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M.Sc. Course
‘in
Applied Mathematics with Oceanology
and
Computer Programming

PARTI

Module No. - 01
Real Analysis
(Functions of Bounded Variations)

Group-A

Module Structure :

1.1 Introduction
1.2 Objective
1.3 Definitions
1.4 Examples

1.5 Some theorems and results

1.6 Some properties
1.7 Varation Function

1.8 Hlustrative Examples

1.9 Summary

1.10 Self. Assessment Questions
1.11 Suggested books for further reading

1.1.Introduction

Inreal analysis we have studied many important properties of functions like continuity, differentiability,

integrability, monotonicity etc. There dre many interesting relations among these classes of functions, We know

many Basic properties of monotonic function. This module introduces a new class of functions closely related to
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monotonic functions. This class of functions is known as functions of bounded variation on aclosed finite interval
[a, b] These functions of bounded variation are intimately connected with curves having finite arc length. They are
, found also to play an important role in the theory of Rlemann-Sneltjm integration.

1.2. Objective
In this module a new class of functions have been introduced which plays role in the development of a
number branches of analysis viz. Fourier series, Riemann-Stieltjes integration, study of rectifiable curves etc. This

class of functions is closely related with the class of monotonic functions. Many interesting theorems and results

have been proved and discussed. Examples are provided for explanation and clarification.

1.3. Definitions
_ 1.3.1, Definition. Partition of [a, b]
~ Let[a, b] beaclosed interval. A finite set P of points x,. 5q +Xa5e00s X,,, Where
a=x,SxSx,€6.5x,=b
is called a partition of the interval [a, b] and is denoted by P = {a = Xy Xps Xaperny Xy = b}.
_ We note that for a given interval any number of partitions are possible. Collection of all partitions of [a, b] is
denoted by g@[a,b] or simply by 50' if there is no confusion. B

" The intervals [xo » X, ], [x, X, ] [x,,_, )X ] are called the submtervals of the partition. The ith subinterval is

[xs%, ] The length of ith subinterval is denoted by Ax, ie. Ax, Zx -x_,.

- 1.3.2. Definition. Function of Bounded Variation

Let fix) be areal valued function deﬁned ona closed interval [a, h]. Correspondmg to each partition
P= {a = Xgy Xys Xyseens X, = b} we define Af, = ( )= (%) fork=1,2, ..., n. Thenthesum ElMI is

called the variation of fover [a, b] for the partition P. It deoends on the partition Pand is denoted by V,(f>a,b).
" Ifthe least upper bounded of ¥, (f,a,b) over all possible partitions of [a, b] exists then f{x) is said to be of

bounded variation over [a; b].
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1.3.3. Definition. Total Variation of a function f on [a, 5] |
If a function f is of bounded variation on [a, b] then the least upper bound of (f,a,b) overall possible

partitions of [a, b] exists i.e. sup V, (f.a,b) exists. This supremum is called the total variation of fon [a, b]andis
€

denoted by ¥ (f; a, b).
Thus V (f,a,b) = supV, (f.a,b).
Pegp .

'1.4. Examples of functions of bounded variation and functions not of bounded variation.
1.4.1. Example. Any constant funcﬁon is of bounded variation
Solution : Let f(x)=c be defined on [a, b].

| For any partition P = {a = Xy Xys Xpyeens Xy = b} of [a, b]

- "we have

V.(f,a,b) =A}n:lf(3€k)'f(xk—n)l

k=1

=Sle-d

~ k=l
=0 ‘
This is true for any partition P. As the RHS is independent of P we have supV, ( f,a, b) =0

Pegp

Hence f(x) is of bounded variation on [a, b} and tl;e total variation of f on [a, b is V (1, d, b)=0

1.4.2. Example. The function f(x) defined by f (x)=3x"+2x+5 onthe interval [3, 8] is of bounded variation
on|3, 8]. | : '

Solution, Here f(x)=3x"+2x+5 and is defined over the interval [3, 8. Wehave f(x)=6x+2>0
forall x € [3.8]. o

Hence f(x) is monotonic incfeasin’g on[3, ‘8].

For any partition P = {3 = X, %, X;..., %, =8} of [3, 8] we have

Directorate of Distance Education
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Ve (f’3’8)=ilf(xk)"f(xk-n)‘

- z{ 7 (%)= 7 (%)} [ f(x)ismiand x, 2, ]

=f(xx)“f(xo)
+f(x2)—f(x,)

------------------------

R Y P YT TR TR

+f (51 )= f (%0c2)
+f (%)= (%)
= /(5)- /(%)
=/(8)-r0)
=(3.87+2.8+5)-(3.32+2.3+5)
=175
This is true for all P of [3, 8]. Since the RHS is independent of P we have
supV, (f,3,8)=175.

Pep

Hence f is of bounded variation on [3, 8] and the total variation of f on [3, 8‘] isV(f,3,8)=17s.

1.4.3. Example. The function f(x) defined on [a, b] by
f(x)=a forrational x €[a,b]
= forirrational x e [a,5]

where o # f is not of bounded variation on [q, b].

Solution. Here f(x) =« forrational x in [a, 5].

= f for irrational x in [a, b].
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Let P= {a = Xgy Xys Xyyerns Xy = b} be any partition of [a, b]. Then

Vo (f,ab E‘f X))~ (xM)I

= kE la~ B l [Each subinterval contains rational as well as irrational points]
=]

= rla- 4]
This is true for any partitiion P i.e. forany nhowever large.

Taking n — o we have V, (f,a,b)—> . Hence sup ¥, (f,a,b) does not exist i.e. f is not of bounded
_ o |
variation on [a, b].

1.4.4. Example. The function f(x) defined on[1, 8] by

is of bounded variation over [1, 8]

f(x)=1, 1sx<2

=4, x=2
=3, 2<x<4
=,4<x.<_8
Yy
AN
4 — | o .
S o :
b |
B N —
| — | |
1 Lo 1
L1 1 n 5
0 1 2 4 8 :
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- Solution.

Let P= {1 = Xgs Xpy Xyyerry X = 8} be anypai'titioh of 1, 8].
Now fo.ur cases may arise.
Case 1. P doesnot contain 2 and 4
Case 2. P contains2 but does not contain 4
Case 3. P contains 4 but does ﬁot contain 2
Case d. Pcontainsboth2and4

Casel.Let x_, <2<x and x,, <4<x,

| Hence P = {l = xo,x,,xz,;..,x,_,;xi,x,+,,...,xj_,,xj,xm,...,x,,.= 8}

Now 7,(f,1,8)

=307 () f (5

k=l

SN

k=l

=ZIAfkj+[Ajj]+k§IAﬂ|+'Aj;l+kil!Aj;}

=j¢

i1 j=l n - ‘
=Sh-1+p3-1+ 3 p-3+2-3+ 3, -2]
. k=l )

kemi+) k= j+i
=0+2+0+1+0
- =3,
Case2. Let x,, <2=x and x,, <4<,
 _Here V,(f.1,8)

A

k=1

k=id

=Sl elarl+ S lasil+las]+ 3
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_Zu 1|+[4- 1‘+|3 -4]+ 2[3 3|+[2- 3;«-2]2 2|

k=l k=is2 k=j+b
=0+3+1+0+1+0
=3
Case3. Let x,_ <2<x and x, <4=1Xx,
~ Here ¥,(f,1,8)

[ J=1 n
o Z[Aﬁ[+|Aj}|+k§1!Aﬂ|+!Aj;!+'lM+, +k;2]Af,‘[

—ill -1|+3-1]+ 2|3 ~3|+|3-3]+]2-3]+ Z[z 2l

k=l
=0+2+0+0+1+0
» =3
C_ase 4.Let x_ <2=x and x,, < 4=x,

> Here V,(f,1,8)

| —ElAﬁl+lAf|+iAf+x|+ 51 lAka+lAfl+lAf,ﬂ

Mﬂl-

=S -1]+]a- -+ 2;3 3+ p-3+f2- 3|+2[2 o)

k=l

—0+3+1+0+0+1+0
=3
Hence supV (f,1,8) existsand is 5.

Thusf isof bounded variationon[1, 8] and the total variationof fon (1, 8] is 5.

1.5. Some Theorems and results
1.5.1. Theorem. A function of bounded variation on [a, b} is bounded on [a, bl.

Proof. Let/(x) be of bounded variation on [a, b]. Then Sup V,(f,a,b) exists.
(4 )
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Let thus suprémum be M.
V,(f,a,b)< M forall partition Pof[a,d] e €))
Letus consider the partition P, {a X, b} where g < < x<b.

Now ¥, (f,a,b)=|f (x)- f(a)|+| £ (6)- £ (x)]
. Using (I) we have.
|7 ()= 1 (a) +] 7 (b)- f (x)| s M
=|f(x)-f(a) <M
This is true for any x in [a, b].
.. Forany x in [a, b] we have
e
<\ ()= f(a)|+|f (a)
<M +|f(a)

Hence f(x) is bounded over [a, b].

1.5.2. Theorem. If a function f(x) is unbounded err [a, b], then it cannot be of bounded variation over [a, 4].
| Proof. Here f(x) is unbounded over [a, b]. So there exists € (a,b) such that l f (x)] >0 as x— B
oras x— f*.
Let lf(x)lﬁ ©asx— f.
We consider the partition P of [a, b] where
P={a=x,%,%,..,Xx,5b} and x, = B as n— oo from left.
Now as n— oo We have x, — f fromleftand as x, — 8 from left we have ]f(x,,)l — o0,

We have

V,(f,a,b) Zlf ()= f )+ @)=, a)
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.......................................................................................

=|f(x)- £ (5)+ Y7 (x)- 7 () +7 5

Hence from (1)
v, (fra,b)> glf(xk)'~f(9€,_, EITACH EIrA (0 R, @

Since l £ (x,)| = e as n— oo it follows from (2) that ¥, (f ,a,b) — o> as 1 —» oo, Hence fis.not of

bounded variation on [a, b].

Similar is the proof when |/ (x)| — o as x — f*.

1.5.3. Theorem. Prove that a bounded monotonic function is a function of bounded variation.
Proof. Let fbe monotonic non-decreasing function over [a, b].
Let P={a=x,,x,%,..,%,,b} beany partition of [a, b}.
Then we have f(x,)2 f(x,,) forallk=1,2,..,nas x, 2 x,, forallk=1,2,..,n.

Now )

h(fab)=Y M|

. =i{ ()= f (%)} [ f x)z (x,,_,)for alik;=1,2,..‘.;n]

........................

-----------------------
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+f(xn)_ f(xn-l )
=/ (%)= 1 (%)
= 7(6)- 1(a) |
We see that the RHS is independent of the partition P.
Hence sup Vo (f.a,b) existsandis f(b)~ f (a).

. f is of bounded variation on [a, b] and the total variation of fon [a, 8] is f ()~ £ (a).

Similarly, when fis monotonic non increasing function we can show that f i of bounced variation on [a, b].

In this case the total variation of f on [a, b]is f(a)~ £ (b).

The conver‘se of the previous theorem is not true i.e. a functio_h of bounded variation on [a, 5] may or may not
be monotonic on [a, b] e.g. f(x) = 3x? fzx +5,3< x<8 isofic mded vadationon [3, 8] and is monotonic '
increasing [Example 1.4.2.]. But the function ‘

f(x)=],,15x<2
=4, x=2
=29, 2<x_S4

=2, 4<x<8

is of bounded variation on [1. 8] but is not mononic o1 180 ixamess ! Ly |

In theorem 1.5.3. we have seen that every monotonic finctionis +. vrded variation, As continuous prope ity
of a function plays an impertant role in analysis similar question ari. - whether every continuous function is of
bounded variation or not. | |

The answer to this questioxi is ot in the affvuuative.

Obviously, ifa function is continuous and monbtonic in [a, b] then it is of bounded - ~+iationon [a, b]. Butthe
following example is continuous but not of bounded variation on [a, b]. So in general a continuous functionmay or -

may not be of bounded variation.

1.5.4. Example. The function
f(x)=xsinZ,x#0
X
=0 yx=0

10 ‘ Directorate of Distance Education
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is continuous on [0, 1] but not of bounded variation there.

sing-{ <+ | [

sin —
X

”sn]

Solution. We have ‘f (x)=f (O)I = Si“%“ 0| =|x|

Thus | f (x)- £(0)| < £ whenever || <&
.. Forgiven £ >0 thereexists § = £ suchthat
|f(x)- £(0) <& whenever |x-0]<8.

Sof(x) is continuous at x = 0. Obviously f(x) is continuous at every x # 0. Hence f(x).is continuous on
(0,11 |
" We consider the partititon- P, of [0, 1] as

a.é-{o, 2 2 2 . 3—,3,-2—,1}.
2n+1 2n 1 2n-3 753

Now V, (fOl

2 ool (525 2 ) (=)
"i""*l’"@)‘f(%)l*f@)‘.f@* 5)

We have f( 2 ) sin (2n+1)7r (nzt#-’-’—)
2n+1) 2n+l1 2 2n+l 2)

2 n
.—i2n+1(—‘l)
¥ (£,00)= ’_....( I =oj+l 1("1)“ 2n+l( )l 2n- 3(’ S 2 1( e
ey -2y e -2ev]ep-2e) |

2 2 2 2 2 2 2 2 2 2
= + + + e +--+ e e
2n+1 2n-1 2n+1 2n-3 2n-1 5 3 5°3 _

Directorate of Distance Education ‘ v ' . 3 |
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( 1 11 1 1) Y
=4 + + +ot—+— _ 2
2n+1 2n-1 2n-3 5 3

We note that for each positive integer n, however |
large, P, is a partition of [0, 1]. As the series
1 1 1 1 1
—+—t—t..+ +
3 5 7 2n-1 2n+l

series, it follows that ¥/, (£,0,1) - e0 as n — oo,

+.... is s divergent

Hence supV, ( f,0, 1) does notexist i.e. fis not
» :

-of bounded variation on [0, 1].

The above example shows that a continuous

function may not be of bounded variation, The following

example shows that a discontinuous function may also be not of bounded variation.

1.5.5. Example. The function

f(x):sin—y-z-, x#0
X

=0 , x=0
is discontinuous at x = 0 and not of bounded vanatxon on [O 11.

Solution. Here lim / (x) does not exists. Hence  £(x) is not continuous at x = 0,

We consider the partition P, of [0, 1] as

& = Os 2 9. 2 ’ 2. 9-"'!’_2-'3_2'5-%’1}
U2 2 22 TS
Now ¥, (f,0,1)

Ve

2
2n - 1 f 2n+l ’f 2n 3 ,f(2n-1)+

e

)R-

12 : Directorate of Distance Education

ot




Module 01 : Functions of Bounded Variations

.......................................................................................

