BCA 5th Semester Examination 2019

PAPER -3104

Full Marks: 100

Time: 3 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

(Applied Graph Theory)

Answer Q.No. 1 and any five questions from the rest

1. Answer any five questions: 2×5

(a) Define Homomorphic graph with an example.

- (b) What is meant by independent set and maximal independent set of a graph?
- (c) What is meant by regularization of a planar graph? Give an example.
- (d) Define walk, path and circuit in a graph.
- (e) What is meant by eccentricity?
- (f) Define 1-isomorphic and 2-isomorphic.
- (g) What are the application of planar graph?
- (h) Find the chromatic number of a complete graph of n vertices.
- 2. (i) Find the minimum spanning tree for the following graph using Prim's algorithm.

- (ii) Prove that the maximum flow in a network is equal to the minimum of capacities of all cut-sets.

 6+6
- 3. (i) Show that a Hamiltonian path is a spanning tree.
 - (ii) Prove that in a tree every vertex of degree greater than one is a cut-vertex.
 - (iii) Prove that a connected Planar graph with n vertices and e edges has e n + 2 regions. 4 + 4 + 4
- 4. (i) Prove that the number of vertices of odd degree in a graph is always even.
 - (ii) Prove that a connected graph G is an Euler graph if and only if it can be decomposed into circuits. 5+7
- 5. (i) With example, explain various types of digraphs.
 - (ii) How will you find all maximal independent sets? Explain. 6+6

- 6. (i) Prove that a connected graph G is an Euler graph iff all vertices of G are of even degree.
 - (ii) Define the dual of a graph G. Prove that a graph G has a dual G if and only if it is planar. 6+6
- 7. (i) Show that starting from any spanning tree of a graph G, every other spanning tree of G can be obtained by successive cyclic interchanges.
 - (ii) Prove that the ring sum of any two cut-sets in a graph is either a third cut-set or an edge disjoint union of cut-sets.7 + 5

[Internal Assessment: 30 Marks]

(Web Design and Application)

Answer Q.No. 1 and any four questions from the rest

1. Answer any five questions:

 2×5

(a) What is internet and WWW?

- (b) Give the basic hierarchy of HTML page.
- (c) What is IDE?
- (d) Give some examples of deprecated tags.
- (e) What is IPV4 and IPV6?
- (f) What do you mean by framework?
- (g) How DHTML differs with HTML?
- 2. (a) Describe HTML heading levels.
 - (b) Why metadata is necessary to be described in a HTML web page?
 - (c) State the difference between span, margin and padding. 5+4+6
- 3. (a) What do you mean by domain and domain name server? Explain.
 - (b) What is IP? How is it connected to internet and its services?
 - (c) State the significance of https.

- (d) Why 127.0.0.1 is called loopback address? 5+4+3+3
- 4. (a) Is there any difference between CSS and CSSP? Discuss.
 - (b) Briefly explain the types of CSS.
 - (c) What is bootstrap? State some advantages of using bootstrap. 4+6+5
- 5. (a) What is URL? Explain the different parts present as components in the given URL http://www.example.com/blog/students.html? a = xyz.
 - (b) What is WYSIWYG? Define the following web terminologies: CMS, Hosting, SEO and Blog. 7+8
- 6. (a) Enumerate the difference between Java and Java Script.
 - (b) List out the differences between session and cookie.

- (c) What are Javascript types? Give an example of each.
- (d) What is a prompt box?

3+4+6+2

7. Write short notes on (any three):

 5×3

- (i) Web Server
- (ii) Anchors and URLs
- (iii) HTML Tags
- (iv) Planning and Building web sites
- (v) Search Engine Optimization.

[Internal Assessment: 30 Marks]

(Fuzzy Logic and Neural Network)

Answer any five questions

1. (a) Define the term "learning". What is Associative Memory?

- (b) Explain the back propagation training algorithm. (2+2)+10
- 2. (a) What is meant by membership function? Explain in detail various membership functions of fuzzy logic systems.
 - (b) Differentiate between classical sets and Fuzzy sets. (2+8)+4
- 3. (a) Explain in detail the architecture of Mc Culloch-Pitts neuron model and also realize 3-input NAND gate and NOR gate using the above neuron model.
 - (b) Explain Fuzzy composition operations. (6+4)+4
 - 4. (a) Explain the following components of Fuzzy logic system:
 - (i) Fuzzification
 - (ii) Rule base
 - (iii) Defuzzification
 - (b) What is XOR problem?

