2014

M.Sc.

3rd Semester Examination

ELECTRONICS

PAPER-ELC-303

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Communication Engineering)

Answer Q. No. I and any three questions from the rest.

- 1. Answer all questions: 2×5
 - (a) Discuss different merits and demerits of differential PCM over delta modulation.
 - (b) For an AM System prove that

$$P_t = P_c \left(1 + \frac{m^2}{2} \right);$$

where P_t is the total power, m the molecular index and P_c the power of the carrier signal.

(Turn Over)

- (c) Find the inverse Fourier transform of $\delta(f f_0)$.
- (d) Show that FM wave has been non-linear noise in comparison with AM wave.
- (e) Discuss the phase-shift method to generate SSB signal.
- 2. (a) If 'x' input is applied to a system 'h' showing output 'y', then determine the transfer function H(f) of the system for distortions condition.
 - (b) Use time differentiation property to find the Fourier transform of the triangular pulse $\Delta(t/\tau)$ shown below:

(c) Write down the conditions for distortionless transmission LTI system. 4+4+2

- (a) With a neat diagram describe the principle of operation of a ring modulator to generate DSB-SC AM wave.
 - (b) How can you convert the carrier frequency of a DSB-SC signal using a frequency mixer?
 - (c) Discuss the process of coherent demodulation of a DSB-SC signal. 4+3+3
- 4. (a) If H₁(f) is the transfer function of a vestigial shaping filter and H₀(f) is the low-pass equalizer filter of a USB system, then prove that:

$$H_0(f) = \frac{1}{H_i(f+f_c) + H_i(f-f_c)}$$

- (b) The antenna current of an AM transmitter is 8A when only the carrier is sent, but it increases to 8.93A when the carrier is modulated by a single sine wave. Find the percentage modulation.
- (c) With a neat sketch discuss the principle of operation of an envelope detector.

 4+3+3
- 5. (a) An angle-modulated signal with carrier frequency $\omega_{\rm c}=2\pi\times10^5$ is described by the equation $Q_{\rm EM}(t)=10\,\cos{\{\omega_{\rm c}t+5\,\sin\,3000t+10\,\sin\,2000\pi t\}}$. Find the frequency deviation Δf and deviation ratio β .
 - (b) How can you demodulate FM signal using a slope detection method?
 - (c) With a neat sketch discuss the indirect method of Armstrong-to generate WBFM. 3+3+4

- 6. (a) State and prove the sampling theorem.
 - (b) Derive the interpolation formula

$$g(t) = \sum_{k} g(KTs) SinC(2\pi Bt - K\Pi)$$
.

where the symbols have their usual meaning.

(c) For a PCM system prove that

$$\frac{S_0}{N_0} = 3L^2 \frac{\overline{m}^2(t)}{m_0^2}$$

where L is the number of Grantizer levels, S_0/N_0 is the signal to noise ratio, m^2t is message signal and m_p is the peak amplitude value that a quantizer can accept.

[Internal Assessment -- 10]