2015

M.Sc.

2nd Semester Examination

ELECTRONICS

PAPER-ELC-202

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Digital Electronics)

Answer Q. No. 1 and any three from the rest.

1. (a) Find out minimized expression for Boolean function given below:

 $f(w, x, y, z) = \Pi m(0, 1, 4, 5, 8, 9, 11) + dc(2, 10)$

(b) A logic circuit consist of two 2×4 decoder as shown below:

The output of decoder are as follows:

$$D_0 = 1$$
 when $A_0 = 0$, $A_1 = 0$

$$D_1 = 1$$
 when $A_0 = 1$, $A_1 = 0$

$$D_2 = 1$$
 when $A_0 = 0$, $A_1 = 1$

$$D_3 = 1$$
 when $A_0 = 1$, $A_1 = 1$

Find out the value of f(x, y, z).

(c) Consider the square wave generator shown below:

Find out output frequency.

- (d) The full scale output of a 10 bit DAC is 5V. What is the resolution?
- (e) What is the difference between PROM & EPROM?
- 2. (a) If $f = \overline{B}\overline{C} + (A \oplus B)C$ and $g = A \oplus B \oplus C$, then using Karnaugh map show that $f \oplus g = \overline{A} + C$.
 - (b) Let $F = B\overline{C}D + \overline{A}BC\overline{D}$ and $F_1 = \overline{B} + \overline{C}\overline{D} + \overline{A}C\overline{D}$. Find F_2 such that $F = F_1.F_2$. Find the simplest solution of F_2 .
- 3. (a) Write down the operating principle of a 555 timer in monostable mode with proper circuit diagram.
 - (b) Implement the following funflow using MOS logic:

$$f = ABC + \overline{(A+B+C)}$$

- (c) Implement the function $F(a,b,c) = ab + \overline{b}c$ using a 4:1 MUX. 5+2+3
- 4. (a) Design BCD to seven segment decoder circuit.
 - (b) Design a gray code to Binary code converter using ROM structure. 5+5
- 5. (a) Write short notes on change-couple device.
 - (b) What is the difference between SRAM & DRAM?
 - (c) What is the function of floating grid in EPROM cell?

5+2+3

6. (a) For a n-digit number in base r, the decimal equivalent value is N_1 . If the two digits of positions i and j (j = i - 1) are interchanged then the value becomes N_2 . If the sum of the two interchanged digit is N_3 then show that the digits

$$a_i = \frac{N_3}{2} + \frac{(N_1 - N_2)}{2(r^i - r^{i-1})}$$

and
$$a_j = \frac{N_3}{2} - \frac{(N_1 - N_2)}{2(r^i - r^{i-1})}$$
.

(b) The circuit of DAC is given below. Switch are closed if input bit is 1, otherwise open.

- (i) If $V_{ref} = 5V$, $R = 20 \text{ K}\Omega$ & $R_F = 10 \text{ K}\Omega$, then what is the full scale voltage?
- (ii) If full scale voltage is to be $V_{out} = -2V$, then find out the value of R_F . 5+5

Internal Assessment - 10