface VS . Then from the above identity, we get

[(VxH)xHdt = jv(-——l-Hz)dr + [(H.V)H dv
Av A 2 At

..j (--Hz}ldu-j (H.V)H dr. o “2)

Now let a be an arbitrary non-zero constant vector. Then

a.i(H.V)H de= A{a.{(H.V)H}dr
: fj’fz{(m)%g} dr
- [Z{(i)ga)es

fiH.{Ziaé(H.a)} dr

= [H.V(H.a) dz
At

- HH,V(H.a)+(V.H)(H.a)]dT [-v.H=0]

= [V.[H(H.a)]de
At

Directorate of Distance Education 333



Matnetohydrodynamics ..............ovveeiinencninnisinnsenionens s ersesessarsiasenare e sEILe bR SOSRSS b AR SRS S e SR SR RS0 0D

= j (a.H)(f.H)dS

as
=a. [ H(fi. H) ds.
AS

Since a is arbitrary and non-zero, we must have

| ZL(H.V)H de = JS (A H)HS. W

The magnetic body force on Ar is then given from (42) and (43) as
o 1 ..2]).
u[(VxH)xHdr= I(—-EpH )ndS+ JuH(n.H)ds. )
AT A8 AS

Thus the magnetic body force is equivalent to two of surface force on each surface element S gNen by

1 . .
-3 WH?A8S  and  pH(n.H)SS.
. 1 ' 1a T i 1 .
The surface force (—E HHZ)HSS represents of force =3 HHZ per unit area to the direction — 4. Thisisa
: 1 .2
hydrostatic pressure 3 pH”

To interpret the surface force pH(f. H)3S , we note that . H = H cos8 , © being the angle betwen 5
and H and we suppose that g/ is the projection of 3§ normalto f sothat §g/ = §S cos®- Then, if H = HA »
we have ) | ‘ ' '
WH(#. H)5S = pH?88'H
- representing the force sz pér unit area in the direction of H. Thisis atensile force per unit area of amount sz

in the direction of the magnetic field. '

Thus we conclud_é that for a conducting fluid in a magnetic field, the magnetic body force per unit

volume, viz. u(V x H)x H is equivalent to a tension sz per unit area along the lines of force, together

334 _ " Directorate of Distance Education



..............................................................................................................................

Matnetohydrodynamics

, . 1 2
~ with a hydrostatic pressure 5 pH=,

4.8 SOME EXAMPLES OF MAGNETOHYDRODYNAMIC FLOWS

Example-1: Steady laminar flow of a viscous conducfmg liquid between parallel walls ina

transverse magnetic field (Hartmann, flow).

z
B, = B,k

Non-conducting .
walls y

o - ‘

v = v(2)i

\ 4

z=-L
Figure -4

Let us suppose that a highly conducting viscous liquid, suchas mercury, flows between two parallel non-conducting'
planes in a uniform transverse magnetic field pexpendicufar to the planes. Since the fluid particles tend to bind
themselves to the magnetic field, so the field will in some way inhibit the motion of the liquid. The motion will
produce tension to the lines of force which can revert to their initial positions because of the finite conductivity.
Let the planes be z== L. and the magnetic field across them is B, =B, k (Fig.-4). The motion of the liquid across
the field will induce electric current at right angles to the velocity v=v(z) j ofthe liquid and also to the applied -
magneti\c field B)=B, k. The Lorentz force on the moving stream opposes the motion together with the viscous
forces. The equation of continuity satisfied by the liquid velocity is v .v=0.

Now the motion of the liquid will produce a perturbation field i intensity b= b(z) { because the liquid has
the tendency to drag the lines-of force in its direction of motion. Thus the total magnetic field is

=B +b
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which satisfies the magnetic field continuity equation (1), viz. V .B=0.
Let us assume the pressure p(x, 2) in the liquid to be of the form

P(x,Z)=P (x)+P (2)
‘ g .
The first term po(x) gives rise to the pressure gradient = —dEf— in the direction of motion, while the second term P
(2) is ascribable fo hydrostatic stress.
. o 3B e : ;
Since we are considering steady flow, we must hav 5 = 0 and then the magnetic induction equation (22)

becomes

Vx(vxB +nV2B=0 n=— 4
The general equation of motidn (30) for steady conditions gives

. 1 '
p(v.V)v =-—pgk-—V(p0+p1)+~’;(Vx b)xB+ vpV2v. (46)