LT

=y el =y ey -
(1) = (1) #|-1) = (<1 |+ o~ (1)
=14+ {2+2+.. 42} +1
=1+2(n-1)+1

+ ...

=2n
Thus ¥, (f,0,1) > eo as n — oo, This shows that fis not of bounded variation on [0, 1].

The following theorem gives the sufficient condition fora function to be of bounded variation.

1.5.6. Theorem. If the deviative M exists ahd is bounded on [a, b], then the function f (x)isof bounded
variation on [a, b].
Proof. Here M exists and is bounded on the interval [a, b].

Therefore, there exists M such that
|f'(x)sM forallxefa,b) (1)

Directorate of Distance Education
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Let 'P={a=xo,xl,x2,...,x” =b} be any partition of [a. b].
Now V,(f,a,b)

™M=

lf(xk )’f(xk—t)l

Eoad
i

(e =% ) £ (&) where &

I
M:

x~
kR

= g(xk «x,,_,)lf'(‘fp )l

<25 =xa)M oy
=]
=M(b-a) _ .
This is true for any partition 2 of |a, 5]. Since he RH is independent of P we see that sup?, (f,a,b)
I)
exists.

Hence fis of bounded variation on [a. A].

It is important to note that boundedin s o [/ “{.+} i v a0t icess: m* for £(x) to be cf bounded variaticn, This

can be shown by the following example.

1.5.7 Example. i_et 7 x) 2 )< x < 4. Thenf(x)is of bounded va iation on [0.4]though f7{ \ is unbounded

on[0,4].

Solution. ‘ y
f(x)= 1

N r{ Y o _l_ -% ~, |

o f (x)-—2x : Soforx>0wehaye-j (x)>o0. /

This shows that f(x) is monotonic increasing on [0, 4] and so 2

f(x)is of bounded variation on [0, 4].

We note here that ' 0

hmf( )-hm L

x0+ x—0+

14 . , - Directorute of Distance Education
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+ f*(x) is unbounded at ¥ = 0.
Note : Theorem 1.5.6. helps us to establish bounded variation nature of functions.

1
1.5.8. Example. Let f (x) = x? sin—, x # 0 and f(0)=0. Then f(x) is of bounded variation on [0, 1]. -

.1
Solution. Here (x) = x’sin 3 x#0

=0 -, x=0.

We can easily show that f”(0)=0. For x# 0 we have

f'(x)= 2xsinl—-cos—l—
x x

.1 1
2xsin——cos—
x x

|7 )=

Directorate of Distance Education | 15
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1
cos—
x

2xsin—1— +

X

<

1
€OS—;
X

!
sin—|+

<2|«
x

<2.11+1
s

Thus | f(x)|{< 3 forall xe[0,1]. .
Hence by theorem 1.5.6., f (ﬁc) is of bounded variation on [0, 1].

1.6. Some Propgrﬁes of Functions of Bounded Variation.
First we show that the functions of bounded variation are closed with respect to the arithmetic operations of

addition, subtraction, multiplication and division.

' 1.6.1. Theorem. The sum or difference of two functions of bounded variation is of bounded variation.
Proof. Let the functions f(x) and g (x) be of bounded variation on [a, b]. We are to show that £ (x)+ g (x)
is also so on [a, b]. | PR ‘ ' - f
Let h(x)= f(x)+g(x) and P={a= xé,xl ,xz‘;...,x" =b} be any partition of [d, b].
Then V, (f,a,b) .

S g]h(xk)-h(?k-l)l

| —-=k)";lf(xmg(xk)—f(xkq)—g(x,‘-')l

n

Z{If(xk )- f(xk—-))"*-!g(xk )-8 (% )l}

k=

<1 ()= £ ) Sl ) - ()

k k=1

<

3

n

L, (f05)4 Vs (8,000)
oV, (ha,b)<V, (f,a,b)+V,(g,a,b) L e renee (1)

16 ‘ Directorate of Distance Education



....................................................................................... Module 01 : Functions of Bounded Variations

Now fand g are functions of bounded variation on [a,B].

~.sup¥, (f,a,b)existsand is ¥V (f; a, b)
P .
and supV,(g,a,b) existsandis ¥ (g, a, b).
P

Vo(f,a,b)SV(f,a,b) and ¥, (g,a,b)<V (g,a,b) cieerenenns 2
Using (2) in (l) we get ’
Ve (ha,b)sV(f,a,b)+V(g,a,b)
~ The RHS isindependent of P and so this result is true forallP
Hence supV (h,a,b) exists.

sohie f+ g is of bounded variation on [a, b].

In the same way we can show that f— g is also of bounded variation on [a, b].

1.6.2. Theorem. The product of two functions of bounded variation is of bounded variation :
- Proof. Let fix) and g(x) be functions of bounded variation on [a, bland P= {a = Xgs X3 Xpse X, = b} be
any partition of [a, b]
We denote the product function f(x) 4 (x) by & (x). _
‘We know that functions of bounded variation are always bounded. Hence there exists constant X such that
|f(x)|s K and |g(x)|< X forall xe[a,5] B o (1)

Now ¥, (h,a,b)

f(x, {g x,r g(x., )}+ g(xk,,){f (x, )‘ f ('xh«l )}l

Sg{!fmmg(xk)-_g(xk-.)1+lg<xk-l>Hf<xk)—f<xk-x>!} |

Directorate of Distance Education 17
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{K‘g xk xk I)!+K'f(xk)—'.f('xk—l)l}" [by (1)]

{ki &\ %)~ (xk_,)(+§’f (%, ),-.f (% ),}

k=

=K{V,(g,a,b)+V, (f’a’b)}
<K Sl:b V,(g:a,b)+ sup Vo (S, a,b)} [as fand g are functions of bv, both sup exist]

=K {V(gab)+V(fab} |
This is true for all partition P. As the RHS is independent of P, it follows that supV, (4, a, b)exists. Hence h
P 8 -

i.e. fg is of bounded variation on [a, b].

1.6.3. Theorem. If fand g are functions of bounded variation on [a, 5] and lg(x)|2 0 >0 forall x e [a,5],
then f/ g s of bounded variation on [a, 8]. |
- Proof. Let f(x) and g (x) be ﬁxpctioﬁs’éf bounded variation on [a, b]and P= {a = Xy Xys Xygeres Xy = b} be
any partition of [a, b]. We denote the quotient f (x)/g(x) by h(x). R
. We knqw that function of bounded variation are always bounded.
Hehce there exists constant M such that v
|/ (=) s M and |g(x)|< M forall x&[a,b] | R | )
Also we have l g (x)l >0 > 0 forall x€&[a,b] r— ()
Now V, (h,a,b)

18 | Directorate of Distance Education
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Ai £(5)8 (50)- (32) f (51 )
ka1 4 (-"k )”g (xk—l)i

n

S 3l () ) ()2 () £ ()8 () 8 (5 (), oy @21

k=1

=3 e 7 ()= ()} =/ e () - g )

sggl-z-{lg (el (5)- £ (ke +)7 (g () -2 )]
s Z{fo %)~ f(x..|+Mlg x)-g(x)}, by )
2L ) £k Bl )= )}
-,-_"42.{ (f:a:b)+V; (g,a,b)}
| ALY 2{,, (fab)+,, (g:a,b)} TS )

Since fand gare fqnctxons of bounded variation

sup¥, (f,a,b) existsand is V (f; a, b)
P

and sup V,(g,a,b) existsandis V' (g, a, b).

From(3)wehavethusV (hab) :f{ (fab)+V(g,a b)} o

This is true for all partitions P. Since the RHS is mdependent of P we see that sup (h a, b) exists. Hence h

ie. % is of bounded variation on [a, b].

1.6.4. Theorem. Ifa functionis of bounded variation on (g, b] then it is also of bou_nded variation on[g, ¢] and
[c, b] where a <c < b and conversely. Also ¥ (f,a,b) =V (f, ac )+ V(f,c,b). |
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- Proof. First we assume that f7is of bounded vari_ation on [a, b] and a < ¢ < b. We are to show that fis of
bounded variation on [a, c] and on [c, b]. | ‘
Let B ={a=x,,%,...%, = c}‘beanybartiﬁonof{a,c] and P, ={c = y,, 1, ¥;».., ¥, = b} beany partition
of [¢, B]. ' |

Then 7, ( f,a,c)=§:| 7)1 (%) ‘ (D)
and ¥, (f,¢,b) Zlf(y,) 7 (32) . e @)

Let P=RUP, ie. P={a=xy,x,.,x,=c= yo,yz,...‘,y,, =b}
ThenPisa partition of [a, b] |
Now V,(f,a,b)

lf( ) xk 1 l'*'Z'f yr yr-l)l

M

k=1 r=1 .
=V, (foa,c)+V, (f,68) by(and @] e 3)
Since fis of bounded variation on [a, b], sup V,(f,a,b) exists and is V (£, a, b). Thus from (3) we have
P .
Ve (f,a,c)+V,,2' (f,e.b)sV(f,a,b) ' : C rereererenens 4)
V, (f.a,c)<V(f,a,b) ‘

and ¥, (f,¢,6)<V (f,a,b)
These are true for any.partition P, of [a, c] and P, of [c, b]. Since the RHS is lndependent of P, and P, it

follows that supV (f.a,c) and supV ( f c, ) exist.

Thls shows that f isof bounded vanatlon on [u, c] and on [c, b]
Conversely, let fbe of bounded variation on {g, c] and on [c, b] wherea<c<b.

Let P= {a = 20,21, Zysees 2o s Zpyers 2y = b} be any partition of [q, b_] and 2, , <c<z,.

k=r+l’

o NowV (f.a,b) :Sl[f z,)- (zk;,‘)[,;L[f(z,-);' , }f z,)- (2
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s{rz-'l!f(z,,)—f(z,‘_‘)‘ﬂ-lf(c)-—f(zz,'_‘){}w“{‘f_.(zr)‘f("‘)l+ i lf(zk)“f(zk—t)‘}

k=1
[l (2 )= £ e =17 @)= £ @)+ £ (0)- £ el s1f (2= £ @)+ )= f o ]
=Vy(f,a.¢)+Vg(f,c.b) |
where P'={a,2),2,2y.sZ,,C} and B ={c,2,,2,015002, = b}..
- Wehave V,(f,a,b)SVy(frae)+Vg(fiek) e ©)
Since fis of bounded variation on [a, ¢] and on [c, b] we note that V' (f, a, c) and ¥ (f, ¢, b) exists and
V,,l.(f,a,c)s V(f,a,c) and ¥, (f,c,b)< V(f,c, ). From (5) we thus have -
| V, (f.a.b)<V(f,a,c)+¥ (f,e.b) o anee (6)
This is true for all P of [a, b). Since the RHS is indepeixdent of P is follows that sgp v, (f,a,b) existsand
thissupis ¥ (f, a, b).
Hence fis of bounded variation on [a, b].
From (6) we have |

V(fab)<V(frac)+V (fied) e )
Again (4) is true for any partition P, of [a, c] and P, of [¢, b].
' Since sup ¥, (f,a,c) and sup V;, (fc,b) existit follows from (4) that
R A

sup ¥, (f,a,¢)+V, (f.6,b) < V}(’f,a,b)

o V(f,g,c)w,,z(f,c,b)SV(f,;z;b)
or, V(f.ac)+sup V, (f.c,b)<V(f,a,b)

o, V(fac)tV (freb) <V (fa.b) o S @) .
From (7) and (8) we have finally ‘ _

V(f.a,b)=V(f.a,c)+V(f,c.b).
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1.7. Variation Function
1.7.1. Definition. Variation Function '

Let f(x) be a function of bounded variation on [a, b]. For any x of [a, b], the total variation of fon|[a,x] is
afunction of x i.e. ¥ (£, a, x) is a function of x. THis function is called the total variation function or simply the

variation function of fand is denoted by v, (x) or simply by v (x).

1.7.2. Theorem. The variation function v (x) of the function f(x) of bounded varxatnon on [a,b] is monotone
increasing on [a, b]. -
Proof. For'x, »%; of [a, b] with x, > x, we have
v(x,)~v(x) _
= V(f,a,xé)—-V(f a,x,)
={V(f,a,%)+V(f,x,x )}- V(f a, x,) [a<x <x,<b]
=V ( [ix,%, ) |
20
s ()2 v(x,) whenever a < X <x,<h.
This shows that v is monotone increasing on [, 5].
Itis interesting to note that /(x) may be mohbtone increasing or monotqne decreasing or neither monotone
increasing or decreasing but v(x) is always monotone increasing. A

This is because as x increases from x, to x, the positive term ¥ (f, x,x, ) is added with v(x, ) to get v(x, ).

1.73. Theorein. A function is of bounded variation on an interval if and only if it can be expressed as the difference
of two monotone increasing functions.
" Proof. Let /(x) be function of bounded variation on (a,b] and v (x) be the variation function of /(x) on

[a, b].
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Let us define
1
p(x)=—{u(x)+ f(x)} | R— m

and q(x %) =2 {v@+ ().

We now show that p(x) and g(x) are monotone increasing on [g, b].

Let x,,x, €[a,b] and x, > x,. Then we have

p(x)-p(x)

L) s Sol)e s} ]
=5 {olm)-vlalb {7 ) s}
.-:-12—{V(f,a,x2)-V(f,a,x,)}+';'{f(xz)‘“f(xl)}

=—;—{V(f,a,x,)+ V(f,x,,x2)~V(f,a»xl)}+”;‘{f(xz)“f(xl)}

—V(f,xnxz)—%{f(x‘)-f(xz)} - it 3)
Now V(f,5,%,) = sup¥, (f,x,%,) where Pisany partitionof [x,,,]. As = {x;,,} isapartition of
[x,x,] wehave | | |
'(ﬂ%m>yg&%)|() (%) | — @)
V(foxoxn)2|f(5)-f(®)2 f(0)-f(x) |
Usmg this result in (3) we have p(xz)- p(x)20ie p(x,)2 p(x).

This proves that p(x) is monotone increasing on [a, b].

Similarly, we have

q(xz)—q(x,) :
- Lole)- £}~ Hoe)- 7 ()
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=37 Umm) 5l )=/ (3)

From (4) we have ¥ (f.x,,%,) 2| f ()~ £ ()2 £ () / (%)-
Using this result it follows that ¢ (x, ) > ¢ (, ). Hence g(x) is also monotone increasing on [a, b].
Thus p(x) and g(x) defined by (1) and (2) are monotone increasing on [a, b]. |
From (1) and (2) we have |

f(x)=p(x)-q(x)
and v(x)=p(x)-q(x)
This proves that f(x) can be express‘ed as difference of two montone increasing functions.

