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Figure 2.1 Embryo developmental stages (Zygotic embryogenesis) in Arabidopsis. The stages are shown here
from octant to heart stages. The upper and lower tiers of the pro-embryo are established at the octant stage, which
has been shown here with light and deep green colors respectively. Gradually, when the embryo enters to globular
stage, the topmost suspensor (here shown in grey color) cell is described as the hypophysis (in orange color).
Later, the hypophysis divides asymmetrically, gives rise to an apical lens-shaped cell (in yellow color), which act
as the precursor of the QC (quiescent center) and a basal cell (in orange color), which act as the progenitor of the
columella stem cells. Abbreviations: SAM, Shoot Apical Meristem; RAM, Root Apical Meristem. [Image adapted
from (Radoeva and Weijers, 2014)].
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Figure 2.2. Over view of seed development stages (Adapted and modified from
(Martin et al., 2012)
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Figure 2.3 A summarised model of regulatory network depicting the genetic and molecular interactions
during embryogenesis in radish. Embryo development can be categorised into two phases, morphogenesis and
maturation. Arrows in blue and black colors indicate gene regulation and affiliation, respectively, whereas red
arrows between genes indicating the transcriptional repression of the genes. The circle indicated with solid and
dotted line representing those genes identified or not in radish and the corresponding miRNAs are shown in red
color. Genes indicated in yellow boxes were connected with miRNAs by purple arrows which is indicating the
miRNA-mRNA interactions [Image adapted from (Zhai et al., 2016)].
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Figure 2.4A. Schematic representation of different
parts of Seeds and Seed Germination stages. Seeds and
germination stages of dicotyledonus (Chickpea) and
monotyledonus (Maize) plants have been shown in upper
and lower panels, respectively. B. Major Events
associated with Seed Germination and Post-
Germinative growth phases. Germination stages are
represented by phase 1 and phase 2; post-Germinaton
events includes phase 3. The time (X-Axis) for events
varies from several hours to many weeks, depending on
different plant species and germination conditions. Uptake
of water and related increase in biomass is indicated in (Y-
Axis) and shown in line graph during three phases. Some
specific events (such as DNA repairing, transcription,
translationand mitochondira production etc.) are
spread over more than one phases and indicated with
shaded color; where dark colors indicate more activity and
light colors indicate less activity.
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Figure 2.5. Major Events which are the integral part of breaking of Seed Dormancy (Image adapted
from Bewley 1997 after modification).
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Figure 2.6 Diagramatic representation of Plant
miRNA biogenesis. [Image adapted with slight
modification from (Chen, 2009)].
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Figure 2.7 Diagramatic representation of the biogenesis of Plant ta-siRNAs. (A) At the TASI locus, long non
coding precursor transcripts are cleaved by miR173/AGO1, and the 3' cleavage products are bound by $GS3 and copied
into dsSRNAs by RDR6. The dsRNAs are further processed into siRNAs by DCL4 in a step-wise manner from the end
defined by the initial cutting/cleavage. (B) At the 7483 locus, long non coding precursor transcripts are recognized at
two sites by miR390/4GO7, which cleaves the transcripts only at the 3' site. The 5'cleavage products are ultimately
channellized into ta-siRNA production by SGS3, RDR6, and DCL4 [Image adapted from (Chen, 2009)].
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Figure 2.8 Interactions between miRNAs and their respective targets in determination of adaxial-
abaxial leaf polarity. Black arrow indicates the positive regulation and the T-lines indicate the
negative regulation. Dashed lines denote speculative behaviours and interactions [Image adapted from
(Rubio-Somoza and Weigel, 2011)].
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Figure 2.9 The interactions between miRNAs and their targets during developmental phase transition.
Solid black arrows indicating positive regulation and solid T-lines indicating the negative regulation. Whereas
the dashed Lines specify the speculative behaviours and interactions [Image adapted from (Rubio-Somoza
and Weigel, 2011) after modification].
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Fig 2.10. miRNAs and their target interactions regulating cell proliferation in leaves (Image
adapted from (Rubio-Somoza and Weigel, 2011) after modification.
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Fig 2.11 Biosynthetic pathway of ABA in higher plants. In plastids through an oxidative cleavage reaction from
precursors C,, epoxycarotenoid ABA is derived. In cytosol, the Xanthoxin (C,5 intermediate )is converted to ABA
after two-step reaction via ABA-aldehyde. Different abiotic stresses such as drought and salt activate the
biosynthetic genes, most probably through a Ca?* dependent cascade as shown on the left. ABA feedback excites the
expression of the biosynthetic genes, which is also presumably through a Ca?" dependent phosphoprotein series of
interaction. Among several biosynthetic genes, NCED is strongly upregulated by abiotic stress whereas SDR is
regulated by sugar. ABA biosynthetic genes are denoted with small ovals. The NCED step probably limits ABA
biosynthesis in leaves (denoted with a dashed arrow). NCED: 9-cis-epoxycarotenoid dioxygenase; ZEP: zeaxanthin
epoxidase ; MCSU: MoCo sulfurase; AAO: ABA-aldehyde oxidase [Image adapted from (Xiong and Zhu, 2003)] .
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Fig 2.12 The biosynthetic pathway of Gibberellins
(GA) [indicated with red arrow] and GA
signalling by inhibition of DELLA proteins
(indicated as T-line). [Image adapted from (Ferguson
etal.,2011)].
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Fig 2.13 Diagrammatic representation of the interactions between the Abscisic acid (ABA),
Gibberellin (GA) and Ethylene signalling pathways in the regulatory process of Seed Dormancy
and Germination. This hypothetical model is mainly based on hormone mutantational analyses in
Arabidopsis. The interactions based on extranal enhancer or suppressor are indicated by thin grey lines.
Interactions are indicated by thick arrows and blocks, respectively. Small black arrows specify the
upregulation (upward arrow) or downregulation (downward arrow) of seed dormancy. Whereas small
blue arrows specify increase (upward arrow) or decrease (downward arrow) of seed ABA sensitivity of
the mutant of the corresponding proteins.