Noting that v x B=-~v(z)B Sand v*(vxB)=B v/(z) 3, we have from (45)
ol oY \%))

d%b dv
—+poBy—=0.
2 noBo (47
The equation (46) gives
~ dpgs dp1g Vi (W i nt d2V¢
0=-pgk-——i-——k+—b bi +Bgk }+vp—-1 -
pek—— = K+ (Z)jX( i+Bg ) pdzzl
leading to
dpo Bg db d2V
- e vp—e =0
dx p dz de2 (“8)
: dp; , 1 db
+—+—b{z)—=0
and | pe+=g, A | (49
Now from (48), we get
5 _
.}?.Q.fi_tl.;. Vpu:EEQ:—P, a constant. 50) -

p dz dz2  dx
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Thus for steady lammar flow, the pressure gradient in the dzrection of motion remains constant throughout
the liguid. Again, i mtegmnng (49) with respect to z, we obtain

1.5 : i
=¢y—-pgz——D>b°.
pi(z)=c1~pgz o Y
« AAIso, integration'o'f (47) with respect to z leads to
’ db
"—‘+6 = .
4 MByV =c; 52)

1 |
Now the equations V x H = j, ie. V*B=":j, i=0(E+vxB) and takingj=[j i,

we get
h= O'El = 0, .
. : 1db ‘ ,
jo = c{Ez - BOV) = E'&;» (53a, b, )
j3 = O’E3 ={.
Thus E=[0,E, 0] (54)
where '
1 db Cy
E; = Bgv 4+ —imm = % i
2 = Bgv ondz op . {using (52)].
. db
ie. o +ouByv =0ouE,. (35)

The equation (48) now gives
| dpo d2V -
¥ oBy(E; - BOV)‘+ vp—gz—j- =0 |

2
" or, vpg——;—-cB%v =-(P+06ByE;)
dz .

d_MZ_ PrsBeE

- = constant = —o(say (56
Y eI s (say)» (56)

or,

. ’ c , : .
where M = BoL ‘\‘,; =Hartmann number, a dimensionless quantity. As there is no slipping on the boundaries,

v=Qonz=21L. Alos, j3 =0 at z= L, since the walls are assumed to be non-conducting. It is readily verified
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that the later conditions are identically satisfied by (53c). Thesolution of (56)is given by

vt | I
v(z) = —————| cosh M - cosh| — ‘ 5
A =) M2 coshM - L ‘ ¢
It, therefore, follows from (53b) and (57)

: " «?’B M Y]
j» =0(Ey —=Bgv)=0| E —-—--———°——{coshM—cosh(———- )} 5
J2 = o(B2 ~Bgv) [ 2 M? coshM , L

Ifthere is no externally applied current, then -

L
szdz=0
-L
CLTE .2 2 '
«?By|  oI’By (M ) ~
E, - + coshl —z {|dz=0
ot _IL[{ 2T M2 } M2 cosM L
‘ O,LZBO G.L3Bo :
Tor, 2WEr-——sT 42— sinhM=0
? - M M-’ coshM

2
Ep - =00 (P+GBOE2)(I—-~;ZtanhM)= 0

or, | M2 ‘ Vp
. l . to . .
. . _
=-——(McothM -1
B2 = 35 (Mco | | (58)
whence (56) gives '
‘ " PM | M
v(z) = ——————{ coshM - cosh(-»-z)}. '
@ oB2 sinhM { ' ' L v ©9)
Equation (55) integrates to give | |
b(z) WPL smh(-—l:- Z)v——Z- |
By |. smhM LY ©60)

where we have used the conditionb=0at z = +[..
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. The mean velocity over the section is obtained from (60) as

L ' .
o 1 fv(z)dz - P(M coslzn M - sinh M)
2L 5 oBg sinhM

and, therefore,

VM{cosh M- cosh(M z)} ‘
. L JJ, 61).
Mcosh M —sinh M : .

v(z)=

For a weak magnetic field, M =0 and we have

’ VM{coshM - cosh(%— z)}

= Ii
v(z) Mlg‘o M cosh M — sinh M
2 4 2.2 4.4
sl Mo M _fp Mz M2
2t 4 | 212 4t
= lim
M-o0 2 4 3 5
> M(I-M_+M.- ...... ]-[M.*M._ M ]
21 41 31 51

