1202

2019

BCA

2nd Semester Examination

Data Structure

Paper - 1202

Full Marks - 70

Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Question No. 1 and any four from the rest.

- 1. Answer any **five** questions : 2×5=10
 - (a) What is the postfix expression for the following infix expression?

A+B* (C+A)/C

POP. PUSH (20)

(b) What is the sequence of values popped out of stack when the following sequence of operations are performed on a stack?
PUSH (10), PUSH (20), POP, PUSH (10),

P.T.O.

with 3 nodes? What is the no. of internal nodes of degree 2 (d) in binary tree that has n leaf nodes? (e) Which data structure is good one to represent sparse matrix? (f) Define strictly binary tree. (g) What is Dequeue? (h) What do you mean by height-balance tree? GROUP - B Answer any **four** questions: 15×4=60 Write an algorithm to reverse a single linked 2. (a) 5 list. (b) Suppose, we use linked list to represent a polynomial. Show how do we represent the following polynomial: $10x^7 + 5x^4 + 3x^2 + 6$. (c) Show how can we represent the following 6 sparse matrix? $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$ Contd. 2 **BCA (1202)**

What is the number of distinct binary trees

(c)

Show both adjacency matrix representation 3. (a) and adjacacy list representation of the 3+3

following graph.

Consider the following graph: (b)

Show the order of node traversals if you use BFS graph traversal technique and start from vertex A. Show the content of queue in every step.

- Write recursive Binary search algorithm. (c)
- Show the every step of constructing binary (a) 4. search tree if you are given the following list of nodes: 16, 7, 15, 20, 9, 2, 6
 - Show the post-order traversal order of nodes (b) in the binary search tree obtained in above question 4(a).
 - Give algorithm Bar in-order binary tree (c) 5 traversal.
 - (d) Define binary tree.

5.	(a) (b) (c)	Write the algorithm of insertion sort. What is linear probing in Hashing? Write an algorithm of linear se technique.	5 3 arch
	(d)	Discuss applications of Hashing structure.	r data 3
6.	(a)	How do we represent queue data struct	ure?
	(b)	How do we detect if a queue is empty non-circular queue?	for a
	(c)	Write the pop operation algorithm stack.	of a
	(d)	Define B-tree.	3
	(e)	What do you mean by complete be tree? Give example.	inary 2+1
7.	(a)	Write the Dijkstra's algorithm to shortest path between two vertices graph. Show an example.	
	(b)	Write an algorithm to delete a node fr single linked-list.	om a
	(c)	Write one advantage and disadvanta array over linked list.	ge o
8.	Write short notes on any three: 5×		5×3
	(a)	Priority queue	
	(b)	Merge sort	
	(c)	Collision resolve techniques in Hashir	ng
	7,080 9,800	Bi-connected graph	
		[Internal Assessment – 30 marks]	