Conversely, let /' (x) can be expressed as diﬁ'erencé of two monotone increasing functions i.e.
f(x)= p.(x) — g (x) where p(x) and ¢(x) are two monotone increasing functions.

We are to prove that f{x) is of bounded variaﬁon.

Let P{a=x,,x,%,,..,x =b} beany partition of [, b].

Now V, (f,a,b)

= Zlf 'xk xk 1 i
_ZHP xk {P Xi- 1 q(xk-l)}l

n

S?;,{lp(xk)—p<xk-l>l+fq<xk>—q<xk~t>i}

"Z{P x )= p(x)+a(x)-a(xea } [ pandqareml]

k=]
= p(b)- p(a)+q(b)-q(a)
This istrue forany P of [a, b]. As the RHS is independent of P it follows that sup ¥, ( /s a,‘b) exists. Hence
» P

fisof bounded variation on [a, b]. This proves the converse part of the theorem.

The following theorem gives a very interesting continuous property of a function of bounded variation and its

variation function.
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1.7.4. Theorem. The variation function ofa function fof bounded variation is continuous at some point ifand only
iff is continuous at that point. .
Proof. Let f(x) be a function of bounded variation on [a, ] and v (x) be the variation function of /(x).
Let v(x) be continuous at x = ¢ € (a,b). We are to prove that f(x) is continuous atx = c.

Since v (x) is continuous at x = ¢, for given £ > 0, there exists § > (0 such that

[o(x)-v(c)| < £ whenever |x~c| <. o e (1
For x>c we have
lf(x)—-f(c)lSV(f,c,x)= V(f.a.x)-V(f,a,c)=v(x)-v(c)
| =px)-vle) 0 )
For x<c we have |
!f(x)—-f(c)lSV(f,x,c): V(f.a,c)-V(f,ax)=v(c)-v(x) .
' =px)-v(e) 3)

From (1), (2) and (3) it follows that |
| £ (x)- f(c)| < & whenever |x—¢| < 6.
Hence f(x) is continuous at x =c.
Conversely, let f(x) be continuous atx =c.
Then for given ¢ > () there exists § > ( such that
| |f(x)-£(c) < % whenever |x~c| <&
We are to prove that v (x) is continuousatx=c.
We shall first show thdt » (x) is right continuous atx =c. |

Now V(a,c, b) is the total variation of 'f on[c, b] and is sup¥, (f,¢,b). From definition of supremum,
. 4

there exists a partition £, = {c = Xgy Xps Xy X, = b} of [c, b] éuch that

n

)

k=1

f(x,t)~f(x,,_‘){>V(f,c,b)—T% : L, . (5)
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In P, we assume that x, — ¢ < d. Ifitis not so, then we can easily make it so by introducing additionl points
in P, without affecting (5).

Thus wehave 0 < x, ~¢ < J.

.. By (4) we have ] flx)-r (c){ < % , e S 6)

Using (6) we get from (5) ‘

(o)< S5+ S )} 5V (15,0

o, V(f.c.b)-V(f.x.b)< &4+

or, V(f.ex)+V(fox,b) =V (frxb)<e
o, V(f.cx)<e |

o, V(f.a,x)-V(f.ac)<e

x)-v(c)<e

o, 0<v(x)-v(c)<€ [~v(x)ismi.and x,>c] -

<

or,

or, -£<0<v(x)-v(c)<e
Hence
lo(x)-v(c)| < & whenever 0<x,—c< &
|lo(x)-v(c)| <& whenever c <x, <c+6
- This shows that v(x) is right continuous atx=c.
Similarly, considering ¥ (f; a, ¢) we can prove that v(x) is left continuous atx = c.
Hence v(x) is continuous x=c.

‘This proves the theorem.
Note. In the above theorem ¢ is any point of [a, b]. Hence the above theorem may be stated as

“The variation function of a function / of bounded variation is continuous if and only if /'is a continuous”.
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1.7.5. Definition. Positive and Negative Variation of fon [a, b].
Let f be a function of bounded variation on [g, b].
For any partition P = {a = Xgs Xys Xgseres Xy = b} of [a, b] let

Vi (f.ab)= Y, A and V5 (f.a.b)=- Y Af;

&, >0 A, <0

If sup¥; (f,a,b) exists then fis said to be of positive variation on [a, 8]. If sup ¥y (f,a,b) exists thenfis
P P

said to be of negative variation on [a, b]. These supremums are called respectively the positive total variation and

negative total variation of fon [a, b] and are denoted respectively by V™ (f,a, b) and V" (f,a,b).

1.7.6. Theorem. If fis a function of bounded variation on [a, 5], then
 v(fab)=V (fab)+V (fab)
and £(5)- (@)=V" (,a0)-7" (fra.b).
Proof. Let P ={a = x5, %, X500 %, = b} beany partition of [a, b].
Then ¥, (f,a,b) |

=Y A T M+ Y ()

A >0 Af =0 A <0

V3 (f,a,b)+0+V; (f,a,b) T

Vo (fra,b)=V; (fra,b)+Vi (frab) L v (1)
Again V; (f,a,b)-V; (f.a.b)
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=Y A,

k=]

=i{f(xk)-—f(xk_,)}

k=l
= 1)1 (0 -
o, V;(f,a,0)-V;(f.a,b)=f(b)~f(a) ‘ e (2)
- Adding (1) and (2) we have

Vi (f.08)=2{V, (f,ab)+ 1 (6)- 7 (a)} e, o)
Subtracting (2) from (1) we have |

A O - @
Since sup Vo (f.a,b) exists it fquéws from (3) and (4) that sx:p V) (f.a,b) and sup V; (f,a,b) exist.'

- Wedenotethemby V*(f,a,b) and ¥~ (f,a,b) respectively. Hence taking sup in (3) and (4) we get

v f,a,b)-—--;—{V( fra,b)+ £ (b)- 1 (a)} | A ).
wd V7 (f,a0)=2{V (1.0.6)- 1 (b)+ f ()}  ®
From (5) and (6) we have | -

V(f,a,b)+V*(f,a,b)+V (f,a,b)
wd f(5)-£(0)=V"(/.00)-V"(/.b)

Hence the theorem.

1.7.7. Definition. Positive and Negative Variation Functions.

In(5) and (6) taking b =x we get these definitions as follows.

’ C e 1
For a function /' of bounded variation on [a, b], the functions ¥* (x) =3 {v(x)+ f(x)- f(a)} and
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Module 01 : Functions of Bounded Variations

1 . : ’ ‘
v (x)= 3 {v(x)- £ (x)+ £ (a)} are called respectively the positive variation function and negative variation

- fimction.

1.8. Isslustrative Examples ,
1.8.1. Example. Prove that f:[-1,2] — R defined by f(x)=3x* - 5x + 2 is of bounded variation on [-1, 2]

(Use monotone property).
Solution. Here f(x)=3x*-5x+2
oS (x)=6x~5
Hence f'(x)> 0 for 6x~5>0i.e. for x > %
and f’(x)<0 for 6x—5<0i.e. for x <%.
Thus f(x) is monotone decreasing on [- 1, % ]
and monotone increasing on [ y 2]-

Asf(x)ism.don [-.1, % ] it follows that f{x) is of b.v. on [—1, %] . Again as f(x) ism.i. on [ % z] it

follows thatf(x) is of b.v. on [y , 2].

Since /(x)is ofb.v.on [ -1, 3£ ] andon [ 9£,2], itfollows that(x) s of b.v. on [-15]U[%.2] ie.

on[-1,2].

1.8.2. Example. Find the total variation of the function £ (x)=3x?~5x+2 on[-1,2].

Solution. We have seen in the previous example that £ (x)ism.d.on [—- 1, % ] and ism.i.on [5 6 2].

Aé f(x)ism.d. on [-l, %] we have

v(r-L%)=r(-n-7(%) ‘
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 Againf(x)ism.. on [ %-2] wenave
034101150
Now ¥ (£,-12)=¥ (£.-L.54)+¥ (£.%.2)
=7 (-1)-r(%)+r@-1(%)
= f(-1)+7(2)-2/(%)

1
- =10+4+—
6

=141
6

1.8.3. Example. Let f:[-1,2] —> R bedefined by £ (x)=3x" ~5x+ 2. Find the variation function, positive
variation function and negative variation function. From these results find the total variation, positive variationand -
negative variation. ‘ o
Solution: , , ,
Wehave f(x)=3x-5x+2
n S (x)=6x-5.
S (x)>0 for x> %
and f'(x)<0 for x<%.
Thus f(x) ism.d. on [‘-1, %]
and f(x)is m.i. on [y,Z]. _
For-1<x< 56 we have

v(x)= V(f,—-l,x)
=f(-1)-f(»)
=10-3x2+5x-2
=8+5x~3x%.

¥
=
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For -Z-isz we have
U(x)= V(f,-;l,x)
& V(f’“l’%)+V(f,7,x) .
-2 s (-1(%)

—1—2—1+3x 5x+2+-—1--
12 12

12 .. T3
=3x 5x+£
.'.v(k)=8+5x—3x2,—l,<.xs%
| 73 5 . . |
A
R -sx 22 | - S—)

This is the required variation function.
The positive variation function v* (x) isgiven by

0= o)+ £ ()£ (1)}

.'.v”»(x)-—’-é—{8+5x—3x2 +3x* - 5x+2-10} for —-1_<.x$%

-1—{3x 25yt DD 435 -5x+2 lO}for/<x<2
2 6
ie. ' (x)=0 for -—les%
—1-{6x —-10x+g-——} for/<x<2
2 6
ie. v*(x)=0 , -15565»%
atosxe D | 3 <xs2 —

12
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The negative variation function v~ (x) is giyenfby
(=36 s (70}
v (x)=5{8+5x—3x2 ~3x? +5x-2+10}for —ISxS% |

=—1~{3x2 —5x-§-~?-:§-—3x2 +5x-12+10}for %<x$2
2 © 6 .

ie. v'(x)=—12-{16+10x—6x2} , -ISxS%

- 1121 5
“‘5{ 6} ,A<x52
ie U7 (x)=8+5x-3x7, —Ist-% B

'42%2 . Yf<xs2 | | - s (3)

- From (1)we get the total variationas

V(fi-L2)=v(2) =321 sz+-763-=§6-5-

o From (2) we get the total positive variation as
* | 25 49
v (f,-1,2)=0v"(2 =3.2’—52+—-=
- From (3) we get the total negative variation as

Y (f,-1,2)=v (2)__133_

We have the interesting results

49 121 _8s
= =2y (f,-1,2
t e L)

49 121

and V' (f,-1,2)-V"(f,- 12)-——2---i—2-—4 -10= f(2) f(-1).

VL2 () -1,2)=3
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1.9. Summary. Function of bounded variation is very important property of functions. Its relation with monotone
function, bounded function and continuous function have been studied here. Theorems have been proved and

“examples are given to illustrate them. -

1.10. Self Assessment Questions

Showthat f (x)=x* - 3x+2 isa function of bounded variation on [1, 4].

—

et

2. Showthat f(x) = cos— if x#0; £(0)= 0 isnot of bounded variationon [0, 1].
= cos— ; £ (0)=
~ Showthat f(x)=x cos—zz-r- if x#0; £(0)=0 is continuous on [0, 1] but not of bounded variation there.
‘ . X )
4. Showthat f(x)= sm-zf’— if x #0; /£ (0) = 0 isof bounded variationon [0, 1].
X .

5. Showthat f(x)= 3sin’ x+4e* +3x” +5x* + log x is of bounded variation on [1, 4].
6.  Find the total variation of the function f(x) = [x] on[1, 4].

7. Determine the variation function of f (x)=sin3x on [0, 7]

8.  Compute the positive, negative and total variation functions of f(x)=3x*-2xfor -2<x<2.

9. Compute the positve, negative and the total variation function of j:'where Sf(x)=2[x] _3x for—1<x<2.

10. Showthat f(x)=3sinx+4 isofbounded variation overany finite interval.

1.11. Suggested Books for further reading » |

1. Mathematical Analysis : S.C. Malik & Savita Arora; Wiley Eastefn Limited, New Age Intematxonal Lmnte* .
2. Introduction to Mathematical Analysis : Amritava Gupta; Acédemic Publishers, Calcutta. o

3. Mathematical Analysis : Tom M. Apostol; Narosa Publishing House.
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(Riemann-Stieltjes Integral-I)
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2.5 Linear properties
2.6 Some more theoréms
2.7 Integratidhby parts
2.8 Reduction of RS-integral to R-integral
2.9 THlustrative examples
2.10 Summary

Directorate of Distance Education



Riemann-Stieltjes Integral-I

....................................................................................................................

2.1 Introduction:

The famous German mathematician Riemann was the first man who gave a rigorous arithmetic treatment of
integration, Many generalisat?on’s of the Riemann integtal have yet been done by many mathematicians. One such
generalisaﬁdn is Riemann-Stieltjes integral done by Thomas Joaner Stiéltjes. Asa special case of Riemanh—éﬁeltjes
integral we get Riemann integral. This generalised integral needs two functions know as integrand and integrator.
There are several accepted definitions of Rieman-Stieltjes integral. In this module we consider the limit definition.

2.2 Objective
“The problem of finding areaofa region under a curve was solved by Riemann integration. With the development

of science mathematicians had to face many problemys which could not be handeled by Riemann integration.
Riemann-Stieltjes integral is found to be a very beautiful tool to tackel many such problems. Problems in physics
which involve mass distributions that are partly dlscrete and partly continuous can be treated by using Riemann-
Stieltjes integrals. This mtegral is also seento be very much useful in the mathematical theory of probabxhty where

simultaneous treatment of continuous and discrete randodm variables are essential.

2.3. Notatnons and Defimtlons
The following notations and terminology are used in this module. All functlons used in thlS module are bounded

and defined on the closed finite interval [a, b].
A partition P of [a, b] is a finite set of points P = {a@ = X5, X;,X;,..., X, = b} suchthat x, <x, <...<X,.
A partition p’ of [a, b] is said to be finer than the partition Pif P < P'.
Foreachi=1,2,...., nthe difference a(x,) - a(x,,) willbedenoted by Aq, ie. Aq, =a(x, )~ (x.)
We note that Z Aa, =a(b)-a(a).
‘ i=l

The norm of a partition P is the length of the largest subinterval of P and is denoted by | P|.
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Thus |P| = max {Ax,, Ax,,....,Ax,} where Ax, =x, —x_, foralli=1,2,....,n.

