List of Tables

List	Page No.
Table 1: Examples of feed probiotics used in aquaculture.	8-9
Table 2: Examples of water probiotics used in aquaculture.	10
Table 3: Mode of action of aquaculture probiotics.	11
Table 4: Common diseases of Clarias sp.	14
Table 5: Application of probiotics in Clarias sp.	19
Table 1.1: Measurement of physico-chemical parameters and bacterial load of <i>C. batrachus</i> culture pond as studied at monthly interval.	35
Table 1.2: Pearson correlation matrix of physico-chemical parameters and bacterial load of <i>C. batrachus</i> cultivation pond.	36
Table 1.3: Predominant zooplankton observed in C. batrachus culture pond.	39
Table 1.4: Predominant phytoplankton observed in C. batrachus culture pond.	41
Table 1.5: Colony characteristics and Gram nature of predominant bacterial isolates of <i>C. batrachus</i> culture pond water.	44
Table 1.6: Colony characteristics and gram nature of predominant mud isolates of <i>C. batrachus</i> culture pond.	44
Table 2.A.1: Colony morphology and Gram nature of bacterial isolates isolated from intestines of <i>C. batrachus</i> .	62-63
Table 2.A.2: Inhibitory effects of bacteria isolated from the intestine of <i>C. batrachus</i> against target pathogens.	65
Table 2.A.3: Biochemical characteristics of the bacterial isolates PKA17, PKA18 and PKA19 isolated from the intestine of <i>C. batrachus</i> .	70-71
Table 2.A.4: Test of hydrophobicity of bacterial isolates showing high adherence towards xylene.	78
Table 2.A.5: Survival of test probiotics in tryptone soya broth supplemented with different concentrations of bile salts.	79

Table 2.B.1: Retrieved bsh protein sequences of Bacillus sp. and Lysinibacillus sp.	87
Table 2.B.2: Atomic contact energy (ACE) value of the bsh inhibitors predicted by PatchDock.	98
Table 3.1: Growth performance of <i>Clarias batrachus</i> fingerlings with different feeds after 120 days of feeding trial.	113
Table 3.2: Proximate composition of the whole carcass of <i>C. batrachus</i> after 120 days of feeding trial.	121
Table 3.3: Proximate composition of the vitamins of whole carcass of <i>C. batrachus</i> after 120 days of feeding trial.	123
Table 3.4: The fatty acid profile of whole carcass of <i>C. batrachus</i> after 120 days of feeding trial.	123
Table 3.5: Amino acid profile of whole carcass of <i>C. batrachus</i> after 120 days of feeding trial.	125
Table 3.6: Hematological parameters of <i>C. batrachus</i> after 120 days of feeding trial.	126
Table 3.7: Growth performance of <i>C. batrachus</i> juveniles after 60 days of feeding trial fed with different concentration of <i>L. sphaericus</i> PKA17 (C1= 2×10^4 , C2= 2×10^5 and C3= 2×10^6 probiotic cells per 100 g feed, control feed was not supplemented with probiotic).	128
Table 3.8: Growth performance of <i>C. batrachus</i> juveniles after 60 days of feeding trial fed with different concentration of <i>B. cereus</i> PKA18 ($C1=2 \times 10^4$, $C2=2 \times 10^5$ and $C3=2 \times 10^6$ probiotic cells per 100 g feed, control feed was not supplemented with probiotic).	130
Table 4.1 Freshwater fish diversity of Bankura district.	137-140
Table 4.2: Small indigenous fishes of Bankura district.	142-143
Table 4.3: Taxonomic position and conservation status of some threatened fishes of Bankura district.	144
Table 4.4: Survey on <i>C. batrachus</i> of Bankura district with reference to availability, economy and average weight.	147