5. (a) Consider two fuzzy sets A and B with their membership functions.

$$\mu A(x) = \{0.2, 0.4, 0.8, 0.5, 0.1\}$$
 and $\mu B(x) = \{0.1, 0.3, 0.6, 0.3, 0.2\}$. Then compute

- $\begin{array}{cc} (i) & A \cup B \\ (ii) & A \cap B \end{array}$
- (iii) $\overline{A} R$
- (iv) $A \cap \overline{B}$
- (b) Use max-min composition and max-product composition to find the relation R(x, y) given as

$$R(x,y) = \begin{bmatrix} 0.8 & 0.6 & 1 \\ 0.2 & 0.2 & 1 \\ 0.6 & 0.2 & 0.9 \end{bmatrix}$$

$$R(y,z) = \begin{bmatrix} 1 & 0.7 \\ 0.2 & 1 \\ 0.2 & 1 \end{bmatrix}$$

6. Write short notes on (any two):

 7×2

- (i) Greg-Viot Fuzzy Cruise controller
- (ii) ADALINE Model
- (iii) BAM
- (iv) Hetro-associate network.
- 7. (a) Differentiate between (any two):
 - (i) Supervised and unsupervised learning
 - (ii) Artificial Neural Network and Biological Network
 - (iii) Feed forward network and Feedback network.
 - (b) What is tautology? Explain with the help of example. $(5 \times 2) + 4$

[Internal Assessment: 30 Marks]

(Advanced Unix and Shell Programming)

Answer Q.No. 1 and any four from the rest

1. Answer any five questions:

- 2×5
- (a) Which command puts a script to sleep until a signal is received?
- (b) What is the purpose of 'logout' built in command?
- (c) Differentiate line editor and screen editor.
- (d) What is the difference between cd and cd..?
- (e) What is the use of PS command?
- (f) What is wild card? Mention any one purpose of wild card?
- (g) What is the use of echo command?
- (h) What is the function of TR filter?
- 2. (a) What are the different ways of using chmod?
 - (b) What do you understand by PATH variable? What is the difference between relative and absolute path?

- (c) What is i-node? What does it contain? 5 + (2+2) + (2+4)
- 3. (a) Explain different states of process with a diagram.
 - (b) Compare kernel mode versus user mode. How does kernel access file?
 - (c) Explain mounting and unmounting of a file. 5 + (2 + 3) + 5
- 4. (a) Explain UNIX architecture with diagram.
 - (b) Explain the salient feature of UNIX operating system.
 - (c) Describe different modes of vi editor. 5+5+5
- 5. (a) Explain the use of grep command.
 - (b) Write a shell script to display all the file types and file permissions.
 - (c) What are the similarities between a thread and a process? 4+7+4

- 6. (a) What is filter? Describe the function of any two filters?
 - (b) Write a shell program to find prime number between x to y (where x < y).
 - (c) Explain loop control structure available in UNIX. (2+3)+6+4
- 7. Write short notes on(any three):

 5×3

- (i) Pipe
- (ii) Soft link and hard link
- (iii) IFS
 - (iv) LS command.

[Internal Assessment: 30 Marks]

(Mobile Computing)

Answer any seven questions

1. (a) Enlist the applications of Mobile computing.

- (b) Show with diagram the steps in a mobile transmitted call in GSM. 5+5
- 2. (a) List out advantages of Snooping TCP.
 - (b) Write about different Broadcast models.
 - (c) Compare SDMA, FDMA, TDMA and CDMA.

 3 + 3 + 4
- 3. With a neat diagram, explain the architectural layers of mobile computing. Explain each layer. 6+4
- 4. How the handover decision takes place in GSM depending on receiver signal strength? Explain.

 7 + 3
- 5. (a) Give the main reason for implementing specialized MAC in wireless networks.
 - (b) Describe domain dependent specific rules for data synchronization. 5+5
- 6. (a) Explain about the Code Division Multiple Access technique.

(b)	Discuss	ahout	MANETS.
(0)	Discuss	about	MILLIANT 19.

5 + 5

- 7. (a) Explain in detail about various ways of performing IP-in-IP encapsulation.
 - (b) Explain in detail about Wireless Application protocol with its architecture. 5+5
- 8. (a) How a packet is delivered in Indirect TCP? Explain. Also discuss the advantages and disadvantages of I-TCP.
 - (b) Explain DHCP in details.

5 + 5

- 9. (a) Discuss the protocol architecture of IEEE 802.11.
 - (b) Describe the Bluetooth protocol stack with diagram. 5+5
- 10. Write short notes on (any two):

 5×2

- (i) IPV6
- (ii) UDP

(iii) DAB and DVB

(iv) SIM.

[Internal Assessment: 30 Marks]

(Automata)

Answer any five questions

(a) Convert the Moore Machine into Mealy Machine:

nt State N	Vext State	Outpu	Output
a =	= 0 $a =$	ĺ	
$\Rightarrow q_1 \qquad q$	q_1 q_2	0	
q_2 q	$q_1 \qquad q_3$	0	88
q_3 q	$q_1 \qquad q_3$, 1	
-			0

(b) Construct a DFA accepting all strings w over {0, 1} such that the number of 1's in w is 3 mod 4.