Rt may be noted that if p’ is finer than P then "P’" < "P“

' 2.4 The Definition of the Riemann-Stieltjes integral

Let P= {a xo,x,,xz, X, = b} beapartltxonof[a b].Let £ +be apomtlnthe submterval [%.1,x] and
={&,&,& ). Asum of the form Z f(ti)Aai =S§(P,I', f,a) iscalled the RJemann-StxeltJes sum of the
i-l '

ﬁmction fwith respect to the function c.
- The function fis said to be Riemann-Stieltjes integrable with respect to o. if there exists a real number Thaving
the property that for every e> 0, there existsa 5> 0 such that for every partition P of [a, b] Withnorm HP“ <5

and for every choice of £, in [x,_,,x, ], we have

|S(P,r,f,a)-1[ <e.
Weshallvrite fim S(P.T. f,@) =1 = [ fda.

T [ f()da(x)= lim S(»P,I‘, fa).

The function fand a are called the integrand.and integrator respectively and“ f € R(c)on[a, b]” meansf

is RS-integrable with reépect to con [a, ].

24.1. Deﬁniﬁon
Ifa<b, we define f fda =~ f Jda whenever f fda exists. We also define f fda =0.

2.5. Lihear Properties

The following theorems show that the ihtegtal operators are linear on both the integrand and the integrator.
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 Theorem 2.5.1. [f fand g are RS-integrable on [a, b] with respect to o thenf+g i’s RS-integrable‘ on
[a, 5], Also -
| f(f+g)da= ffdaw‘« fgdd
Proof, Let P ={a=x,,%,%,,....,X, =b} be any partition of[a, b] and [ ={¢,,&,,.....&, }. whete & is
~ anypointin [x_,x ],i=1,2,.,n
‘Now we have

S(P,T,f +g.)

=3 (F+2)(&)Aa,

i=l

=3{7(&)+2(&))Aa,

i=l

=i F(£)ba, +3 g(£)Ae,

i=l i=}
=S(P.T.f.2)+S(P.T,ga) e e (1)

We assume that fand g are RS-integrable on [a, b] with respect to o on [a, b]. Then for evéry e> 0, there

exists &, >0 and &, >0 s.t.
=]'S(P,F,f )= ffda‘é < | | SRR ) &
for every partition P of [a, b] with norm | P] < &, and for every choice of & in [x,.,,x] and |
=|S(p,r,f,a)_ ffda‘,<% L S A3)

for every partition P of [a, b] with o | P < 8, and for every choice of & in [x,_;,x]

We take & =min(4,,6,).
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Then both (2) and (3) are true for every partiﬁon P of [a, b] with norm ||P| < &:

. For every partition P with norm ||P| <& wehave

= S(P,r,f+g,a)—{ffda+ f_gda}l

il

S(P.T,f,a)+S(P.I' g,a)~ ffda - fgdai, [using (1)]

< s(P,r,f;a)- ffda}+ts(1>,r,g,a)- fgdaf

<S4+ [using () and (3]
=e
Thus for given e> 0, there exists § > 0 such that for every partition P with norm ||| < & and for every

choice of & m[ 1%, ], we have

lS(P,I“,f+g,a)—{ffdaﬁ- fgda} <e
Hence f+ g is RS-integrable with respect to o on [a, b] and the value of the inte’gralkis f fda+ f gda.

Thus _f(f+g)dd= ffda+ fgda.
Theorem 2.5.2 If fand g are RS-integrable on [a, b] w.r.t. o then f— g is RS-integrable on [a, ] and also

f(f—_g)da=ffda—fgda

Proof. Similar to the proof of Theorem 2.5.1.
Theorem 2.5.3. Iff§3 RS-integrable on [a, b] w.r.t. o and w.r.t. B then fis RS-mtegrable on [a, b] w.rt.
a+p.

Also [ fd(atp)= [rdaz [ rap.
Proof. Let P ={a =x;>,x,,x2,....,xn =b} be any partition of [a, ] and T = {d,ﬁ,ﬁz,....,é‘”} where £ isis

any pointin [x, , x ]foreachz“l 2,.
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We have S(P,T, f,a+ f)

W ANCTY))

i=l

- @)@ me)~(axp)m)
=3 (e (x) £ Ax)-x(x.0)F B ()}

=Y f(&){Aa, a8}

iel .

=Y F(£)Aa £ £(£)5,

i=l i=}
=S(P,I“,f,a)iS(P,I‘,f,ﬂ). e ¢))
We assume that fis RS-intégrable with respect to o and with respect to B on [a, b]. ’

Then for every e> 0, there exist &, > 0 and &, > 0 such taht

<4 - S —) Y

for every partition P of [a, b] with norm ||P| < &, and for every choice of &, in [x,_,, ] and

’S(P,I‘,f,a)- ffa'a

. ‘S(P’FSf’ﬁ)-ffdﬂl<% o | i, ~..(3)

for every partition P of [a, ] with norm ||P|| < &, and for every choice of & in [x,.'_, %]
We take & = min{4,6,}. Then both (2) and (3) hold good for every partition P of [a, b} with norm
"P“ < & and for every choice of ¢, in [*sx ] ’

Thus for every partition P of [a, b] with norm ﬂPﬂ < J and for corresponding " we have

!s(P,r,f,aiﬂ)—{ffda:ffdp}!
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=[s(P.T.1.0) S (P S)- [ £k [ £ | using 1)

“[(ster.p.a)- [ raal{ser.s.)- [ ras)

< {S(P,r,f,a)— ffda}+{s(1>,r,f,,é)- ffdﬂ}l

<4+, [using (2)and (3) as |P|| < 8]
=€e, A
Hence for given €, there exists & > 0 such that for every partition P with norm 1P| <o and for every

choice of £, in [x,_,,x;] wehave

’S(P,F,f,aiﬂ)—-{ffda:tffd/?}

<€.

This shows that s RS-integrable w.rt.  + § on[a, bl and the value of the integral is f fdat f fdp.

s [fa(atp)=[rdaz [ rdp.
Theorem 2.5.4. If fis RS-integrable with respect to a on [a, b] then ¢, f* is RS-integrable with réspect to ¢, for
any real ¢, and ¢,. Also f’(c, fd(e,@)=ce, f fda.
~ Proof.Let P={a=X,,x,%,,.... X, = b} beany partitionof [a, 5] and [ = {£,,&,,.....&,} where & isany
pointin [x,_,,x] foreachi=1,2,....,n. | |
Wg havg | |
- s(p, F,f,c,f,bzé)

=2 (a/)E)Ala),

=3 ar (@) (ea)(x)-(e)(x0)

j=l
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= gclf(f,){cza(x,)—cza(xi_, )}

=3 e/ (&) e (x)- 2o/ (6) e (sn)

1=l

=ca 3 f(&)a(x)-ce )/ (¢ )a(x)

= Cxézif('fl ) {a (%)-a(x.y )}

=l

= CICZif(é')Aai

i=} ) .
=c6,S(P,T, f,) | S | s )
We assume that fis RS-integrable with resp@ct toccon [a, b].

‘ Then forevery > 0, thereexists § > 0 such that

] |
|s(.r.sa)- [ rda <= )

| ool |
for every partition P of [a, b] with norm ||P]| < & and for every choice of &, in [x,.,,x,].

Thus for every partition P of [a, 5] with norm ||P|| < & and for corresponding " we have

IIS(P,I“,‘c, frea)-ce, f f dal '

G6sS(PT, f.0) e, [ dal, [using 1)

oA

S(P.T,f )~ ffdal
<€, [using (2)}.

Hencec fis RS-integrablye with respect to c,a onfa, b] and the value of the integral is ¢c, f fda.
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So, we have f(c,f)d(cza) =, f’f da.

Combining Theorems 2.5.1, 2.5.2,2.5.3 and 2.5.4 we have the following theorem.

Theorem 2.5.5. If fand g are RS-integrable w.r.t. o as well as w.r.t. B on [, b], then ¢, f + ¢, f is RS-integrable

w.rt. e, +c, on [a, b] for any real numbers ¢, cpucyande,.
Also f.(c‘f+c2g)d(c3a+c4,ﬂ)=c,p3 ffda+c,c4 ffdﬂ+czc3fga’oz-#-czc4 fdd/?.

Note. This theorem shows that linear property holds good for both integrand and integrator.

2.6. Some more Theorems.

Analogous to the theorem obtained for Riemann integral the following theorem shows that the RS-integral is
additive with respect to the interval of integration.

Theorem 2.6.1. Assume that a <c¢ <b. If fis RS-integrable with respect to a on [a, b]- then /' is RS-integrable

with respect to o on [a, b] and on [c, b]. Also
[rda=[fda+[ fda. -
| (c~a)i

Proof. Let P, ={a=a,,4,,a,,....,a, =c} be the partition of [a,c] where a, =a+ — for all
i=0,1,2,...,mand T, ={qa,,a,,...,a,}.
Then S(B,T,, f,&) dependsonmonly.Let S(B,T,, f,a)=s, — )

j=0,1,2,...,nand T, ={b,b,,....5,}.

42 " Directorate of Distance Education



rveessesrerensasernsnsasssseses et beeebeab e et e e be b ettt ere R et e R E e e s s R e e R sheRr b s Riemann-Stieltjes Integral-1

Theﬁ S(B.T,, f.a) dependsonnénly; Let S(Pz,I"z,f,a)r-s; e 7))
Lt B =RUPR={a=a,a,0a,..4,=c=b,b,b,...b, =b}

and T, =T,UT, ={a,,a;,sa,, b, 5,,...,5,}.

Then P, is a partition of [a, b] and

S(P.Ty, f,a)= S(B.T.fra)+S(B,Ty. fra)=s,+s, [using(1)and(2)] .ooeevvevieee 3)

Since by hypothesis fis RS-integrable with respect to a.on [a, b], forevery > ( thereexists § > 0 such

O 0 B | R —— @)

for every partition P of [a, b] and for every corresponding I', where [ = f fda.

-a b- '
We note that “‘Dau = max “C—gr—*f' . So there exists positive integer N such that ||B||<J for all
m n _

mnz N,

Hence from (4) we have forall m,n> N ;

IS(B.Ts. f>@)~I| <S4 Using (3) we have

|s,, +3, —1}<72 ,

Thus |5, +5, ~I| <S4 forall m,n2 N o I e )
In particular we have from (5)

|sy +s, ~1|<% .fbrall n>N

and ISN +S,',+,, —1|<% forall p> Nand V p=1,2,....

From these we have

s, -5

np n
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(Sra+sy =1)=(s}, +sy = 1)

Sl + 54 -—I)~(s,’,+sN_'—I)[

s%+%

ie. |s,p—s)|<eforall > N andp= l,b2,3,...

is sho lim s, exi lim s, = .
This shows that M §, exists. Let }IM " § T )

Let P'={a=x,,x,X%,,....x, =c} beany panitionof[a, cland I" ={&,¢,,....,&,} where x,_, <S¢ <x,
foralli=1,2,...,r. | |

Let P, =P'UP, and I, =I"UT,.

Then P, ={a=x,,%,%,....%, =c=by,b,,by,..,b, = b} is a partition of [a, b] with corresponc_ling
Ty ={& &by}

We notethat |2 = {22 . R %

Now S(B,,T,.f.a)=S(P.I", f,a)+S(P.T,. f.a).

Using (2) we get S‘(P,,,I",,,f,a)‘-—- S(P.I', f,a)+s, |

or, S(P\T", f.a) = S(PTyr fra) 3, e @®)
- Since fis RS-integrable w.r.t. a on [a, 'b] we have |

'}?i!g’loS(Rﬂsrasf’a)= ffdazl' Also from (6) 'l’i"l'gs; =s.

- Jlim S(P.Tf,@)-lims, exists and the value of this limit s /—s.

Thus fis RS-integrable w.r.t. o on [a, ¢] and f f de = I-s .. wesvenes 9

Similarly, we can prove that fis RS-integrable w.r.t. a.on [c, b].
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Using (2) and (6) we have

u}l)}i'l}’mpS(l’szz,f,a) =5
Since fis RS integrable w.r.t. a.on [c, b] we have

o Jim (BT f10) = [rda . [rda=s J— (10)

Using (10) in (9) we have
[fda=[rda-{ fda

[rda+[fda=fda
‘Hence the theorem. | |

Note. In Riemann integral the Theorem 2.6.1 holds good. Also the converse of this theorem is seen to be
true for Riemann integral. But for RS-integral the converse of Theorem 2.6.1 is not true i.e. if fis RS-integrable
w.r.t. aover [a, c] aswell as over [c, b] then it does not nece'ssanly follow that fis RS-integrable w.r.t. o over

[a,b]. The following example establishes this fact

Example 2.6.1. Let f{x) and o(x) be defined on [-1, 1] as follows.
f(x) 0 for -1<x<0
=1 for O <x s 1
a(x)=0for -1<x<0
=1 for 0<x<l1
Show that fis RS-integrable w.r.t. o over [-1, 0] and also o;/er [0, 1]. But ﬂs not RS-integrable wirt, o over
[-1,1} |
Solution. The graph of the functions f(x) and a(x) are as follows. o
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f ‘ a

e —
e——h .
10 i ¥ -l 0 -1 *

it

Then S(R,T,, f,«)

-3 1(E) a(x)-aln))

i=l

= 20'{a(x,)—-a(x,_,)} [ -1 sf(g,)s 0 for each i =1,2,...,r |

i=l
=0
This is true for all partition P, of [-1, 0] and corresponding I',. We note that the RHS is independent of P,

and I, and is always 0. Hence |},‘i|’303 (BT}, f,@) existsand is 0.
So fl fda existsand is O i.e. fl fda=0.

Again let P, ={0==20‘2,,22,--.,2,,. =1} be any partition of [0, 1] and T, j:{r;,,fyz,...,n,,,}' where

z,,8n,5z,. foreachj=1,2,..,m

Now S(B,.T,,f,a)
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._i:f(nj 1- 1 [ 0sz <1 foreach j=12,...,m ]

J=1
—0. Thisis true forall P, and T,.
- We note that the RHS is indepéndent P,,T, andisalways0.

He,nce |11>EII£0S(PZ’FZ’ f ,q) exists and ?s 0.
Thus _cfda existsandisOi.e. _[:fda 0.

Both f fda and f) f da exist. Now we show that [ f da does not exist.
Let P={-1=X0,X 00 Xpps Xpserms Xy =1} be a partition of [-1, 1] where x,, <0<x,. Also let
T={&,&,... &) wherex,, <& <x, foreachx-l 2,.