3_ zl 2 |
f"z“’{‘“(z) } ©

which is the parabolic velocity profile for viscous flow inthe absence of a magnetic field. Figure S givesa sketch
of the velocity profiles for various values of the Hartmann number.
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v(z)

Figure 5 : Velocity distribution for different values of M
Example - 2: Magnetohydrodynamic Couette flow '

Suppose a viscous incompressible conducting liquid of uniform density p is confined between the horizontal
conducting plane z= 0 (lower) and non-conducting planez=L (upper). A uniform magnetic field Boﬁ acts
vertically upwards. Let the lower plane z= 0 be held at rest while the upper one is moved horizontally with
uniform velocity Vj , there being no pressure gradient in the liquid. We consider the motion of the liquid to be
 steady, the velocity of the liquid at (x, y, 2)is V(z)} andthe new magnetic fieldis B = Byk + b(z)]. This satisfies

V.B=0.

Figure -6
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. . 5B v _ o . . : .
Since the motion is steady 5 =0, 5 = 0 The magnetic induction equation (22) then gives

_, ' 1
Vx(vxB)+nV2B=0 {n=;§]

and noting that v = v(z)j, B = Bgk + b(z)], the above equation becomes
& e @
The general equation of motion (30) for steady condition gives

p(v.V)v= ~pgk - Vp-i——l-(V x b)x B+ vpV2y
\ H
yielding

Bydb  d%v
0= -L"”a‘z'*‘ VPE‘Z‘{ . (64)
dp bdb
0= —Pg — e —— e . .
Pe dz pdz (65‘)

Infegrating (65) with respect to z we get

1.2 '
+ + - b*{z) = constant.
p(z) rgz 3 (z) consta .

(66)
Integration of (63) gives
Bov+n b = constant = cCy, say.
dz :
. db o ' . '
Noting that v=0and I = 0 (since the planes are conducting) atz=0, we have ¢, = 0. Thus
db . Bov
@ 7
Substituting this in (64) we botain
dz?  mn
. v Mo
r, —5——5 V=0
2 17
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where M = BOL1 / vp Hartmann number. Solution of this equatxon subj ect to the conditionv=V at z=Landv

. =Oatz=0isgivenby

' \Y smh( MZ)
v(z)= L (68)
sishM
which gives the velocity of the liquid. .
Again, substituting (68) into (67) we derive
Mz}
By Vsinh| —
EP_ ) 0 smh( L ) ‘
~dz  nsinhM
Integrating we get _
b(z) = -I~3—()7Y~I—’— coshM — cosh( M*Ii)
-~ 7 MnsinhM z
HoBoVL ML '
i = cosh M — cosh| —
L€, ‘ b(z)= Msinh M ° z J[ 69)

where we have used the condition b= 0 atz=L. The relation (69) gives the required magnetic field.
Example - 3: Magnetohydrodynamic flow past a porous plate

Let us consider now the unsteady two-dimensional flow of an incompressible conducting viscous fluid past
an infinite porous plate. We take the x and y axes along the surface in upward direction (i.e. opposite to the
direction of gravity) and along the normal to the surface respectively. The fluid is absorbed by the surface witha
periodic velocity and is in the direction parallel to the x-axis. The velocity of the fluid far away from the surface
vibrates about a mean value. We also suppose that a uniform magnetic field 303 isapplied perpendicularto the
direction of fluid flow and to simplify the problem it is assumed that the magnetic Reynolds number is very small so
that we can neglect the induced electric and magnetic fields in the liquid (e.g. liquid sodium, blood etc.). For
unsteady flow of a viscous conducting liquid bounded by an infinite vertical porous surface with periodic suction
velocity and oscillatory free stream velocity U(t), we take v = [u, v, 0], B = [0, Bo, 0]. Then the equation of
continuity of magnetié field v, B = 0 is satisfied identically. The equation of continuity for liquid, viz. V.v =0
gives :

| %: ie., v=-v0(1+£ei"°t) say (70)

where v, is the cross-flow~elocity (v > 0 represents suction and v, < 0 represents inj ectxon) o the frequency of

vibration and & (0 <€ <1) is a small parameter,
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du  Su 3p 5%u 2
Ve | = =t VP — GB
ot VSyJ 5x VOSYZ obou, )]
Sp . '
0::’“_'-
By 72) .