The showed hormonal mutant of Arabidopsis thaliana are : rga = repressor-of-gal-3; rgl 1, rgl2 = rga-
likel, 2; abal, aba2 = ABA-deficientl,2; abil to abi5 = ABA-insensitivel to ABAinsensitive5, era3 =
enhanced response to ABA3; ein2, ein3 = ethylene insensitive2, 3; ctrl = constitutive triple responsel;
gai = GA insensitive; slyl =sleepyl; spy = spindly;

Other abbreviations: GA3ox = GA 3-oxidase; Man = mannanase; vpl = viviparousl (maize mutant);
EREBP = ethylene responsive element binding protein; ERF = ethylene responsive factor; ACS = ACC
synthase; ACO = ACC oxidase [Image adapted from (Kucera et al., 2007)].




Figure 4.1.1 Total RNAs from Arabidopsis Wt Col seeds in TAE Agarose Gel
(1.2%). [1- DS, 2-12h/RT, 3- 12h/4°C, 4-24h/RT, 5-24h/4°C, 6- 48h/RT, 7-
48h/4°C , (M)- marker].
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Figure 4.1.2 Total RNAs from Arabidopsis Wt Col seeds in
MOPS-formaldehyde gel. [(A) and (B): Positive control RNAs from
leaf and shoot tissues, (C): Empty lane having some RNA diffused
into it from neighbouring well/s. 1- DS, 2-12h/RT, 3- 12h/4°C, 4-
24h/RT, 5-24h/4°C, 6- 48h/RT, 7- 48h/4°C
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Figure 4.1.3 Quality of the RNA was checked by Bio-analyzer,
showing RIN value-7.1 (almost each of the 7 above mentioned spatio-
temporal conditions we obtained the same quality of RNAs).
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Figure 4.1.4 Expression patterns of miRNAs at different seed germination conditions in Arabidopsis thaliana based on
Microarray . (a) Heat map analysis at Cold imbibitions (4°C) vs. Dry seeds (DS). (b) Heat map analysis at Room Temperature
(RT) vs. Dry seed (DS). (c) Heat map analysis at Cold imbibitions (4°C) vs. Room temperature (RT).The bars in the heat map
represent the scale of expression levels of the miRNAs. During Microarray we have pooled all the Cold imbibed (IS-4°C) and
Room Temp imbibed (IS-RT) total RNAs separately, and the microarray was performed using two biological replicates for each
individual samples. (d) The Venn diagram represents the comparison of the known miRNAs in between three different conditions
(DS, IS-4°C and IS-RT) used in the Microarray Experiment. (e) The graph represents the miRNA families and their respective
family members which were detected in our Microarray analysis. [For generating heat map we used MeV(Multiple Experiment
Viewer) (http://mev.tm4.org/)].
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Figure 4.2.1 Quantitative RT-PCR based validation of the Expression of Mature miRNAs in Imbibed seeds, in comparison to Dry
seeds, in Arabidopsis thaliana. (The Expression profiles generated upon qRT-PCR slightly varied with the miRNA expressions depending