Then S(P.T, f,@)

=3 (&) {e(x)-a(x))

inl

—-if(ﬁ, {a(x,)—a(x,,l)}+f(§k){a(x,)—-a(x,‘_l)} Z f(f){a(x,)—a(x, 1)}

=l

_§ ofa()-a (s} +£(E)1-04+ 3 (€)1

P frd
=f(‘fk)

Now x,_, <0<x, and x, <S¢, <

S I x, <¢'k<0theh £(&)=0

and1f0<§k <x, then f(&)= 1.

Sunce &, cantake any valuein [x,. ,,x,‘] it follows that 11m S(P r,f.a) does ot exit, Thismeanss f da
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does not exist.
2.7 Integration by parts

There is a remarkable and interesting relation between the jntegrand and the integrator in a Rieman Stieltjes
B integral. In fact the existence of J: Jfda implies the existence of f adf ,and the converse is also true These two
integrals are related by a simple relation, which is nothing but a generalizat’ion of inteération by parts in Riemann

integration théory. | | o
- The following theorém provides a kind of reciprocity law fof the integral and is known as the fbrmula for

| integration by parts ' ‘

'Theorem 2711 f is RS-integrable w.r.t. & over [a,b], then ris also RS-integrable w.r.. f over [a,b]. The two

integrals are related as

f fda+ [ adf = £ (b)a(b)- f(a)a(a).
Proof.Let P ={a = x,, X, %,...,x, = b} beanypartltxonof[a,b]and I ={&,6,....¢ } where ¢, 1sanypomt1n
[%.,%] foreachi=1,2,...n,

- Taking &, =a ahd Ea=blet P={a=¢,6.6..8.¢. =b}. We note that x,_, .<.f, <x, and
%2 S&. Sx, Therefore, &, Sx,, <& fori=12,.m+l, - |
Let r'={xo,x,,...,x,,}.'rhen P" isapartition of [a,b] with I" = {x,,,,....x,} where £, <x_' S& for
i=1,2,...n+1. |

Now S(P,F,a,f)

—za(a:){f(x) S (%)}

=ia@,)f(x,—)—ia(:,)f(x-l)

n+!

~Za(f.-,)f (%) - Za(:)f(

|
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Since

Riemann-Stieltjes Integral-I

i=]

=S (6. 7 50) - a(8) S ()~ 330(6) S (5.)+ () £ (5)

-8 £ (s )fe(6)-a (e} -a(a) £ (@) +a(6) 1 6)

=-8(P.I".f,a)~a(a) f(a) +a(b) f () | - D)

X,

i-1

<& <x foralli=1,2,...,nand | ‘ ,
&, $x,, <& foralli=1,2,..,n+1 we have | P < 2|P| and [P <2|P|. - 1P| =0« |P|—0..2)

il —

We assume that fis RS-integrable w.r.t. & on [a,b].

|},i{_’}os (P.I", f.@) exists and the value of the limit is f fda.

- HmS(PT, /) -a(a)f (a)+2(5)/(8) exisisand
the value of the limit is f fda-a(a) f(a)+a(b)f(b).

Hence from (1) and (2) it follows that #ﬁ%s (P e, f ) exists and the value of the limit is

| —.fda—a(a)f(a)"' a(b)f(b)-

2.8

Thus ¢ isRS-integrable w.r.t. fon [a,b] and the value of the integral is — _[ fdd-.-a(a) f(a)+a(b)£(b).
ie. [adf =-[ fa-a(a)f(a)+a(b)/(®) | |

o, [ fda+ [ adf =f (b)a(b)- f(a)a(a)
Reduction of RS-integral to R-integral .

The next theorem illustrates one of the situations in which Riemann Stieltjes integrals reducé to Riemann

integrals. Here da(x) is replaced by a’(x)dx inthe integral f f(x)da(x) whenever a(x) hasacontinuous

derivative ().
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Theorem 2.8.1. Iffis RS-iftegrable with respect to & on [4,5] and if & has a continuous derivative o on [26],

then thé Riemann integral f f(x) a’(x)dx existsand-

[ () da(x)=[ 7 (x)a (x)ax.
Proof. Let P ={a = x,,x,%,,...,x, =b} beany partition of [4,b]
‘and T'={¢,4,,....¢,} where & is any@oim in [x,,] for each i=1,2,...,n.
Let g(x)=f(x)a'(x).

We consider the Riemann-Stieltjes sum

=l

S(P,I“;f,a)=Zf(é,){a(x,)'~a(x,.'.)}'=}n:‘f(s‘,)Aa, o : o 1)
Also we consider the Riemann sum a | | |

S(PT.8)=3 ()5 -5 = S g(6n | e

Since a(x) hasa continuous derivative @'(x) on [4,], using Mean Value Theorem we have for each

i=1,2,.,n _ _
dama(x)-a(ng)=a()(x-x) =)y, - e ®)
where x,_ <t, <x,

- From (1) and (2) we have |

S(P.L,f,a)-S(P,I',g)

=S (7(6) A0, (&) 8]

in]

=}

-3 (&) (1) %~ 7 () (£) &5} [using (]
= gf(«f;){a’(t,)?a'(g,)} Ax,
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~|S(P,T, f,a)-S(P,T,g)|

<17 (@)l ()-a'(8)a | - - (4)
Since  fis bounded there exists M > 0 such that |

|f(x)|sM forallxin[ab] A . (5)
Continuity of @'() on [4,b] implies uniform continuity on [4,5].

Hence for given ¢> () these existsa é} >0, dependingon ¢ onfy, such that

0<|x- | <8, implies [ (¥) - (7)) <§mi—_;5 | G

Since f € R(a) on[a,b], for given e thereexistsa &, > 0 such that for every partition P of [4,5] with norm

|P| < 8, and for every corresponding I we have

!S(P,I", 1)~ [ fde

<% | (D)
Let 6 =min{4,,6,}. ‘
<. For 0<|x-y| <38, (6) holds good and for |P| <&, (7) holds good. If P be a partitibnwith norm

|P| <& then|r, 5|<§foreachzandsola(t) a(g)l m

For partition P with |P|| < & we thus have from (4)

|S(P.T, f,@)-S(P,T,g)|

S,Z,:M{ZM = a)}‘”‘

i=l

2M(b a)Z(x ~ 1)
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€
“3-a)
=%
ie.|S(P.T.f,a)-S(P.T.g)| <S4 VP with |P|<6 | C.®)

Now for Pwith |P| <& wehave

]s(p,t, g)- f fda]
[fster.r.a)- [ siaf-{s(pr.s.0)-s(rr.8))
sffs(er.s.a)- [ saaff+js(Pr.s,0)-s(Pr.g)

< % + % .[Using (7)and (8)]
= .

Hence for given ¢ there exists § > 0 such that for every partition P witﬁ "Pﬂ <6

IS(P’, I,fa')- Efda’ <e.
This shows that f'(x)a’ (x) is Riemann integrable over [a,b] and the value of the integral is f fde.
Hence f Sfa'de= f fda.

This proves the theorem.

2.9 Illustrative Examples
Example2.9.11f (x) = ¢ forall x, then show that ff(x)da(x) = 0.

Solution. Let P = {a = Xy, %, X,,...,x, = b} be any partition of [4,5] and
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I'={&,&,,...&,} where x,_, <¢ <x, foreachi=1.2,..,n.

Then S(P,T., f, )

=Y @) a(x)-a (=)

i=i

=3/ (&)e~)

=0. ‘ ' : : ' (1)
This is true forall ? and I . The RHS of (1) is independent qf Pand 1.

Hence |§|‘}}0 S(P.T, f,@) existsand the value of the limit is 0.

 w[7(x)da(x)=o.
Example 2.9.2.If f(x)=c forallxthen f f(x)da(x)

- ofa(8)-x(a) | -
Solution. Let P ={a = x,, X, X;,..., X, = b} be any partition of [¢,5] and T = {£,,&,,..., &, } where x,, S& < x,

- foreachi=1,2,...,n

Then S(P.T, f.)

=§":f(§i){a(x,)—a(x:-l )} .

i=1

= ic.{a (x)-a(x. )}

i=l

=cla(x,)-a(x)}
=c{a(b)-a(a)}

This result is true for all Pand I" . The RHS is independent of Pand T.
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- Jim, S (P.T f>@) exists and the value of the limitis ¢ {e(b)~ & (a)}

Hencé; ffda =c{a(b)——a(a)}.‘
Example29.3.Let f(x) =0 2<x<3
=1 x=3. |
=Q 3<x§8
and a(x)=2x"+5. Show thatis kS-integable w.rt. o on[2,8] and J: fda =0.
Solution. Let P = {2 = x,,X,,%,,...,X, =8} ‘be anypa&iﬁon of [2,8]and I = {éﬂ,f,,.;-,fn} where x_ <& <x,
foralli=1,2,...,n. ' |
Letx,  <3<x,.

Then S(P.T, f,@)

=§f(§,){a(x,)—a(x,_,)}

=S rE)a(n)-a () + £ (E)a(n) a(n))

i=]

+3 F(E)a(x)-alx)

i=k+1

Since f (x) = 0Vx #3 and x,., $3 <, it follows that
£(8)=7(&) == S (G)= S () == £ (8) =0,
- WS(PLLfa) =f(E) a(x)-a(x.)}
| = 7(&){a(x)-a()+e(3)-aln.)
- @) fa()-a@+la@-ats))] ()

Since a(x)=2x* +5 wesee a(x) is continuous at x = 3. Hence for given e> 0 these exists § > ( such
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!a(x)—a(S)[<52 for |x-3| < 5.

Here @ (x) isan increasing function, so we have

a(x)-a(3)<% for 3<x<3+6 | )
and |
a(3)-a(x)<S, for 3-8 <x <3 o )

- For partition P with norm |[P}<&, using (2) and “(3) we havea(x,)-a(3)< S, and ~

a(3)-—a(x¥_,)<% |

- From (1) we have

S(P.T, f,a)<e f(&)
Now f(£&) =0if £, #3
=1if £ =3

~S(P,L, f,a) <0 when & #3
| <e when £, =3
Since ¢ is a.xbitrary, in either case we have
lim S(P.T, /@) =0
Hehce fis RS-integrable w. rt. a over [2,8]
and [ fia=0.
Example 2.9.4. Let in the interval [-2,6] f (x) and g(>x) be defined as follows

f(x)=0 for2<x<4
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= x? for4<x<6
and g(x)=3-x* for 2<x<4

=5for4<x<6.

Show that fis not RS-integrable with respect to g over [-2,6].

..............................................................

0P e eI esrsesstssIraenorcmcrIonsscsaseesesuestesserresersonry

Solution. Let P ={-2 = x,,%,,%,,..., %,_j»X;»..s X, =6} be a partition of [-2,6] where x,_, <4 <x, . Also let

I={&,4,...&,} where x., <& <x, foreachi=12,..,n.

56

Then S(P.T. f,g)

= 7€) e(x)-g(x))

=]

:gf(‘fi){g(xt)‘g(xi-l)}+f(fk){g(xk)fg(xk—x)}

+V;: f(é‘i){g(x,)fg(xi~})}

i=k+]

=S ol (x)-s(x.0)} (&) {5~ (3-51)

il

+3 £(£){5-5)

Py’
~S(P,I,f,8)= f(c,‘,(b)-(2+x,f_‘,') where -2<x, , <4

Now -2<x, ,<4<x, and x,, <&, %

o If x,‘;‘ <& <4 then f(&)=0and

if4<¢, <x, then f(&)=¢& |

~S(P,T,f,g)=0ifx,_ <& <4

=& (2+x,) if4<¢ <x,
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As £, cantake any value in [x,_;,x, ] it follows that &,’i‘_‘}o S(P,I', f,&) does not exist which means that
is not RS-integrable with respect to g over [-2,6]. .
Example 2.9.5. In the interval [-4,5] let f (x) and aA(-x) be defined as follows
| f(x)=€ +3x+2

and a(x)=(»),—-2.<.x<0

=—1~,x=0
2
=1,0<x <5.

“ Show that fis RS-integrable w.r.t. o over [-4,5-]. Find E fda.
Solution, Let P ={-4 = Xy, X, Xyyeees Ky g Xgreoes X, =.5} be any partition of [-4,5] and I" = {&,&,,... &, }
where x,, <& <x, foreachi=1,2,...,n. |
Letx, , <0<x,.
Then S(P,T, f,)

= ifl(fi){a(xi)_a(xi—l )}

=l

-8 r(@)ale)-a(s )+ 8 aln) ()

4y F(ENa(x)-a(x.)) | L)

i=k+]
- When x,_, =0 then from (1) we have
S(P,T,f,a)

= f(fk-l){a(xk-l)“a(xl{—z )} "'f(ék,){a(xk)".a(xk-l)}
+3 F(ED{-1)

i=k+1
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=f(:k-,){g-o}u(:k){1—-;-}+o

= L{7(E)+ /()

When x,_, <0< x, then from (1) we have
S(P.I.f.a)
k~1

f( é‘) {0-0}+ 1 (£){1-0} - ‘., ¢

i=l
$

+i f(é‘,){l—l} o | | X Xg-1

i=k+1

= f(fk) |
f(é’,,) whe . x,;_, <0<x,

Thus' (P.T. 1, a) {f(fk VoS (&) whenz 0<% | w(2)

Now f(x)=e"+3x+2 is continuous at x =0.
~lim f(x)=f(0)=€"+3.0+2=3

Aseither x, , <O<x, orx,_, =0<x, and x,_, < 4’,‘ 1 S XX S 6, S, it follows that both &, and

& =0 as |P|—>0.

Since f(x) iscontinuousat x =0 from (2) it follows that |§|To S(P,T, f,a) existsand the value of the
limitis f(0).
Hencef is RS-integrable w.rt. o over [-4,5] and the value of the integral is f'(0) ie. E fda = f(0)=3.

2.10 Summary. Riemann-Stieltjes integral is one kindof generisation of Riemann integral. In this module the limit -
definition of RS-integral has been considered. Theorems and examples have been studied for a clear conception of
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this integral. The bound definition of RS-integral will be studied in the next module.

2.11 Self Assessment Questions

1. I f(x)=5 forallxand a(x)=2x"-3x+7 thénﬁnd J:ofda'.

2. If f(x)=3e" —logx+sinx+2x* and a(x) =3 forall x then find fzfda.

3. Iff(x)=0,~1sx<4
=4,x=4
=0,4<x<8
and (x)=5x-4 show thatf is RS-integrable w.r.t. & over [~1,8] and determine the value of the
integration. |
4. f(x)=0forssxsg
=2x+1 for 8 <’x,,$ 10
and a(x)=3x"+5for5<x<8
=T7for 8<x<10
show that fis not RS-integrable w.r.t. «on [5,10].

