2019

BCA

4th Semester Examination OPERATING SYSTEM

Paper - 2202

Full Marks - 70

Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question No. 1 and any four from the rest.

Answer any five questions :

2×5

- (a) What is Segmentation?
- (b) What is the purpose of system calls?
- (c) Differentiate between Paging and demand paging.
- (d) What is thrashing?
- (e) What is a Thread?

	(f)		the difference between multiprogram multiprocessing.	ıming
	(g)	Wha	at is aging ?	
2.	(a)	(i)	Differentiate between paging segmentation.	and
		(ii)	Explain the address translamechanism in paging in details.	ation 3+3
	(b)		erentiate between internal fragment external fragmentation.	ation 2
	(c)		at is process control block? Discus ous process states with a diagram.	ss the 5
	(d)	Wh	at do you mean by inode?	2
3. (a)		rep	at is Belady's anomaly? Discuss a lacement algorithm which does not ady's anomaly.	
	(b)	Cor	nsider the following reference string	g:
		1,2	,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6	
			oly:i)FIFO, ii)LRU, iii)OPTIMAL lacement algorithms and compare.	. page 4
BCA (2202)			2	Contd.

(c)	Consider a set of 5 processes whose arrival			
	time, CPU time needed and the	priority are		
	given below:	5		

Process priority	Arrival Time	CPU Time (in ms)	Priority
P ₁	0	10	5
P ₂	0	5	2
P ₃	2	3	1
P ₄	5	20	4
P ₅	10	2	3

Smaller the number, higher the priority If the CPU Scheduling policy is SJF with pre-emption, then find the average waiting time and also find the turn around time.

(Solve the above problem using Gnatt chart)

- 4. (a) What is Critical Section? Write down the solution to the Critical Section problem. 2+3
 - (b) (i) Define Deadlock. 2
 - (ii) Consider a system with five processes and three resources. Given that resource type A has 10 instances,

B has 5 instances and C has 7 instances. And also the following snapshot 5 of a system: Max Allocation **Process** B C Α R A 7 5 3 P_1 0 1 0 2 2 3 2 0 0 Po 2 9 0 3 2 0 Pa 2 2 2 1 2 1 P_{Λ} 3 2 4 3 0 0 Ps Answer the following questions using the Banken's algorithm: Find the available (i) Find the need matrix (ii) Find the safe sequence How can we prevent a system from deadlock? (c) 3 Explain it briefly. What is preemptive and non-preemptive 5. (a) (i) 2 Scheduling? Explain indexed disk storage allocation (ii) 5 scheme with an example. What is disk Scheduling? (b) (i) Contd. BCA (2202) 4

(ii)	Consider the disk queue with request
	for of I/o to Blocks on cylinders - 98,
	183, 37, 122, 14, 124, 65, 67. Initially
	the disk head is at cylinder no 53 and
	shortest - seek - time first (SSTF) is
	being used for scheduling in the disk
	access. Now the seek time is 6 ms per
	cylinder. So find the total seek time.
	2+4

In which situation you would not use Paging

2

- and why? Consider a paging hardware with a TLB. 6. (a) Assume that the entire page table and all the pages are in the physical memory. It takes 10 miliseconds to search the TLB and
 - 4 the effective memory acess time. How does logical address differ from (b) 4

80 miliseconds to access the physical memory. If the TLB hit ratio is 0.6, the find

physical address? (c) A certain moving arm disk storage with one head has following specification: Number of tracks 1, recording surface 100, Disk rotation speed 2400 rpm, track storage capacity 62500 bits. Then find the transfer 4 rate.

(c)

(d)	What is Semaphore ? Give solution to
	producer-consumer problems using
	Semaphore. 3
(a)	If a disk has a seek time of 20 ms, rotates
	20 revolution per second, has 100 words
	per block and each track has capacity of
	300 words. Then to access one block find
	the total time. 5
(b)	What is Locality of Reference? Discuss the
	types of locality of reference. 2+3
(c)	(i) Explain the difference between busy

(c) (i) Explain the difference between busy waiting and blocking.

(ii) Define through put and turn around time.

1

(iii) Explain starvation. When and how may starvation occur?

[Internal Assessment – 30 marks]

7.