upon Microarray analysis, probably due to the pooling of total RNAs we used during Microarray experiment). The qRT-PCR validation of
miRNAs were done at six different germination conditions as 12h/RT, 12h/4°C, 24h/RT, 24h/4°C, 48h/RT and 48h/4°C , each compared to
Dry seed. The Expression values showed here representing the means of three biological replicates + standard deviation (sd). The
Arabidopsis ACTIN7 was used for each samples as an Endogenous control. (a) ath-miR165/166; (b) ath-miR172a; (¢) ath-miR390b; (d)
ath-miR160a; (e) ath-miR156h; (f) ath-miR157a/or, c/or, d. In Arabidopsis, miR157a, ¢ and d have the same mature sequence. Asterisks
indicate significant statistical differences: ***P < 0.001, **P < 0.01, *P <0.05 [One-way ANOVA|.
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Figure 4.2.2 The validation of Expression of Mature miRNAs in imbibed seeds, in comparison to Dry seeds, in Arabidopsis
thaliana by quantitative RT-PCR method. The qRT-PCR validation of miRNAs were done at six different Germination conditions as
12h/RT, 12h/4°C, 24h/RT, 24h/4°C, 48h/RT and 48h/4°C each compared to Dry seed. The Expression values showed here representing
the means of three biological replicates = standard deviation (sd). The Arabidopsis ACTIN7 was used for each samples as an
Endogenous control. (a) ath-miR164a; (b) ath-miR169b; (c) ath-miR161.1; (d) ath-miR399a; (e¢) ath-miR399b/or, ¢ (in
Arabidopsis, miR399b and c have the same mature sequences); (f) ath-miR824; (g) ath-miR834; (h) ath-miR854; (i) ath-miR2112-5p.
Here Asterisks indicate significant statistical differences: ***P < 0.001, **P < 0.01, *P <0.05 [One-way ANOVA].
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Figure 4.2.3 Validation of the Expression of Mature miRNAs in imbibed seeds, in comparison to Dry seeds, in Arabidopsis thaliana

by quantitative RT-PCR method. The qRT-PCR validation of miRNAs were done at six different Germination conditions as 12h/RT,

12h/4°C, 24h/RT, 24h/4°C, 48h/RT and 48h/4°C each compared to Dry seed. The Expression values showed here representing the

means of the three biological replicates = standard deviation (sd). The Arabidopsis ACTIN7 was used for each samples as an

Endogenous control. (a-d) targets of miR165/166; (a) PHB; (b) PHV; (c) ATHBS; (d) ATHBI5. (e-g) targets of miR160; (¢) ARF10;

(f) ARF16; (g) ARF17. (h-1) targets of miR156/ or, miR157; (h) SPL3; (i) SPLY. Here Asterisks indicate significant statistical
*REP < P < *P< y ANOVA]




(a) @ SPL10 in imbibed seeds (b) B AP2 in imbibed seeds (c) B TOE1 in imbibed seeds
- BSPL10 in dry seeds B AP2 in dry seeds = B TOE1 in dry secds
= " 3

S 3 z

5 g "