The equation (72) shows that the pressure increase across the surface can be neglected. Hence the pressure is
taken in adirection normal to the surface and may be assumed equal to that at the free stream. We may, therefore,

write
1 6p dU O'BO .
—_——= U.
p Ox - dt p (73)
Thus the equation (71) becomes .
Su wydu]  dU . 8%
| p[-g;——vo(l-"rae )5)’ -—p-a;--!- Vpg;é--i* oBg(U—u).. (74)
The boundary conditions are _
u=0 at y=0
(75)
and u—> U(t) .asy -» oo.
For mathematical convenience, we introduce the following quantities:
o YVo vot « U+ 4vo
y t = — = ——
Vv 4V UO v%
U(t ) 76
U*(t)= ———(——)-, m=2B0Y (magnetlc field parameter) (76)
| Uo pv§
where U, is a characteristic velocity.
Using (76), the equation (74) and boundary conditions (75) reduce to (omitting asterisks)
. ' )
l—ﬁ—g—(Hse'm)Bu dU-t--é—s—-—+m(U u). ()
4 ot Sy dt 5y
subject to
u=90 at y=0
and u-» U(t) asy—> eo. (78)
Assume that in the neighbourhood of the surface
343
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u(y,t) =ug(y)+eu(y)e

and in free stream U(t) =1 + ge'®' {79
Using (79) in (77) and (78) we get the following equations and boundary condive: ... v a7 i cofhiciv: o
of like powersofe: -
Zeroth order
ué/ + ué - mug = —m, (Ui
subject to
u=0 a  y=0 .
and ug—> U(t) asy—> oo (80b)
First order '.
u';/+u{~(m+i9—)m =—(m+i9-)—~ i:é} . (%1a)
4" 4 C T
u=0 aa  y=0
(51
and ug->U(t) asy—> o,
In the above, prime denotes differentiation with respect to y.
Solution of (80a) by using the conditions (80b) is
y=l-e 17, (824)
while the solution of (81a) on using (81b) is
uo=(1—-e*m‘y)+m(e—mly-—c' u2b)
O) ) N -
where
m, =-;—(1+\/1+4m),
g
my =%(l+\/1+4m+im); (82¢)
Thus the required solution for the velocity is
u(y,t) =ug(y)+ euy(y)e'®, - {83;
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where u(y) and u(y) are given by (82a) and (82b) respectively. It is to be noted that the velocity distribution in
(83)is complex. However; we consider only the real part of u from the physical point of view.

4.9 MAGNETOHYDRODYNAMIC WAVES

We know according to Alfven’s theorem that in a fluid of infinite electrical conductivity, the fluid particles
are tied to them agnetic lines o f force L otB, is the undisturbed field intensity in a tube of magnetic force of section
A so that the mass per unit length of such atube ism = pSA, p being the density of the fluid. The magnetic forces
. . . . B} . .
acting on the tube are equivalent to a tension per unit area ‘;- along the lines of force and a hydrostatic pressure

B2 - .
53 . The latter can be balanced by a decrease in fluid pressure leaving the tubes intension T along the lines of

2
BjdA _
0" For incompressible fluid, the lines of force are like stretched strings in tension T and

force, where T=

massm pér unit length. Thus if the liquid is slightly disturbed from rest , the lines of force will execute transverse

vibrations, the phase velocity of the waves generated being
1

1 | PN
.(tensiong (T)E ' (Bﬁ)z
- =|— |7 =| —=| =V,, say.
density \m Hp )
Thisis called Alfve’nvelocity and the waves are known as Alfve’n waves.
In the case of perfectly conducting compressible fluid, longitudinal wave propagation is also feasible. The

nature of the wave propagation depends on the direction of the magnetic field B relative to the particle velocity v.

When the particle velocity v and the direction of wave propagation are both parallel to B, then since the
fluid moves along the lines of force, no magnetic effects are called into play. Here the waves in the fluid will be
ordinary acoustic waves, propagated with the velocity of sound ¢, since the motion of the particles parallel to the

magnetic field will not give rise to any magnetic perturbation,

Now we suppose that the particle velocity is paralle! to the direction of propagation and each is perpendicular
to Bo; the undisturbed magnetic field intensity. In suchcase we show that a new type of wave is excited. Fora
perfectly conducting liquid, we suppose that B isf the field intehsity at time t and v is the particle velocity. From