5. Let a be monotonically increasing function on [4,b] and be continuous at x, where a <x, <b and fbe
suchthat f(x,)=1 and f(x)= 0 for x # x,. Show that fis RS-integrable with respect to & over [a,b]
and [ fda =0. |

6 Iff (x) isa function bounded on [~1,1]end is continuous at x =0 and a(x) be defined as
a(x)=0,x<0 |

1
=—, =0
2 X

=Lx>0
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then show that fis RS-integrable w.r.t. o over[-1 ;1‘].'F ind the value of the integral.
2 2
7. Showthat [ x’d(x)=8

0, 0sx<l
1, 1£x<4

8. Litf(x)={

[0, 0sx<I
and g(x):{l 1’<xs4}

Discuss whether fis RS-integrable w.r.t. of over [0,4]
2.12 Suggested books for further reading
1. Introduction to Mathematical Analysis: Amritava Gupta; Academic Publishers, Calcutta. |
2. Mathehatical Analysis: Tom. M. Apostol; Narosa Publishing House.
3. Ma_thematical Analysis:.S.C. Malik & Savita Arora; Wlley. Eastern Limited, New Age International Limited.

4.  Principle of Mathematical Analysis; Walter Rudin; International Students Edition, McGraw-Hill Intemnational
Book Company.
5. Elements fo Real Analysis: Shanti Narayan & M.D. Raisinghania; S. Chand.

e 0
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M.Sc. Course
| in :
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| and
Computer Programming

S PARTI e
Paper-1 o ' . . Group-A
Module No. - 3
Real Analysis
(Riemann Stieltjes Integral — IT)

'~ Module Structure
1. Introduction
- 3.2 Objective
33 Monotonic increasing functions as integrators
3.4 Some theorems for monotonic increasing integrators
3.5 Functions of bounded variations as integrators
3.6 . Step functions as integrators
| 3.7 Tlustrative examples |
3.8 Summary
3.9 Seffassessment qhestions
3.10 Suggested books for further reading

3.1 Introduction :

Inmodule 2 we have considered tﬁe limit definition of Riemann Stieltjes integral. In this definition no congitions
were imposed on the integrator. In the Riemann integral the integrator is &( ) = x which is monotonic increasing.
So monotonic increasing integrﬁtor should give a special attention. In this module special iniegratom like monoptonic
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increasing integrator, functions of bounded variation as integrators and step functions as integrators have been
considered. Theorems and results for integrals with such special functions as integrators have been studied. Many
remarkable and beautiful results are found for RS-integrals with these integrators. ‘

3.2 Objective

The objective of this module is to study RS-integrals with monotonic increasing functions, functions of bounded
- variations and step functions as integrators. The bound definition is valied only for monotonic increasing functions
as integrator. It is seen that the bound definition and limit definition for RS-integral are not equivalent though they
are equivalent for Reimann integral. It is proved here that any finite sum can be expressed as RS-integral with step
functions as integrator. First and second mean value theorems have been also studied in this module for RS-

integral.

3.3 Monotonic increasing functions as integrators

In the Riemann integral the integrator is the ﬁkxétion, g(x)=—x This function is monotonic increasing, continuous
and derivable: In the bound definition if Riemann integral Ax; = x, - x,_, plays animportant role and the property
that Ax, >0 has been used. In the RS-integral the role of Ax, is taken by Ag; =g (x,)-g(x.,)- Togetthe
property Ag, > 0 we require the monotonic increasing behaviour of the integrator g (x). The upper sum-lower -
sum formalism can be developed t(‘> acertain extent as follows. ‘ : o
Definition 3.3.1. Let fbe bounded and g be monotonic incréasing on|a, b] and P={a= jco, Xyy Xyyeis X, = b}
be any partition of [a, b]. Then upper and lower Riemann-Stieltjes sums of fw.rt. g over [a; b] are defined
respectively as '

U(P.f.8)=> Mg,

i=1

and L(P,f,g)=zm,-Agl

i=}

where Ag; = g(x,. ) - 8(";-1)
M, =supf (x): v <505

m, =inf{f(x):xe[x.,%, I
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Theorem 3.3.1.If fis bounded and g is monotinic increasing on [a, 4] then for any partition P of [a, b]
m[g(b)—g(a)]sL(P,f,g)sU(P,f;g')SM[g(b)fg(a)] | |
where M =-sup{f(x):x e[a,b]} o -
m=inf{f(x):xe[a,b]}.
Proof.Let P={a= xo,x, s Xy...s%, = b} beany partition of [a, b]. Clearly we have foreachi=1,2, ...,n
ms<m<M, <M e Crvrvienenien (1)
Now 4g, = g(x;)~g(x,,) 2 0 as g is monotonic increasing.
. From (1) we ﬁave

mAg, <m; Ag, < M, Ag, S M Ag,

Thisistrue foralli=1,2, ..., n. So we have

im Ag, sz m, Ag, si M, Ag, si'M Ag,

i=] i=l i=l i=l

o, miZ:l:{g(x,-)—g(x;-;)}SL(P,f,g)SU(P,f,g)SMi{g(x,-)-g(x,_x)}

i=]

on  mg(b)-g(a)} SL(P.f.g)<U(P.f.g)<M{g(5)-g(a)}
Let IT[a,b] be the set of all partitions of the interval [d; b).

From Theorem 3.3.1 we see that the infinite set {‘L (P, f ,g)k‘: Pell [a;b]} is bounded above and the

infinite set {U (P, f,g): P € [1[a,b]} is bounded below. Hence

- sup{L(P, f,g): Pel[a,b]} andihf{U(P,f,g):PeH[a,b]} exist.

Definition 3.3.2. If /is bounded and g is monotonic increasing on [a, b] then we define

| sup{L(P,f,g):PeH[a,b]}= Efdg:i
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and inf{U(P,f.g):PeT[abl}= [ dg=T
and- call them respectively as lower and upper Riemann-Stieltijes integrals of fw.r.t. g over [a,b].

As in Riemann-integral we can easily prove the following theorem.

Theorem 3.3.2. I fis bounded and g is monotonic increasing on [a, bl and P, P' e I1 [a, b] suchthat p'— p ie.
p' isrefinement of P, then

U(P"f’g)SU(P’f’g)
and L(P,f,g)2L(P.f.g)."

Now we prove the folloi_aving theorem.

Theorem 3.3.3. Iffis Bounded and g is monotonic increasing on [a, b] then [ < I. |
Proof. Let Pand P’ be any two partition of [a, b]. Then P U P’ isarefinement of both Pand P".
Sowe have | . | v

L(P.£.8)SL(PUP, £,8) SU(PUP. £,g)U(P'1.g)
KeepingP fixed and taking infimum over If’, we have '
L(P.f.g)sint {U(P' £8): P ea])

o, L(P,f.g)s ffdg |

o, L(P,f.g)sI

NO;N taking supremum over P, we gét

sup{L(P,f,g):Pe H[a,b'b]} sT

or, ffdyST
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or, J<T. Thisproves the theorem.

It is the time too take an attempt td show that the equality of upper and lower Riemann-Stieltij es iqtquals is
an equivalent criterion of integrability in the sense of limit definition. But this attempt fails, as such a result essentially
depends on the analogue of Darboux ’I‘heorexh of Riemann integral. In this case Darboux Theorem does not hold
without imposition of additionl conditions, like the continuity of the integrator g. However, more fruitful results are

obtained by assuming cdntinuity of the integrand fwhich at once guarantees the existence of the integral f fdg.

Thus we have the following theorem.

. Theorem 3.3.4. I fis continuous and g is monotonic increasing on [a, 4] then the upper and lower Riemann

Stieltjes integmls are equal and f f dg existsin the limit sense. Also for partitions P of [a, b]

b
lﬂ’l’oU(P’f’g)zx%’-?oL(P’f’g):!fdg:l

—

== lPlll_l‘lS(Png)

Proof. Let P={a= X2 %13 Xpsece = b} be any partition’olf [a, b]
'kNowI sup{L(P f.g):Pelfa,b }
and I-lnf{U(Pfg) PeTIl[a,b]}
So, L(P.f.g)sI<I<U(P,f,g). (1)
Let & e[x,,,x] foreachi=1,2,..,nand I ={£,&,,...& }. | | -

Then L(P.f,g)<S(P.T.f,g)<U(P.f.g). R eree (2)
Now fis continuous in the closed interval [a, b] and so it is uniformly continuous in [a, b];i '

.. Forgiven e> 0 there exists & > 0, depending on e only such that

|/ (x)-f (x’)[‘< ¢/ {g(.b).-g(a)} ) | ,,,,,, 3)
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forall x,x'e[d,b] such that lx—x'[<§._ P

~ Asfiscontinuous in [x,_,, x,] there exists £ and 7] in it such that

f_(fi,) = mf{f(x) :‘x € [x;-.ux; ]} =m,

and  f(7))= sup{f.(x):x e[x.x ]} =M,

* Now we choose P such that ||P|| < 8. Then |£/~7]| < & and so from (3) we have

66

17 (&)-7(m)| </{e(b)-g(a)}

or, |M,-m]|< E/{g(b)“g(a)}

or, M;—'m,<§/{g(b)~'g(a‘)}J [+ M, 2m]. ,‘ @

Since g (x) is mohbtonic increaéing we have
Ag, = g(xi)—g(x,_l) 20,
So (4) gives

Mg, g 500 (o()-2(@).

Thisistrue foralli=1, 2, ...., nand if g (x) is not constant function then for at least one i we have Ag, > 0.

Hence jM; Ag, ‘12:;”’; Ag; <26A8,-/{8(b)‘g(“)}

= 5 B

o, U(P.f.g)-L(P.f.g)<e. | T — (5)

From (1) and (5) we have | |
T-1sU(P./.8)-L(P.f8) <e.

As e isarbitcary this gives [ =T. Let =T =1 | I ©6)

Then from (1), - | .
 L(P,f.g)SISU(P.f.8) o | | R —)
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Using (2) and (7) we get from (5)
|S(P.T, f.8)~1|<e.
‘This is true for all P withnorm ||P| < 6.

Hence fis RS-integrable in the limit sense
and [fdg=1=JmS(PT. .g)

s From(6), =T =1= fdg. R— (8)
From (1) we have for P with norm "Pﬂ < S
0sU(P,f,g)-1sU(P,f,g)~L(P.f,g)<e [using(5)]

and 0<I-L(P,f,g)<U(P,f,g)-L(P,f,g)<e [using(5)].

- fmU(P,f.g)=1=1= ffdg

and Jim L(P.fg)=L=1=[fdg.

Hence thie theorem is proved.

Important Note : The conditions in the Theorem 3.3.4 are sufficient. This is seen in the followihg ‘example.
Example 3.3.1 Let f(x) =0 forx<0
=1 for x>0
and g (x)=0for x<0
| =1 forx> 0.

Showthat | = 7 in the interval [-2, 1] though fis not continuous in [-2, 1].
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Solution. Here f (x) is not continuous at x = 0. So f (x) is not continuous in [-2,1]. Let

P=[-2=x,%,X%,,...., %, = 1] beany partition of [-2, 1] where x,_, <0< x,.

>
>

o
>

0
|
o
b
t
o

~ Case 1. x,_,<0<x,.

, n T kel ' n ,
U(P,f,8)=) M, Ag, =3 M Ag,+ M, Ag, + > M, Ag,

i=l i=l ©od=k+l

=S 0ag, +1:(1-0)+ 3 1:0

- dml isk+l

: -1

! n k-1 - v ' n .
L(P,f,g)=D,mAg, =) mAg +m Ag,+ D mAg,

i=] i=l i=k+]

' k-1 - i
=Y 0Ag,+0-(1-0)+ > 1.0
j=1 f=k+1

=0

" Case2. x,,<0<x,.

n k-1 n_ .
U(P’f’g)=ZM,Ag, =ZM;A81+M1: Ag, + Z M, Ag,

i=1 jml i=k+l °
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=St 0ag,+1:0+ 3" 1.0

i=1 i=k+l]

=0

L(P.f.8)= Zm,Ag ZmAg,+mkAgk+Zm,Ag,

ial i=] - imk+l

=20Ag,+0~0+_$11-0
. =0 .
.'.1= sup{L(P,‘f,g) :Pe H[a,b]} =‘sup{0,0} =0
and I =inf {U(P,f,g): P €T1[a,b]} =inf {1,0} =0.
n1=T though f(x) is not continuous in [2, 1].

Defimtlon 332, Let fand o be bounded functions on [a, b] and g be monotonic increasing on [a, b), b>a. The
function fis said to be Rxemann-StleltJ es mtegrable with respect to g over [a,b)if I = =T. '

This deﬁmtxon is called the bound definition of R.S integral. '
Note : The limit definition and the bound definition of RS-integral are not equivalent though they are equivalent

for Riemann integral, The following examples shows this.

Examp!e 332.Letf(x)=0 forx<0

=1 for x>0
andg(x)=0for x<0 |
| =1 forx>0.

Show that fis RS-integrable w.r.t. g following bound definition over [-2, 1] but not RS-integrable following
limit definition.

Solution. In Example 3.3.1 we have shown that [ =7.

Sofis RS-integrable w.r.t. g following bound definition.
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Following the arguments given m the solution of Example 2.6.1 we can easily show that fis not RS-integrable
W.Lt. gover [—2, 1] following limit definition.

Example 3.3.3. Let f(x) = 4 for all x and g (x) = 2—x for all x. Show that fis RS-integrable w.r.t. g over
[1,3] following limit definition but not following bound definition.
- Solution. Let P =[1=x, x,; Xpyerens X, = 3] be any partition of [1,3] and " = {&.8r00nl } where for
eachi=1,2,..n & ¢e[x_,x] |

Now S(P,T, f,g)

=376 s(x)-8 (2.0

S mn)-e-s)

L iml
n

=Y 4(x.,-x)

i=]

=4(x, - x,)
=4(1-3)
-3

Asthe RHS is independent of P.& T, it follows that hm S(P.T, f 24 ) exists and the limit is 8.

. Hencefis RS-integrablé w.r.t. gover[1, 3] following limit definition and r fdg=-8.

As here g (x) is not monotonic increasing the bound definition of RS-integral is not at all applicable.

3.4. Some theorems for monotonic i mcreasmg integrators

In the Riemann integral there are a number of theorems. When the i mtegmtor £ (x) is monotonic mcreasmg
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many theorems of Riemanns integral are found to be true for RS-mtegxél. The proof of these theorems are exactly

similar to those of Ricmann integral. So without giving the proof we only state these theorems.

Theorem 3.4.1. A function fis integrable with respect to the monotonic increasing integrator g on [a, b} if

and only if for every > 0 there exists a partition P of [a, b] such that U (P, f,g)-L(P, f,g) <.