E. T £

s £8

ﬂ-& 2 =~

= s -

= - g

2 @ g

2 3 2

& E] =

a2 Y, ol 2p 2, dy W Lo 2 Cw Yy
Ry e R g, ey g, p Mg e Mo Ry p o Ry g, ey o

&
B TOEZ2 in imbibed sceds B TOE3 in imbibed seeds B NACI in imbibed seeds
(d) B TOE2 in dry seeds 2 (€) ®TOE3in dry sceds §)) 500 ; BNACI in dry seeds $

9 4
] 3 450
'E 1.2 = 12 400 4

=} -
s ! R 1
Z Bos £S08 g
ES 5] Z 15250 1
=506 o 06 £
ol B g
s 04 5 04 FERE R
2 02{F ¥ £ o2 E w0 &
-] 0 £ 50 -] : o .

o 04 - - - -
Z Vs 2 2 7 o T T T T T
o o Vw P Y %, 4., Y B, T, 3
Y, Y, i, g, g, . Ry ¥ “u, ‘D Ly fy Yw, . e
Ry g, Ry Twy Ry ®r e R o ®r Yo Yp g, Cp iy, Wy
(g) :ggg} :: ::\tr'ls?::‘é:ﬂd! (h) B CUC2 in imbibed seeds (i) B NF-YAS in imbibed sceds

BCUC2 in dry seeds BNF-YAS in dry seeds

o
= 600 . S =
z : 2 3
5 s 2 g
-} = =
£ ~ 400 = £
S £ £
2 300 g 5
5 = £
Z 2004 = £
5 . k: 2
2 w0 H . . . 3
H 4 H
0 : : . ‘
o, %%, 814/4) Y, e Yy, Ty %, "‘14/ Iy 2, 274/# Ay, By,
% Ve Rp e Ry Ve -50 4 “%,. e (8 Ve Ry g, %y e o Yo Ry g

Figure 4.2.4 Validation of the Expression of Mature miRNAs in imbibed seeds, in comparison to Dry seeds, in Arabidopsis
thaliana by quantitative RT-PCR method. The qRT-PCR validation of miRNAs were done at six different Germination conditions as
12h/RT, 12h/4°C, 24h/RT, 24h/4°C, 48h/RT and 48h/4°C each compared to Dry seed. The Expression values showed here representing
the means of the three biological replicates = standard deviation (sd). The Arabidopsis ACTIN7 was used for each and every samples
as an Endogenous control. (a) SPL10- target of miR156/or, miR157. (b—¢): targets of miR172; (b) AP2; (c) TOE1; (d) TOE2; (e)
TOE3. (f-h): targets of miR164; (f) NAC1; (g) CUCI1; (h) CUC2; (i) NF-YAS- target of miR169. Here Asterisks indicate
significant statistical differences; ***P < (0.001, **P < 0.01, *P < 0.05 [One-way ANOVA|.
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Figure 4.2.5 Validation of the Expression of Mature miRNAs in imbibed seeds, in comparison to Dry seeds, in Arabidopsis
thaliana by quantitative RT-PCR method. The gRT-PCR validation of miRNAs were done at six different Germination
conditions as 12h/RT, 12h/4°C, 24h/RT, 24h/4°C, 48h/RT and 48h/4°C each compared to Dry seed. The Expression values showed
here representing the means of the three biological replicates + standard deviation (sd). The Arabidopsis ACTIN7 was used for
each and every samples as an Endogenous control. (a) NF-YA8-target of miR169; (b) PPR superfamily- target of miR161.1; (c)
PHO2- target of miR399; (d) AGLI16- target of miR824; (¢) CIP4.1 or CIP4- target of miR834; (f) R3H- target of miR854.
Here Asterisks indicate significant statistical differences; ***P < 0.001, **P < 0.01, *P <0.05 [One-way ANOVA].
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Figure 4.2.6. pMIR390b::GUS and pMIR160a::GUS conconstruction
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Figure 4.2.7 The Spatial Expression of pMIR390b::GUS in Germinating Seeds, the Function of miR390, and the Expression of the
targets ARF2, ARF3, and ARF4 during Seed Germination. (a) GUS Expression of pMIR390b::GUS at 24h/RT Imbibed condition; (b)
GUS Expression of pMIR390b::GUS at 24h/4°C Imbibed condition; (c) Negative control of GUS assay at 24h/ 4°C Imbibed Col-0 seed.
24h/RT-Imbibed seeds were showing the higher expression of miR390b compare to 24h/4°C-Imbibed seeds, which is matching or similar
to the Expression pattern of the qRT-PCR based validation result of miR390b; (d)The model representing the role of miR390 in the
biogenesis of tasiR-4ARFs and regulation of ARF2/3/4 (According to Marin et al, 2010). (e-g) Expression pattern of ARF2/3/4 (the targets
of tasiR-ARF) by qRT-PCR method; (e) Transcript level of target ARF2; (f) Transcript level of target ARF3 and (g) Transcript level of
target ARF4.
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Figure 4.2.8. Spatial expression of pMIR160a::GUS in germinating
seeds . (a). GUS expression in radicle at 12h/RT ; (b). GUS expression in
endosperm at 12h/RT.
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Figure 4.2.9(a-i). Semi quantitative RT-PCR of the targets and miRNAs (all are not shown).

