2015

M.Sc.

4th Semester Examination

ELECTRONICS

PAPER-ELC-403

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Quantum Electronics)

Answer Q. No. 1 and any three from the rest.

- 1. (a) Mention the steps for producing MASER.
 - (b) Explain the trem "carrier confinement" in a double heterojunction laser.

- (c) Discuss the physical significance of Fermi's Golden Rule.
- (d) What is GRIN-SCH? Mention its advantages.
- (e) What are the advantages of SAM-APD over an ordinary APD?
- (a) Using time independent perturbation theory, derive an expression for second order perturbation in energy.
 - (b) The number of QWs in MQW could be increased infinitely for better performance Exaplin.
 - (c) State the advantages of NH₃ MASER. 5+3+2
- 3. (a) Using time dependent perturbation theory explain the phenomena of absorption and emission.
 - (b) Distinguish between graded gap and staircase APDs.
 - (c) Discuss the noises present in APDs. 5+3+2

- 4. (a) Write briefly on:
 - (i) Quantum dot laser;
 - (ii) Quantum wire laser.
 - (b) Prove that the density of state in two dimensions is independent of energy. (3+3)+4
- , 5. (a) Explain the working principle of a solid state photomultiplier tube.
 - (b) Define radiant sensitivity and quantum efficiency of photomultiplier tube. Why Boro-silicate glass is used most as its window material?

 5+(3+2)
 - 6. (a) Give an estimate of the thickness of the active region of a quantum well.
 - (b) Explain Photoconductive gain in case of a quantum well infra-red photodetector.
 - (c) Compare p-n photodiode and p-i-n photodiode with regards to their performance.

 4+3+3

Internal Assessment — 10