Theorem 3.4.2. If f eR(g) and f,eR(g) over [a, .b], then fi+f,€ R’(g) and
[+ 1)dg=[ fide+ [ e |
' Theorem 3.43.If f € R(g) and cisaconstant, then cf € R(g) and [of dg=c [ f dg.

Theorem 3.4.4.1f /, € R(g), £, € R(g) and f; ()< £;(x) on s, b],{hen [ fdg < f fdg.

Theorem 3.4.5.1f f € R(g) over [a,b]and ifa<c<b,then f € R(g) on[a, é]_ and on [c, b] and
[rde=[rdg+[rdg.

Theorem 3.4.6.1f / < R(g) over a b, then
f€R(g) and lffdgl < flfldg-

Theorem 3.4.7.1f f € R(g) on[a, b), then f* € R(g).
The following two theorems are valid only for RS-integral.

Theorem 3.4.8.1f f € R(g) and f e R(g,) over[a, b then f € R(g, +g,) over [a, b] and

[rd(e+e)=[rde+ [ fde.
Proof. Since f € R(g,) and f & R(g,) therefore for given €> 0, there exist partitions P, and P, of [a,6]
such that - ‘

U(E,ffgl)“L(I)l’f’g‘)<% ,
U(]Jz,f,gz)—L(l)zaf’g2)<%"
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Let P=PUP,

~U(P.f.8)~L(P.1,8)<%) S — )
U(P’f’gz)-L(P,f,gz)<%. e @)

I;et the partition P be {a = xy,%,,%,,....,X, = b}
and m,, M, be bounds of fin [x._,,x].
Let g=g,+8g,.

- g(x)=g(x)+g,(x)

Agy =g (%)~ & (x.1)

Agy =8,(x)-g,(x.)

g =g(x)-8(x) o
={&(x)+& (%)} -{& (%) + & (%)}

= Ag), +Agy;.
~U(P,f,8)=) M, Ag,
i=]
= ZMi(Agli +Ag2,)
i=}
=Y M, Ag, +) M, Ag,
i=1 i=]
=U(P’f9g|)+U(P!f9g2)
Similarly, L(P, f,g)=L(P, .8 )+L(P.f.&,)
~U(P,f,8)-L(P.f,g)

.

=U(P.f.8)-L(P.f.&)+U(P.f.8)-L(P.f.8,)
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< % + % [using (1) and (2)]
=€

i.e. For given e> 0,3 partition P of [a, b] such thét
U(P,f,g)f-L(P,f,g) <e.

bThisprovesthat feR.(g) ie. feR(g +&)

- Now we prove the second part.

Since f € R(g) we have

[rdg=[ fdg=infU(P.f.g)
' =inf{U(P,f,8)+U(P.f.&)}
>inf U (P, f,8)+infU(P,f.8,)

= [ rdg+ [ 1o,

= ffdg, + ffc;’gz

i, [rdg= [ fag+ [fdee 3)
Similarly, '

 [rdg=[rdg=swpL(P.f.5)
'=sup{L(P,f,g,)+L(P,f,g2)} ‘

.<.supL(P,f,g,)+supL(P,f,gz)

= [rde,+ [ fag,
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= (rdg+ [ fdg,

ie, [fdg> [ fdg+ [ fdg;. . @)

From (3) and (4) we have
[rdg=[rdg,+ [ 1dg,
Theorem 3.4.9.1f f € VR( g) and cis a positive constant, then f € R(cg) and f fd(cg)=c f fdg.

Proof. Let f € R(g). Therefore for given e> 0, there exists partition P = {a = Xg) X, XyyennX, = b} of [a,
b] such that ' '

U(P.f.8)-L(P.f.8)<¥ - R M
. Leta= cg.
. a(x)=(cg)(x)=cg(x). Since ¢>0 and g is mn we have o is m.i.
Now, A, =a(x)-a(x,) | i |
=g (x)-cg (%)
= C{g(x,)-—g(x,._, )}

=cAg,.

~U(Pfa)= iM, Ac,

i=}

=Z":MICAgi

P
= Czn: M, Ag,

i=}

=cU(P,f,g).
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 Similaly=L(P, f,@) =cL(P, f,g).
~U(P,f,g)~L(P,f.8)
=cU(P,f,g)-cL(P,f.8)

=c{U(P,f,g)-L(P, f.8)}

<e{¥}  [using (1)
=€.
i.e. Forgiven e> 0,3 partition P of [a, b] s.t.
U(PSe)-L(P L)<
Hence feR(a)ie. feR(cg). |
Since f € R(c) we have
[da=[sda=infU(P,f.a)
=infcU(P, f,g)

=cinfU(P,f,g) (e>0)
‘ =cffdg
=c fdg

ie. ffd(cg) = cffdg.
We now prove the Mean Value Theorems for Riemann Stieljeé integral.

Theorem 3.4.10. First Mean Value Theorem,

)  IffisRS-integrable with respect to g over [a, b] where g is monotonic increasing on [a, b], then there e xists
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anumber p such that ms u <M, where M =sup{f(x):x€[a,b]} and m=inf{f(x):x€[a,b]} and

ii)

®

it)

[ 7(x)dg(x)= u{g(2)- 2 (a)}

1tfis continuous and g is monotonic increasing on [a, b}, then there exists a point & € [a, b] such that

[ 7(x)dg(x)=7(£){g(t)-2(a)}.
Proof. |
Forany x €[a,b] we have

ms f(x)SM.

Since g (x) is monotonic increasing on [a, b] and f € R(g) we have by Theorem 3.4.4. that
_Cmdgs ffdgs fMdg

o, mig(t)-g(@)< [ fdg<M{z(b)-2(a)

o, ms([rde) f{s(e)-g(a)} s [oe0)>2(@)]

Lt =([1de)/{2(t)-2(a)}

Then ffdg-:,u{g(b)--g(a)} and mS,ySM. '

Here fis continuous and g is monotonic increasing on [a, b]. Therefore, fis RS-integrable w.rt. gon [a,b].

So, by the first part there exists p such that m < y'< M where m = inf { f(x):xe[a,b]} and

76

M =sup{f(;c):xe [a.5]} and

ff(x)dg(x):y{g(b)—g(a)}. e e F e de e (1)

“Since £(x) is continuous over [a, 5], there exists atleast one & in[a, b]suchthat f(&)=4
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So from (1) we get

[ 7(x)dg(x)= 7 (¢){e(t)-2(a)}-
Theorem 3.4.11. Second Mean Value Theorem.

If fis monotonic increasing and g is continuous on [a, 5], then there exists a point £ € [a, b] , such that

[ (x)dg(x)= 1 (a) [ dg(x)+ 7 (5) [ de().
| Proof. Here g is continuous on [a, b] and fis monotonic increasing on [a, 4]. So by First Mean Value

‘Theorem there exists £ &[a,5] such that

[e@ar=e@r@)-r@@ e )
Since gis continuous and fis monotonic increasing we have g € R( f). Hence ioy Theorem2.7.1 f € R(g)
wd |
[rde+ [gdr = £ (b)2(b)- f(a)e(a)
Using (1) we thus get

[ rdg+g(&){f(b)-1(a)}=7(5)g(b)-f(a)g(a)
on [ fde=7()g(r)-1(a)g(a)-g(2)/ (5)+£(£)/ (a)
- f@e@)- 2@+ 1) a0)-£()
=f(a)fdg+f(b)fdg5 |

Theorem 3.4.12. If fis RS-integrable with respect to gover [a, b] where g is monotonic increasing on [a,b]

and Fis defined on [a, b] by F(x)= f f(t)dg(t).xe [g, b], then F'is of bounded variation on [a, ).

Proof. Let P = {a = %,,,X,,....x, = b} be any partition of [, b]. Since fis bounded on [a, b] there exists
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positive number M such that | £ (x)| < M forall xe [a.B].

Now |F(x,) =~ F(x.,)
= f’f(t)dg(t)— f"‘f(t)dg(t)‘ -
|00~ [ 70040~ [ r(0as00]

=" 7(dg (f)l

<[ |7 ()l (r), [using Theorem 3.4.6 (- gismi)]
<[ mag(o)

- {e(x)-5(5.)

~Vo(F,a,b)

=3 1P (x)-F (x.)

ng{g(x,.)—g(x;-,)}

=M{g(b)-g(a)}
Thus ¥, (F,a,b)s M {g(b)-g(a)}. |
This is true for all P. Since the RHS is independent of P, S‘:p VP (F,a,b) exists. This proves that F'(x)is of
bounded variationon [a,6).
3.5. Functions of bounded variations as integrators

We know that a function of bounded variation can be written as the difference betwéen two monotonic
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increasing functions. So a number of theorems for monotonic increasing functions as integrator are seen to be true
here. ' | '

Theorem 3.5.1. If fis continuous and g of bounded variation on [a,ﬁb], then f f dg exists.

Proof. Here g is of b.v. on [a, b}. Therefore, there ex_ist m.i functions g, and g, on [a,b] such thatg=g,~g,.

As fis continuous and g, is m.i it follows that f € R(g,)-

Also asfis continuous and g, ism.i it follows that f € R (g2)

Now f € R(g,) and f € R(g,) implies / € R(g -g;)

i.>e. f eR (g) Heﬁce f f dg exists.

Theorem 3.5.2. If fis of bounded variatién and g is continuous on{a, b],,then- f f dg exists.

 Proof, Using Theorem 3.5.1. it follows that ge R (f)-
Hence by Theorem 2.7.1. we see that f € R (2)-

Note. From Theorems 3.5.1 and 3.5.2 we sée that if one of the two functions fand g is continuous and other

" is of bounded variation on [a, b], then f € R(g) and g € R(f)

Theorem 3.5.3. Iffis contmuous and g of bounded vanatlon on [a, b] and | f (x)i < M for xe [a, ] then
“ff’dgl < MV(g';a,b).

Proof. Let P = {a = Xgy Xy Xypeeeky = b} be any partition of [, ] and &, be any point of [x,_,,x,]. Let

= {fl;fzv-q'f }

Then|S(Png)l Zf(é“){g(x) g( %)}

<Zif(§ g (x)-g(x-)

Directorate of Distance Education » ) ' - 719



Riemann Stieltjes Integral-Il ................uueerveeveuivererervvereennnns feertreeseere st et e et ae s e e s b e te et seebe s e e e beshesanes

<M3 g (x)-8 (5
» =MV(P,§,é,b)
< Msup{V (P,g;a,b): P eTl[a,b]}
= MV (g,a,b)
ie.[S(P.L, f,8)| < MV (g,a,b).

- fim, IS(P,T. f.8)|< MV (g,a,b), [ f € R(g)so the limit exists ]

o |[fde|s MV (g.a0).

The following theorem is a result on change of integrator.

Theorem 3.5.4. If fand g are continuous and a is of bounded variation on [a, b] and B is defined on [g, b]

ﬂ(x) = f_g(t)da:(t),x €[a,b] thén B

[7@s(x)da(x)= [ 1(x)ap()
_Proof. We ﬁréi prove the existence of the two integfals and then we prove their equality.

Since f(x) and g (x) are continuous on [a, b], f(x) g(x) is also so in [a, b]. Thus fg is continuous and o is of

b.v.on|aq, b],
Therefore fg € R(a) i.e. the integral ffg da exists.
Asais of bounded variation on [a, ], there exists m.i functinos ¢, and e, on [a, b] suchthat & = @, - a,.

Let B, = fg(t)da(t),z‘=l,2.

Now g (x) is continuous and @, ism.i. on [a, b]. Theorem 3.4,12
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B (x)= f g(t)da, (¢) isof b.v.on[a, b].
Similarly, 8" = [ g()da, (r) isofb.v.on[a, ]

- Now, f(x)= fgda = fgd(a, —az) = kfgdaq —_‘:gdaz2 =B~ p,.

- B isofb.v.on[a, b]. |

Thus fis continuous and p is of b.v.on [, 5].

N fe R(ﬂ,) i.e. the integral f fdp exists.

Now we prove thé equality of the two integrals.’

Lei P= {a = Xgs Xy Kgyerey = b} be any partition bf[a, bl. |
~ Now we have | |

Bi()-A(52)= [ 2()der ()~ [ 8(1)den(r)

=[ g(t)‘da, (0)+ E;»g(t)da‘ (1)- ["g(r)de, o

= [ e()day(e). v 1)
Here g() is continuous and &, (¢) is m.i on [x,,,%]. So by first mean value theorem there exists
Eelx,,x]st ' it S :
[ s0)da®2g@f@E) ) e @

LetT, ={&,&,...&,}. Then

S(PT fom) =3 () (€D e () -a (%)}

inl

= g f (;:i')g (ENen (% ) ~a, (%, )}
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= Z], TEENB (%) =B, (%)} [using (2) and (1)]
im . .
=S(P.,T.f.5). - : RSN )
Now fg s continuous and ¢, ism.i on [a, b] and fis continuous and B, is of b.v. on [, 4], so f Jgda; and
f J dp, exist. Hence taking limit as "P" — 0 we get from (3)
l}pi'r_r.loS(P,r,fg,a, ) = '}}'ITOS(P,F,,f,ﬂ,)

or [ feda=[rap.

Proceeding in the same manner we can prove that
[ feda,= [ rap,.
[ fede- [ fday= [ ap - [ s,
on [ fed(a-a)=[ (65,

or, _[:fgda= ffd,B.

36 Step functions as integrators.

Many interesting and important results are there for RS-integral with step functions as integrators. We first
-define step function. ‘ '

Definitior 3.671. A function defined on [a, b] is said to be a step function or a piecewise constant function
if there is a fixed partition {a =¢,,¢;,¢,,...¢, =b}, (¢, <¢, <...<c, ) such that fis constant on each open

subinterval (¢-1-¢,)si=1,2,...,m sothatfpossibly has jump discontinuity at the points éo 3CpseensCppe

We now prove that step functions on [a, b] are functions of bounded variation on [a, b].
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Theorem 3.6.1. Iffis a step function on [a, b}, then fis of bounded variation on [a, b].

Proof. Here fis a step function on [a, b]. So there exists partition P ={a=Cy,€),Cys0002Cp = b} suchthat
fis constant on each open subinterval (c,_;,¢; ),i=1,2,...,m. Let uschoose any point d, € (c..1,c;) for each
i=1,2,..m

Now fis monotonic on [¢,.,,d,] and on [d},¢,] and sofis of b.v.on [c...,d,] andon [d, ,]

Thus fis of b.v. on [c,_,, 4, JU[d, ,c,.] i.e.on[c.p¢ ]

HencefnsofbvonU 1-15€ 1e on[a, b].

i=l
The next theorem gives the formula for finding RS-integral when fis continuous and g is a step function.