ACT7 was an endogenous control. C1-Dry seed, C2- 12h/RT, C3-12h/4°C, C4-24h/RT, C5-24h/4°C,
C6-48h/RT, C7-48h/4°C, M-marker
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Figure 4.3.1. Tetrazolium assay of small RNA biogenesis pathway mutant sgs3-
11 seeds along with its age matched control Wt-Col seeds. The assay was
performed in triplicate in both the cases. The Brown/or, red/or, dark brown colored
seeds were viable seeds, less bright colored seeds were comparatively less viable,
and the yellow colored seeds were non-viable(heat killed); (a). sgs3 mutant seeds,
(b). Possitive control wt-col seeds; (¢). Negative control (heat killed wt-col seeds).
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Figure 4.3.2. Relative percentage level of the viable seeds in both sgs3-11 and Wt-Col
; the percentage was calculated based on the viable seeds of tetrazolium assay. The whole
experiment was repeated at least three times along with the three set of independent lines

of seeds.
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Figure 4.3.3. Germination assay of small RNA biogenesis pathway mutant sgs3-11 seeds under abiotic
stresses. (a). Salt (150mM NacCl), (b). Dehydration (mannitol, 200mM ), (¢). ABA z(5uM), (d). Heat(45°C), (e).
Cold(4°C), (f). Control condition (without stress). Age matched seeds were surface sterilized and plated on either 1/2
MS or 1/2 MS supplemented with various stresses. Plates were stratified at 4°C for 3 days and transferred to growth
chamber at 22+2°C. For cold stress, after stratification plates were transferred to cold room (4°C) under 16/8h
light/dark cycle till 4 days. Then transferred to again growth chamber at 22+2-C. Values are mean £SD of three
independent sets (n=30).Asterisks indicate significant statistical differences, ***P < 0.001, **P < 0.01, *P <0.05
(One-way ANOVA).
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Figure 4.34. Effect of
different stresses on
germination of  sgs3-11
mutant seeds along with its
control Wt Col on 4% day of
germination (DAG4). (a, b) —
Drought  stress  (mannitol
(200mM), (¢, d)- Salt stress
(NaCl  (150mM), (e, f)-
Hormonal stress (ABA (5uM),
(g, h)- Heat stress (45°C), (1, j)-
Cold  stress. Rate  of
germination in the respective
stress conditions are calculated
in Fig. 4.3.2.3.
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Figure 4.4.1. Effect of
salt treatment on seed
germination of the eTM-
miR165/166 and wild
type plants. (a). Rate of
germination of the eTM-
miR165/166 and wild
type was measured in the
medium  supplemented
with 150mM NaCl. And
the germination scored at
indicated days. (b), (c)
Germination phenotype
of eTM-miR165/166 and
wild type seeds in the
media supplemented
with salt respectively 3rd
day after germination
(DAG3). (d),(e) Radicle
growth of eTM-
miR165/166 and Wt Col
respectively after 3rd day
of germination under
steriozoom microscope.
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Figure 4.4.2. Effect of draught
stress on seed germination of the
eTM-miR165/166 and wild type
plants. (a). Rate of germination of
the eTM-miRI165/166 and wild
type was measured in the medium
supplemented  with  200mM
mannitol. And the germination
scored at indicated days. (b) and
(c). Germination phenotype of
eTM-miR165/166 and wild type
seeds in the media supplemented
with mannitol respectively 3rd
day after germination (DAGS3).
(d) and (e). Growth of eTM-
miR165/166 and Wt  Col
germinated seeds respectively
after 3rd day of germination under
steriozoom microscope.
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Figure 4.4.3. Effect of heat
stress on seed germination of
the eTM-miR165/166 and wild
type plants. (a). Rate of
germination of the eTM-
miR165/166 and wild type was
measured under heat stress. (b)