(22), we have

—S—B-:Vx(va). (84)

ot

Directorate of Distance Education 345



Matnetohydro 7 y
neto TAQITICS oeoeeevreressessseansnesassssaisesannssnstsnstsssasesssessansessnsesssruesssseenesssssssarmnssssaessssrsnassasssssissssstses

oB
Let v= v(x)l, B= B(x) j andmemotloms steady, i.e. i 0. 'I’nenthe equation (82) glves

"‘"(VB)J

~ leading to vB =constant. Also the equation of’ contmmty v.(pv)= 0 gives pv =constant. Hence from thesetwo
e_quatlons, weget * :
B. constant = By ,
Y o

where the suffix O refers to undispxrbed conditions. Since the magnetic pressure is 5—; , the effective pressure is

p* where - |
p‘=p+-§—;-, |

o %38

Since%g*%’;%.andcz"%g we have
%=c2+v§,, '

where V, isthe Alfve’n wave velocity. Thus the speed of propagation is (02 + Vﬁ ) .Suchawaveiscalleda

magnetohydrodynamic wave. Alfve’'n wavesare transverse and are propagatcd in conducting incompressible
fluids, but magnetohydrodynamic waves are Iongxtudmal and their ptopagatlon requires a compressible fluid of -
infinite electrical conductivity. |
A more detailed discussion of Alfven waves

The velocxty of’ propagatlon of Alfve’n waveliesalong the lines of magnetic force and the partxcle velocity
isatrightangles 10 them. Consider an undisturbed uniform magnetic field By =B ok alongthe directionof the z-
axis and b is the perturbation produced in the fieldduetoa smail disturbance so that theresultant fieldis

By=Bg+b. L @)

 For conducting incompressible fluid, there is no charge accumulation at internal points. Thus, neglecting viscous
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effects, the equatidn of motion (30) gives

Dv | L .
pB-{=-Vp+;(Vx b}x B. (86)
The magnetic field continuity equation (1), viz. V. B = 0 gives v
V.b=0 _ (87)
and equation of continuity for the fluid is
Vov=0. . | - (88)
We suppose that the disturbances are so small that we can neglect the magnitude of the squares and product of b
,andv. Then » '
Dv_dv (V.9 z dv
Dt 8t
and (Vxb)xB=(Vxh) (B0+b)
= (V X b) X Bg
» &b
=-B | x —
0 X Z(l X ax)
Sb 2 Sb
= ~Z{I(Bo.’g’-")} {(I.Bo)s—x-}
28 Sb
==Y {i—(Bg.b);+By—
Z {l Sx( 0 )} 052
8b
=-V(By.b)+By —.
(Bo-b)+ By —
Thus (84) approximates to
1 Bg db ov . :
V|p+—Bg.b|=—2-p— 4
(P‘fu 0 ) s p8t 89

Taking divergence on both sides of this equation we get
| oof 1 By 5
v.vV p+——,B0.b)————-——~ V. p-— V.v
| ( poo) om3d (V-)=p(V-¥)

or, v2 {p +;:1~B0.b) =0 [by using (87) and (88)] (90)
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‘which shows that P+ L‘ By.b isa harmonic function. Here two cases arise: (i) the liquid is of infinite extentand (ii)

the liquid is of finite eaten .
Case Y: Liquid is of infinite extent
The solution of the equatxon (90) regular at all points including at mﬁmty is

p+ 1 Bg.b = constant.
p

“Then the equation (87) gives
| 8v_Bydb’
Po hoz - Ob
Now the equation (84) governing magnetic field variations reduces to the first order

%—Vx(vaO)

l=Bng(vxlﬂ<)

= Bo[(V.k)v - (V.v)k]

db

=B
5t Uz 5
The equations (91) and (92) then lead to the wave equations

§2 52
( A }(b v)=0 (93)

ie. . [using (88)] 92)

5t %
for b and v, where
B§
Hp
Thus the magnenc field and the fluid particles propagare as transverse waves along the lines of force with

" Alfve'n velocity V.
If a wave travels along the positive direction of the z-axis, then the solutions of the equations (93) arc

b= b(z-‘—VAt),

\

94)
" It follows from these equations that
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sb__, o

ot A sz

sq that from (92) we get
S__ Bydv__ v
dz V, Oz oz

-which is satisfied by taking

1

b=~(up)2v. ©3)

Similarly, for a wave travelling along the negative direction of the z-axis we have

1
b=(up)2v. (%)

b° 1
The relations (95) and (96) are due to Wale'n . It follows from these equations tha 5; = EPV?W Thus the
magnetic energy of the perturbed field is equal to the kinetic energy of the motion.
Case 1L : Liquid of finite extent

1 .
Inthiscase P+ ; Bg.b may not be constant and boundary reflections and transmissions would occur.