Theorem 3.6.2. Let g be astep function on [a, b] such that g possibly has jump dlscontmuxty atthe points
Cpr GG (@=0y <€ <...<C, =b), the heaghtof]umpat ¢, being g, (i = 0, 1,...,m) ie.

8o =g(c’o.+0)_g(co)
g =g(c,+0)-g(c,-0), i=12,.,m-1
g, =8(c.)-2(cn=0).

If fis continuous on [a, b], then
ff(x)dg(x)= > fc)s

inf
Proof, We first consider the simple case in which ,f(x)k is continuous in [a, y/) ] and g(k) is constant in [d, B )
i | _ . v
We show that [ f dg = 7(8)[2(8)-2(B-0)]-
~ Wenote that g(x) is monotonic in [, B8]. As fis continuous in [a, 8], f f dg exists.

Let A={a=a,,a,a,,..a, =} bethe partition of [, 8] where a, = +i(f-a)/n,i=0,1,2,..n.
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So this partition divides [, £] into n equal parts. In the subinterval [a.1,a,] we choose the point 4, (i =1,2,...,n)

and denote ' = {a,,a,,... »a,}. Then

S(A,Rf,g);Zf(ai){g(a,)-g(a,-,)}

~2;'f(a,){g(a,) ~g(a.)}+ o (@ )s(a)-s(e,)

n-1

| “Z]f(a) O+f(ﬁ){g(ﬂ) g( _L)}
=f(ﬁ){g(ﬂ)"g( "”ﬁ%g)}
- Since ffdg eXistswéh&veﬁ'omflliS

l;,mS(A,r,f,g)=3§g/(ﬂ){g(ﬂ)—g(ﬂ-—£§9—J}

[ rde=r(8){g(8)-2(8-0)). B (1)
Similarly, when fis continuous in [a, §] and g s constant in (e, 8] then |
[ 7dg=r(a){g(a+0)-g(a)}. R @

We now considér the general case of the theorem. |
| Here gisastep functidp on[a, b]and so gis of b.v. on [a, b]. Sincefis cdhtinﬁéus oh [a,b] and gisofb.v.
on [a, b}, it follows that fis RS-integrable w.r.. gi.g. f S dg exists.
We choose any point d, € (c,_,,c,),i =1, 2, ....m. Then g is monotonic in (c,_,’,. d;] andalso in [d,‘,c,).

- Foreachi=1,2, ..., m we have from (1) and (2)-

[ 7(6)de(x)= £ (6 )& (60 +0)-5(6.))
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[ £(x)dg(x)= 7 () {e(e)-8 (e~}
f f(x)dg(x)= Z [ 7(x)dg(x)
“Z{f 7(:)de(x)+ [ 1 x)dg(x)}

-Zf(c: I){g(cl—l+0) g(c_‘)} +Zf(c {g(c) -g(e- O)}

inl

A (e 0)- g(c,}-!—Zf(c Ve ()~ g(c-o)}

i=0

- e r0)-s(e S () s(6+0) 26

‘*'Zf c)ie (c,+O)—g(c,.)}_ff(cm){g(cm)—g(cm-—0)}

inl

= £ (co){g(co +0)~2 ()} +gf(ci){g(c, +0)-g (e, ~0)}+ £ (c.){g(ca) -2 (ca =0}

= (@) 2+ S f(c) g+ f (cn)2n

=]

=§f(cl)gl'

Note. We note that if the integrator is a step function and integrand is continuous, then the RS-integral
reduces to a finite sum. ' .

The following theorem shows that any ﬁmte sum can be represented as RS-integral.

i=l

Theorem 3.6.3. Let Z g, beagiven finite sum. Prove that this sum can be represented as RS-:ntegral
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Proof. The givensumis ) 4;- We definea function f{x) on [0, n] as follows.

=]

f(x)=a,+(x-i)(a,-a.) for xe[i-1i), i=12,.,n

=q, for x=n
where q is a constant.
S (3)=a +(x-1)( -ay), 05 x<]
=a,+(x-2)(a,~-a)), 1sx<2

=g +(x~'3)(¢a5 -a:,;), 2<x<3

------------

+(x-n)(a,-a,,),n-1sx<n
We note that f{x) is continuous in [0, #]. -

We take g (x) = [x].

- g(x)=0, 0<x<1

-----

Then g(x) is a step functionon [0, n].

ey _._,fj'dg=f(0){g(°+0)_g(o)}i

86
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+7(1){g(1+0)-g(1-0)}
+/(2){g(2+0)-g(2-0)}

-----

.....

+/(n){g(n)-g(n-0)}.
=0, {0-0}+0,{1-0}+a, (21} +.
aeeta, {(n-1)~(n-2)}+a,, {’?"("'1)}

=a +a,+a;+..+a,  +d,

[
=Y a,.

3.7. Ilustrative Examples
Example 3.7.1. Using bound definition prove that [ xé[x] = 6. Verify the result using Theorem 3.6.2.
Solution. - |
| Here a(x) =[x] is monotonic increasing function on [0, 3] and fx) = x is continuous on [0, 3]. Hence
| f f(x)da(x) ie. fxd [x] exists. |
| Now a(x)=0 for 0sx<1

=] for 1£x<2

=2 for 2<x<3
=3 forx=3
Let us consider the partition P of [0, 3] as follows

P={0=X3 Xy Xy =L X Ky =2, X500 X, =3}
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I~ m-] » n-1
Then U(P, f,@)=D M, Ac, + M Ac, + D M, A+ M, A, + > M, Aa,+ M Ae,

i=l twl+l izm+1

-5 M, (0-0)41x(1-0)+ 5 1,11 2x(2-1)+ 3 M,(2-2)43x(3-2)

i=l =T izmel
=1+4+2+3

| =6

Similarly, |
L(P,f,a)=m, {a(x,)-o:(x,_, )} +m, {a(xm)-a(xm_,)} +m, {a(x,,)—-a(x"_,)}
= x, (1-0)+ %, (2-1) +x,,(3-2)

= x,>_I + X,y + X

Taking x,_, verycloseto 1, x,,_; verycloseto2and x,_, very closeto 3, we have the value of L(P, f, a)

very close to 6. Thus for such partition we have
6 = L(P,f,a})qut:pL(P,vf,a) =]/< Tt-irll)fU(P,f,a) S Q(.P,f,d) =;6
ﬁence I=T=6. | | |
~ Thisshows that ffda= fxd[x];&
Smce a (x) is astep function @d f (x) is continuous functipn on [0, 3] we have by Theorem 3.6.2
[ rda=£(O)[e(0+0)-a(0)]+ f()[@(1+0)-a(1-0)]
+1()[(2+0)-a(2-0)]+/ (3)[2(3)-a(3-0)]

=0(0-0)+1(1-0)+22-1)+3(3-2)
=1+2+3

=6.
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Example3.7.2. Evaluate [ x°d (|+[')
Solution. Let f (x) = x* and &(x)=[x{". Then
- [rdas fadr=£(2)a(@)-7(-Da(-)
= fwd () =2 x(2f - (1) |- - [fefa (<)
=32x8-(-1)x1~ [ |+ -5x'ax -‘
=257-5 ft|xv|3 x5 [uf - xtde
=257;5f,(—x’)-x‘¢{x«5,f.x3.x4dx .

=257+5flx’dxgsizx’dx

r.87° 8 7
=257+5| | ~5| %
8], |8

L 0
/ 8
=257+5 o—lJ-—s 2 o
. 8 8
_In
8

' Example 3.7.3. Show that fxzd ([x] -x)= 5

Solution.

f xd([x] -x)
= fxzd [x]—~ fxzdx
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= gf(x)dg(x)-{%il where f(x) =x?and g (;c) =]
- 7(O){5(0+0)- (0} +/0){£(1+0)-50-0)}+ /(e (2+0)-5(-0)}
)e0)-56-0)-{2-5]

=00-0)+1(1-0)+22(2-1)+3*(3-2)-9
=1+4+9-9 |
=3.

Example 3.7.4. Evaluate _[)[ f(x)da(x) where f(x)=2x+3

anid 'a(~x)=—8,—1.<_£:<0
=3 0<x<l

=4, x=1
=-2,1<x<2

=6,2<x<3
=5, x=3

Sqlixtion. Here f{x) is continuous on [-1, 3] and & (x) is a step function on [1, 3]. Hence we have

[/ da=7(-)fa(-140)-a(-0}+ £(0)fa(0+0)-a(0-0)

+f(1){a(1+‘0)—a(1—o)}+f(2){d(2+o)~a(2-o)}
+/(3){a(3)-a(3-0)}. |

={2(—1)+3}(—8+8)+(2x0+3){3+8}+(2x1+3)(——2——3) .

+(2x2+3)(6+2)+(2x3+3)(5-6)
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=1x0+3x11+5(-5)+7x8+9(-1)

=33-25+56-9
=89-34
=55,

3.8. Summary. Rxemann-SUeltues integral with dxfferent mtegratoxs have been conmdered here. It isseen that any
ﬁmte sum can expressed as RS-mtegral Examples are consxdered for xllustratxon

39. Self Assessment -qusﬁgiis;
1. Showthat [xd([x]~x)=3
2. Showthat [ [5-x]d(log[x])=log3
3. Showthat [ (x*+e*)d([x]+2) exists, Evaluste the ntegrl.

4, Show that fxsin xd(cosx)= _%

x, 0<xxl

5. Evaluate fxda(x) Whefea(x)={2+x 1<x<2

6. Evaluate f (x-[x])ax’

7. Evaluate fx(3—x)da(x) where a(x)}=x for 0< x <1

=lforlsx<2

" =3-xfor 25 x<3.
8. Evaluate [ (2x*~3x+5)da(x) where a(x)=3,-2 <x<-I

=4,-1<x<1
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=2 x=1
=5 1<x<4
=8, x=4.

3.10. Suggested books for further reading :

92

L.

“vooR WD

Introduction to Mathematicsl Analysxs Amritava Gupta Academxc Pubhshers Calcutta.
Mathematical Analys:s S.C. Malik & Savita Arora; Wiley Eastern Ltd., New Age Intematmal Ltd
Mathematxcal Analysw Tom. M. Apostol; Narosa Pubhshmg House.

Elements of Real Analysis : Shanti Narayan & M.D. Raxsmghama S. Chand

Pnncxples of Mathematical Analysis; Walter Rudin; International Students Edmon, McGraw-Hill
International Book Company. '
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‘PARTI

~ Paper-1 b o Group-A

| Module No. - 04 |
(Measurable Sets and Mgasurable Functions)

Module Structure

4.1 Introduction

42 Objective

4.3 Measurable Sets

4.4 | Sets of measure zero

4.5 Cantor set

4.6 Measurable functioris

4.7 Dlustrative examples

4.2; Summary

4.9  SelfAssessment Questions

4.10 Suggested Books for further reading

4.1 Introduction

The concept of measure of a set is an outcome of the notion of finding length of a segment or finding area of
aplane figure or finding the volume of a figure in three dimensional space. The measure theory is extensively ysed
in functional analysis, probability theory, the theory of dynamical system and many other branches of mathematics.
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The concept of measure of a set has been used to define a Very important class of functions, known as
measurable functions. The notion of measurable function will be used to develop Lebesgue integral in the next
module.

4.2 Objective }

To overcome the limitations of Riemann integxél ouraimisto déVeIo‘p the important integral due to Lebesgue.
For this we need the notion of measurable function which again demands the idea of measurable set. Itis seen that
all ordinary operations of analysis when applied to measurable functions lead to measurable functlons In other
words, all functions that we ordmanly meet with are seen to be measurable functions. That is why the study of

measurable sets and functions have become so essentlal

4.3. Measurable Sets
The concept of measure of a set is a generalization of the following cohcepts,
) = Thelength of aline ségment.
i) The area of a plane figure.
i) The volume of a space figure.
iv)  Theincrement of a non-decreasing ﬁinctibn over aninterval.

v)  Theintegral of a non negative function over a set on the line or over a region in the plane or over a
region in the space. '
Here we consider the measure of a set of real numbers only. The concept can be easily extended i in general

to the case of more abstract theory.

In keeping with the concept of length familiar from geometry, we now define the measure of an interval as '

follows. An interval may be closed, may be open or half open.
Let 4 ={x':a5x$b}

A2={x:a$x<b}
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A ={x:a<x<b}
A ={x:a<x<b}.
In all these four cases we define the measure as (h—a); This is becanse from geometry we know that}the
length of a point is zero. _ |
Thus m(4) =m( )= m(4) =m(4,) = bea |
Before deﬁrung the measure of any set of real numbers, we first define the measure of open sets

For thls we need the famous “Representatlon theorem for open sets on the real line”. This theorem is based

onthe concept of component interval.

4.3.1. Definition : Component Interval ‘
Let A be an open subset in R, An open interval /(which may be finite or infinite) is called a component interval

ofA is ] ¢ A4 andifthereisno open interval J # J suchthat Jc J c 4.

In other words, a component interval of 4 isnota proper subset of any other Open mterval contamed ind.

We now state the representatxon theorem.

4.3.2. Theorem : Every non-emply open set 4 in R is the union of a countable collection of disjoint component
intervals of 4.

Thus if 4 is'any non-empty bounded open subset of the closed bounded interval [a, b] in. R, then there exist

a countable disjoint open intervals whose union is. the setA If these intervals are / 134350051, then 4= U I andits

i=l

measuretsdeﬁnedas m(A)= Zm(l)

i=1

Ifthese intervalsare I,,1,,1,... then 4= 21 and its measure is deﬁnedas m (A) Z”’

I=l i=}
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4.3.3. Definition. If 4 is any open set of [, b] then m(A) Zm (1) or m(A) Zm(l ) where I, are the

i=l

disjoint component intervals of 4.

4.3.4. Definition. If B is any closed subset of the interval [a, b] then the complement B' of Brelative to any open
subset G of [a, b] containing Bis G- B=G(N B andisanopensetin [a, b]. The measure of Bis defined as

m(B)= m(G)- m(G - B)
Note. It is very xmportant to note that the measure of the closed set Bis mdependent of the chonce of G
| containing B. |

With the help of these notions of measure of open set and closed set we now define, the outer and the inner

measure of any set of [a, b] as follows.

4.3.5. Deﬁmtwn Outer measure
LetAbe any bounded subset of [a, b]. The outer measure of A is denoted by m (A) and is defmed as
m,(A4)=inf m(G)

where the infimum is taken over all open sets G which contains 4.

4.3.6. Definition Inner measure “
LetAbe any bounded subset of [a, b] The inner measure of 4 is denoted by m, ( ) and is defined as
m'(A4)= supm (F) | |
‘where the supremum is taken over all th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>