List of Tables

2.1	Parity checking matrix of (7,4) Hamming code	20
2.2	Redundant bits adjustment using odd parity for error detection and correction .	21
2.3	CA rule with its next state update strategy	22
3.1	PSNR (dB), Payload (bpp), SD and CC results of different datasets in RWS-WM	43
3.2	Comparison with different block size to measure PSNR (dB) in RWS-WM	45
3.3	Comparison of PSNR (dB) with different benchmark image datasets in RWS-WM	45
3.4	Comparison with existing RWS in terms of average PSNR (dB) and Payload	
	(bpp) in RWS-WM	47
3.5	Capacity, PSNR, Q-Index and Payload values for standard benchmark images	
	in RWS-CA	63
3.6	Average PSNR of various yardstick image datasets considering 25 to 100 im-	
	ages in RWS-CA	64
3.7	MSE, PSNR, NCC, SSIM, Q-Index and BER results for different images in	
	RWS-CA	65
3.8	Comparison of different RWT in sub-sample image with respect to PSNR and	
	embedding capacity in RWS-CA	65
3.9	SD and CC results for different image datasets RWS-CA	67
3.10	PSNR, SSIM, Q-Index, NCC and BER results of distorted watermark images	
	due to salt pepper noise, cropping and copy-move forgery attacks in RWS-CA .	68
3.11	Comparison table in terms of computation time in RWS-CA	72
3.12	Effects of 10 different types of attacks	73
4.1	Capacity, PSNR, Q-Index, and Payload values for standard benchmark images	
	in DRWS-LBP	84

4.2	ages DRWS-LBP	84
4.3	MSE, PSNR, NCC, SSIM, Q-Index and BER results for different benchmark	
	datasets in DRWS-LBP	85
4.4	Comparison of different dual image based existing methods with respect to	
	PSNR and embedding capacity in DRWS-LBP	86
4.5	Comparison graph in terms of PSNR (dB) with LBP based existing schemes in	
	DRWS-LBP	87
4.6	Comparison results of PSNR and Payload with existing dual image based schemes	
	in DRWS-LBP	88
4.7	PSNR, SSIM, Q-Index, NCC and BER results of distorted watermark images	
	due to salt pepper noise, cropping and copy-move forgery attacks in DRWS-LBP	92
4.8	Comparison table in terms of execution time in DRWS-LBP	93
4.9	Capacity, PSNR, Q-Index, and Payload results are presented for standard bench-	
	mark images in RWS-LBP-HC	101
4.10	Average PSNR of various yardstick image datasets considering 25 to 100 im-	
	ages in RWS-LBP-HC	102
4.11	Comparison of different RWT in terms of PSNR, embedding capacity and Q-	
	Index in RWS-LBP-HC	102
4.12	Comparison with existing LBP based scheme in terms of PSNR in RWS-LBP-HC1	104
4.13	Results of MSE, PSNR, NCC, SSIM, Q-Index and BER for different image of	
	four different benchmark datasets in RWS-LBP-HC	105
4.14	PSNR, SSIM, Q-Index, NCC and BER of distorted watermark images due to	
	salt pepper noise, cropping and copy-move forgery attacks in RWS-LBP-HC 1	107
4.15	Comparison table in terms of execution time in RWS-LBP-HC	108
4.16	Effects of 10 different types of attacks	110
5.1	Results of MSE, PSNR, NCC, SSIM, Q-Index and BER for four different bench-	
	mark datasets in RWS-LBP-CA	122
5.2	Capacity, PSNR, Q-Index, and Bpp results for standard benchmark images in	
	DWS I RD CA	123

5.3	Comparison of different RWT in sub-sample image with respect to PSNR and	
	Payload in RWS-LBP-CA	23
5.4	Average PSNR for various yardstick image datasets considering 25 to 100 im-	
	ages in RWS-LBP-CA	24
5.5	Comparison with existing LBP based scheme in terms of PSNR in RWS-LBP-CA1	25
5.6	PSNR, SSIM, Q-Index, NCC and BER of distorted watermark images due to	
	salt pepper noise, cropping and copy-move forgery attacks in RWS-LBP-CA 1	25
5.7	RS analysis between Cover image and Watermarked image in RWS-LBP-CA . 1	27
5.8	SD and CC results on different image datasets in RWS-LBP-CA	29
5.9	Comparison table in terms of execution time in RWS-LBP-CA	30
5.10	Capacity, PSNR, Q-Index and Payload values for standard benchmark images	
	in RWS-LBP-WM-LIP	39
5.11	Average PSNR of various yardstick image datasets considering 25 to 100 im-	
	ages in RWS-LBP-WM-LIP	40
5.12	Results of MSE, PSNR, NCC, SSIM, Q-Index and BER for different image	
	datasets in RWS-LBP-WM-LIP	41
5.13	Comparison of different RWT in sub-sample image with respect to PSNR and	
	embedding capacity in RWS-LBP-WM-LIP	.42
5.14	SD and CC results on different image datasets in RWS-LBP-WM-LIP 1	.43
5.15	PSNR, SSIM, Q-Index, NCC and BER results on distorted watermark images	
	due to salt pepper noise, cropping and copy-move forgery attacks in RWS-LBP-	
	WM-LIP	45
5.16	Comparison table in terms of computation time in RWS-LBP-WM-LIP 1	.49
5.17	Effects of 10 different types of attacks	50
6.1	Comparison of proposed schemes with respect to attacks	155