Hence the solution of (90) would be complicated. However, taking curl on both sides of (89) we-get

1 B, & 8
VxV|P+—Byp.b |=——(Vxb)-p—(V
X ( +I»l 0 ) pSz( x b) pSt( XV)
By 8j & -
0=—"0-2-r-2,
or, L oz 1'5t o7

where £ = V x v is the vorticity vector. Also from the equation (92) we get on taking curl

) o
2 (Vxb)=By—(V
St( xb) 082( x V)

§j dC
2By (
o | 5t 0z ©8)
Equation (97) and (98) then lead to the wave equations
| 52 2 82 Y.
2 vi2o g =0. .
[&2 52° }( ) ' 99)

Directorate of Distance Education 349



Matnetohydrodynamics......... reerens et tan et saness e e e s ebeneseasreans eveeees e essseee s

Thus the vorticity vector and the current density j propagate with speed \Y along the lines of force

Reflection and transmission of Alfven waves 4

Suppose a train of Alfve'n waves of finite amplitude be normally incident on the horizontal plaxie oftwo
liquids permeated by a uniform vertically magnetic field. We také the z-axis vertically upwards so that the
acceleration due to gravity, assumed to be uniform, has resolutes (0, 0, -g}. Let the uniform magnetic field has
resolutes (0, 0, B,) and all variables dependonz and t only. Also the fluid velocity is v=(0, v, 0), i.e. the motion

' - : 8 .
of the fluid particles is purely horizontal. The equation of continuity _62 =0 shows that the density p depends on

z only and is unaffected by the passage of the waves Fulther the disturbed magnetic fieldb= (0 b, 0) and the,
equations satisfied by v, b and the pressure p are

8b ov

st %8zl ‘

pél By b (100)
8 p &z’ v ’

&b bosb s |
—+———tpg=0. :

5 poz o . (on

| 2n
Consider first the propagatlon of wavesina llqmd and assume harmonic v1brat10ns of penod R .Thenthe. -

b = aexp{ii(t i—z—-)}, . , |
. Va _
. 1 . : ‘ ' ,
v=1(up)2 aexp{i?x.[t + j—)}, | . (102)
- VA v

wheve}a is the constant amplitude of the waves and \ , isthe Alfven velocity. The equation (101) integrates to give

soluuons of (1 OO) are

bz ’ .
+-—+pgzZ = F(t), :
Pt pgz = F(t) | (103)

where F(t)isa ﬁmctxon oft only
Letus now consider the reflection and refraction of sucha train of waves travellmg upwards inaliquid of
: densxty p,» occupying the region z <0 at the plane interface z= =0 with another liquid of density p, occupying the
- regionz>0. Weuse the suffixes i, r and t to denote the mcxdent, reflected and transrmtted waves mpecnvely We

then have

350 Directorate of Distance Education



Matnetohydrodynamics

..............................................................................................................................

1
b; = a; exp{ik(t - —\%)},vi = w(pp;)z a; exp{ik(t - —5;]},
. z 1 7
b, =a; exp{ik(t = ———~J},v, =—(pupy)2a, exp{ix[t - W)},
: M 1 Vi (104)
b, =a, exp{i?{t - -E—)},vt =~(up )2 a4 exp{i?{t ~ }—«}
Vi Vi)l

where a, a, and a, are constant amplitudes of the magnetic fields of the waves and V, and V, are Alfve'n

v

- velocities in the two fluids given by

B} (105)

- The linearity of band v in the equations (1 00) shows that
| b=by=b;+b,, v=vi=vi+v, forz<0,
ot o . (106)
bwbz—bt, V=Vy =V, for z>0.
We use the suffix | to denote the quantities for lower medium while the suffix 2 is used for the upper medium.
The boundary conditions at the plane of separation provide us the equations connecting the amplitude
coefficients a, @ and g, and these boundary conditions are the continuity of (i) pressure, (if) normal resolute of the

fluid velocity, (iii) magnetic field and (iv) tangential resolute of the electric field. The first three conditions give

P, = Dy (107)

kv =k.vy, (108)