20 A

(d) and (c). Growth of eTM-

miR165/166 and Wt Col
germinated seeds respectively
after 3rd day of germination
upon heat treatment under
steriozoom microscope. (d) and
(e). Germination phenotype of
eTM-miR165/166 and wild type
seeds upon heat stress after 3
day of germination (DAG3).
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Figure 4.4.4. Effect of ABA(5uM)
stress on seed germination of the
eTM-miR165/166 and wild type
plants. (a). Rate of germination of
the eTM-miR165/166 and wild type
was measured under ABA stress.
(b) and (c). Germination phenotype
of eTM-miR165/166 and wild type
seeds upon heat stress after 3 day
of germination (DAG3). (d) and
(e). Growth of eTM-miR165/166
and Wt Col germinated seeds
respectively after 3rd day of
germination upon heat treatment
under steriozoom microscope.
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Figure 4.4.5. Effect of GA
(S5uM)  stress on  seed
germination of the eTM-
miR165/166 and wild type
plants. (a). Rate of germination
of the eTM-miRI165/166 and
wild type was measured under
GA  stress.(b) and (c).
Germination  phenotype of
eTM-miR165/166 and wild
type seeds upon GA(SuM)
treatment after 3 day of
germination (DAG3). (d) and
(e). Growth  of  eTM-
miR165/166 and Wt Col
germinated seeds respectively
after 3rd day of germination
upon GA treatment under
steriozoom microscope.
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Figure 4.4.6. Effect of
cold stress on seed
germination of the e7TM-
miR165/166 and wild
type plants. (a). Rate of
germination of the e7TM-
miR165/166 and wild
type was measured upon
cold treatment. (b) and
(¢). Growth of eTM-
miR165/166 and Wt Col
germinated seeds
respectively after Sth day
of germination upon cold
treatment under
steriozoom microscope.
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Figure 4.4.7. Seed germination
of eTM-miR165/166 and wild
type plants in normal half MS
plate (without stress condition).
(a). Rate of germination of the
eTM-miR165/166 and wild type
was measured under normal
growth condition. (b) and (c).
Germination phenotype of eTM-
miR165/166 and wild type seeds
in normal growth condition after
3 day of germination (DAG3).
(d) and (e). Growth of eTM-
miR165/166 and Wt Col
germinated seeds respectively
after 3rd day of germination in
without stress condition (normal
growth)  under  steriozoom
microscope.
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Fig 5.1 The potential regulatory network for miRNAs in seed germination of
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Maps of the vectors used in this study

Fig A1. pJET1.2 Vector map
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Maps of the vectors used in this study

(11,

(11,048) KpnI —
(11,042) Acc65I
(11,040) BanIl - Sacl

(11,038) Eco5

(11,843) Ncol BglII (0)

\ | AhdI (20%)
(11,081) HindIII
(11,073) PstI - SbfI Pl it s
(11,063) Sall ' \ /
(11,057) Xbal . \ [
051) BamHI -

3k1

(11,030) EcoRI

(10,787) BSEXI

(9946) Aatll .
(9944) Zral —

(9607) ASISI
(5558) RsrII —

(8906) PSpPXI ——

(8388) SacIl ™~
(s260) Psil ~
(8115) BpulOl ~

(7734) BIpI

pCAMBIA1301
11,850 bp

(6447) BStZ171 ~
(6252) PluTI "~ \
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Fig A2. pPCAMBIA1301
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