2015

M.Sc.

2nd Semester Examination

ELECTRONICS

PAPER-ELC-204

Full Marks: 50 and to

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Semiconductor Devices)

Answer Q. No. 1 and any three from the rest.

- 1. (a) Explain the breakdown process due to impact ionization associated with a P-N Junction diode.
 - (b) Explain (with the help of band diagram) what is meant by ohmic contact.

- (c) Explain, why activation energy method is preferred to measure the barrier height of a Schottky junction in comparison with current-voltage measurement method.
- (d) When the reverse gate voltage of JEFT change from 4.0 to 3.9 volt, drain current change from 1.3 to 1.6 mA. Find the value of the transconductance.
- (e) What do you mean by the Gummel number of a bipolar function transistor?
- (a) Derive the Shockley equation in connection with a P-N junction diode.
 - (b) Define the terms Depletion capacitance and diffusion capacitance. 8+2
- 3. (a) Describe clearly the formation of a Schotky Barrier assuming a metal / n-type semiconductor (with the help of Band diagram).
 - (b) Describe Schotky diffusion theory & hence find an expression current density in M/S junction.

3+7

4. (a) For a metal semiconductor junction prove that the thermionic current flowing through the junction is:

$$J = A^*T^2 \exp\left[\frac{-q\phi_{\beta n}}{KT}\right] \left[e\frac{qV}{KT} - 1\right]$$

where A^* is the Richardson constant and $q\phi_{\beta n}$ is the barrier height of the junction.

(b) If a thin layer of semiconductor having a doping concentration n₁ is introduced at the semiconductor surface, show that the reduction of barrier height

$$\Delta \phi = \frac{\mathbf{q}}{\mathsf{t}_{\mathrm{S}}} \sqrt{\frac{\mathsf{n}_{1} \mathsf{a}}{4\pi}}$$

where 'a' is the thickness of the semiconductor having doping concentration in n_1 . 7+3

- 5. (a) What do you mean by field dependent mobility?
 - (b) Derive the expression of drain current of a Si-MESFET using field dependent mobility model and show that it is equal to

$$I_{D} = \frac{I_{P} \left[3 \left(u_{2}^{2} - u_{1}^{2} \right) - 2 \left(u_{2}^{3} - u_{1}^{3} \right) \right]}{1 + \mu V_{D} / U_{S} L}$$

where the symbols have their usual meanings.

(c) What do you mean by Normally ON and Normally OFF MESFETs?

2+6+2

6. (a) Prove that the expression for anode current I_A of a Silicon controlled rectifier as

$$l_{A} = \frac{\alpha_{2}l_{9} + ICO_{1} + ICO_{2}}{1 - (\alpha_{1} + \alpha_{2})}$$

where the symbols have their usual meanings.

(b) Discuss the mechanism of generation of negative resistance in a Unijunction Transistor.

6+4

Internal Assessment - 10