- (c) Construct a DFA accepting all strings over $\{a, b\}$ ending in ab. 5+4+5
- 2. (a) Show that G is an LR(0) grammar where G be the grammar $S \rightarrow aA$, $A \rightarrow Abb|b$.
 - (b) Write the closure properties of languages.
 - (c) Show that

$$S \rightarrow aAb$$
,

 $A \rightarrow cAc|c$

is not LR(k) for any natural number K.

4 + 6 + 4

3. (a) Prove that the grammar

$$(\{s\}, \{a\}, \{s \to s + s | s * s | a\}, s)$$

is ambiguous.

- (b) Design an FA which accepts all strings having 010 or 110 as substring over $\Sigma = \{0, 1\}$.
- (c) Show that

 $L = \{a^p | p \text{ is prime}\}\$ is not regular

4 + 3 + 7

- 4. (a) Construct a regular grammar accepting $L = \{w \in \{a, b\}^* | w \text{ is a string over } \{a, b\} \text{ such that the number of b's is 3 mod 4}\}.$
 - (b) Let L be the set of all palindromes over $\{a, b\}$. Construct a grammar G generating L.
 - (c) Construct a grammar G generating $\{a^nb^nc^n \mid x \ge 1\}.$ 3+4+7
- 5. (a) Construct an equivalent PDA for the following CFG

 $S \rightarrow aAB \mid bBA$ $A \rightarrow bS \mid a$

 $B \rightarrow aS|b$

Check if the string abbaaabbbab is accepted by the PDA or not.

- (b) Construct a Turing machine that can perform recursion. 7 + 7
- 6. (a) Show that

 $L = \{a^p | p \text{ is a prime}\}$ is not a context free language.

- (b) If G consists of the production $S \to aSa|bSb|aSb|bSa|\Lambda$, show that L(G) is a regular set.
- (c) Reduce the following grammar to CNF:

 $S \rightarrow ASA|bA$,

 $A \rightarrow B|S$

 $B \rightarrow C$

3 + 4 + 7

- 7. (a) Write a short note on Universal Turing Machine.
 - (b) What are the limitations of Mealy machine and Moore machine?
 - (c) Distinguish between Deterministic and Non-deterministic FSM's. 6+4+4
- 8. Write short notes on (any two):

 7×2

- (i) Chomsky's classification of grammar
- (ii) Turing Machine

(iii) Push-down stack and memory machine (iv) Context free grammar.

[Internal Assessment: 30 Marks]

(Compiler Design)

Answer Q.No. 1 and any four questions from the rest

1. Answer any five questions:

 2×5

- (a) What is cross-compiler?
- (b) Write down the purpose of code optimization phase in compiler.
- (c) What is grammar?
- (d) What is token and pattern?
- (e) What are the function of handler?
- (f) What is Finite Automata?
- (g) What are the functional activity of lexical analyser?

- (h) What is ambiguous grammar?
- (i) Draw a transition diagram for $(a+b)^*$.
- 2. (a) What is compiler? What are the important role of compiler?
 - (b) Write down the phase of compiler. Discuss each phases with suitable example. 2+3+2+8
- 3. (a) Compute FIRST and FOLLOW set of the following grammar

$$S \rightarrow ACB|CbB|Ba$$

$$A \rightarrow da |BC|$$

$$B \rightarrow g | \in$$

$$C \rightarrow h \in$$

S → AaAb | BbBa

$$A \rightarrow \in$$

$$B \rightarrow \in$$

$$(3+3)+9$$

4. (a) What is left Recursive grammar? How

eliminate left recursion? Eliminate left recursion from the following grammar

$$L \to SA$$
$$A \to SA \in$$

- (b) What is three address code? Discuss with a suitable example. 3+3+4+2+3
- 5. (a) Construct the SLR parser for the grammar

$$E \rightarrow E + T|T$$

 $T \rightarrow T*F|F$
 $F \rightarrow Id$.

- (b) Write the rules for checking a grammar is LL(1) or not?
- 6. (a) Show that the following grammar is LR(1) but not LALR(1):

$$S \rightarrow Aa|bAc|Bc|bBa$$

$$A \rightarrow d$$

$$B \rightarrow d$$

(b) Consider the following grammar

$$S \rightarrow A | \wedge |(T)$$

$$T \rightarrow T, S \mid S$$

Can $(a(a, \land, (a, a), \land))$ be generated from the above grammar? 7 + 8

7. Write short notes (any three):

 5×3

- (i) Parse Tree
- (ii) DAG
- (iii) Quadruples
- (iv) Symbol Table
- (v) Left-factoring.

[Internal Assessment: 30 Marks]