B,=B, (109)
atz=0, | being the unit vector along OZ. The condition (iv) gives

E; - (k.Ey )k =B - (K.E; )k,

e, kx(kxE;)=kx(kxE,) (110)

atz=0. Using the relation E =-v x B and conditions (108) and (109) we have from (1 10)

kB Jlx (vy -v2) =0 i

et z=0, Sincek, B; #0,50 & v = kxv, otthe plane z= 0. Coupled with the condition (108), this implies
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v, atz=0. Thus the boundary conditions at z = 0 reduce to
b,=byv,-v, - A
provided that arbmmy functions Fj(t) = F,(t) whicharise in the pressure integrals. '
Using these boundary conditions and equations (104) and (106) we have

ai +ar =a¢’

| , 1
pf (-a; +ar)=~p§at

so that

(e e
r = (r ) ay (Vo i) (113)

-fuch give the amplitudes of the reflected and transmitted waves in terms of the amplitude of the incident wave.
The conditions at a free surface may be obtained from (113) by putting p, =0 so thata, = -a,a,=0.1t,

therefore, follows from (104) that a wave is reflected without change of phase in the velocity but there isareversal

ot paase.in the magnetic field. For arigid sﬁrfacc, i.e. when p, — o0, these conditions are reversed because then

o =g, a, =28, | |

5. UNIT SUMMARY ‘

In our discussions in Section-4, we have derived the equations of motion of a conducting fluid and the
~quations satiesfied by the magnetic field with the help of Maxwell’s electmmagnetié field equations. The equations -
ars thien applied to consider some specific problems. The wave (Alfve’n wave) transmitted in conducting fluid
s atse been considered. | A
5. EXERCISES

1. Starting from the induction equation

SS?MVx(va)

ior an mmntel y conducting fluid, show that the magnetic flux across any closed contour moving with the ﬂwd
remains constant. Interpret this result in terms of the motion of the lines of force.

2. An infinitely conducting fluid moves with velocity v in two dimensions relative to rectangular Cartesian
axesx,y,zsothatv={v, v,» 0] . Ifthe vector potential A of the magnetic field B(B=Vx A) is suchthat A=

{O 0, A]and all variables are independent of z, then show that
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(i) —-—Z‘: =vxB,
SA
(ii)- = ~(v.V)A,
' | DA
oo DA
and (i Dt

Show that the last result is a special case of that in Exercise— 1.
3. Show that the vector potential A of the magnetic field B in fluid moving with velocity v may be defined so

5A
O (VxA)=0.
50 (VXA

A
Deduce that if the vector potential is maintained constant (gt‘“ = 0) over a fixed surface S enclosed in a volume

of infinitely conducting liquid z,
I=[A.(VxA)drt = constant.

T

Show also that the stationary values of the magnetic energy subject to the constraint I = constant withA=00n

S correspond to the force-free fields V x B ='o.B, where  is constant.

4, Show that if a conducting liquid of uniform density p moves ina magnetic field of intensity B and ina field
of conservative body force of potential ¢y per unit volume (so that F = -VQ ) then when displacement currents
are negligible and there is no volume distribution of electric charge, the equation of steady motion s '

p(v.V)v= (p+Q)+u(VxB)xB+va2

Elow for which B and v are always parallel so that B=14v is called parallel flow. Show that for such flow
the above equation becomes ' |
: 2 42
. p—--}i— (v.V)v=-Vip +Q+&-—v2 +pvViv.
M : H
5. If y represents the velocity stream function in an incompressible and \p represents the magnetic stream
 function and the flow is two-dimensional so that the Cartesian components of v and B are given by
[ev osv 1 g[8y 8 o)
, dy & dy Ox
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Show that the induction equation reduces to

W _ 3(¥,y)

—

5t 8(x,y)

3W ,
Show further that —g{ = 0 and deduce that the lines of force move with the fluid. Show also that when conditions

are steady, ¥ = f(\y) so that the streamlines and the magnetic lines of force coincide.

7. SUGGESTED FURTHER READINGS
1. V.C.A. Ferraro and C. Plumpton : An Introduction to Magneto-Fluid Mechanics, Clarendon Press,

Oxford. v
F. Chorlton: Textbook of Fluid Dynamics, ELBS & Van Nostrand Reinhold Company, London.

2
3. A.Jeffrey : Magnetohydrodynamics, Oliver and Boyd, London.
4. TG waling: 'Mag(zetohydrodynamics, Interscience.

5. J.A.Shercliff: 4 ?’extbook of Magnetohydrodynamics, 'Pergamon Press.
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