Chapter 4

Doubt intuitionistic fuzzy Sub-implicative ideals in BCI-algebras^{*}

4.1 Introduction

Taking queue from Atanassov's thought, Palaniappan et al. [60] introduced the notions of IF SI-ideals and IF SC-ideals in BCI-algebras. Mostafa [59] established the idea of anti fuzzy SI-ideals in BCI-algebras. Jianming and Zhisong [40] described the notion of DFP-ideals in BCI-algebra.

Solairaju [79] investigated the idea of IF P-ideal including some related features in BCI-algebra.

A FS $M = \{\langle q', \zeta_M(q') \rangle : q' \in V\}$ in V is named as a DF SI-ideal [59] in V if (i) $\zeta_M(0) \leq \zeta_M(q')$

(ii) $\zeta_M(r'*(r'*q')) \le \zeta_M(((q'*(q'*r'))*(r'*q'))*s') \bigvee \zeta_M(s')$, for all $q', r', s' \in V$.

A FS $M = \{\langle q', \zeta_M(q') \rangle : q' \in V\}$ in V is identified as a DFP-ideal [40] in V if (i) $\zeta_M(0) \leq \zeta_M(q')$

(ii)
$$\zeta_M(q') \le \zeta_M((q' * s') * (r' * s')) \bigvee \zeta_M(r') \forall q', r', s' \in V.$$

The objective of this chapter is to define DIF SI-ideals and DIFP-ideals in BCIalgebras and to study its characteristics. The conditions for a DIF-ideal to be a DIF SI-ideals in BCI-algebras are also presented and relations among DIFP-ideals and

*A part of the work presented in this chapter is published in

International Journal of Computational Intelligence Systems, 8(2) (2015), 240-249.

DIF SI-ideals are studied. Findings of the study concludes that every DIF-ideal in V is not a DIF SI-ideal in V. The conditions are presented for a DIF-ideal to be a DIF SI-ideals in BCI-algebras.

4.2 DIF SI-ideals in *BCI*-algebras

The current section introduces the concept of DIF SI-ideal in BCI-algebras and studies its properties.

Definition 4.2.1. Let $M = (\alpha_M, \zeta_M)$ be an IFS of a BCI-algebra V, then M is recognized as **DIF SI-ideal** in V if (i) $\alpha_M(0) \leq \alpha_M(q'), \zeta_M(0) \geq \zeta_M(q')$ (ii) $\alpha_M(r'*(r'*q')) \leq \alpha_M(((q'*(q'*r'))*(r'*q'))*s') \bigvee \alpha_M(s')$ (iii) $\zeta_M(r'*(r'*q')) \geq \zeta_M(((q'*(q'*r'))*(r'*q'))*s') \land \zeta_M(s')$, for all $q', r', s' \in V$.

Theorem 4.2.1. If a DIF SI-ideal in V meets the inequility $q' \leq s'$ then (i) $\alpha_M(q') \leq \alpha_M(s')$ and (ii) $\zeta_M(q') \geq \zeta_M(s')$.

Proof. Let $q', r', s' \in V$ be such that $q' \leq s'$ then q' * s' = 0 and since M is a DIF SIideal in V, so $\alpha_M(r'*(r'*q')) \leq \alpha_M(((q'*(q'*r'))*(r'*q'))*s') \bigvee \alpha_M(s')$, when r' = q', then using (A3) and (P5), we get $\alpha_M(q') \leq \alpha_M(q'*s') \bigvee \alpha_M(s') = \alpha_M(0) \bigvee \alpha_M(s') = \alpha_M(s')$. Therefore, $\alpha_M(q') \leq \alpha_M(s')$.

Again, $\zeta_M(r'*(r'*q')) \ge \zeta_M(((q'*(q'*r'))*(r'*q'))*s') \wedge \zeta_M(s')$, when r' = q', then using (A3) and (P5), we get $\zeta_M(q') \ge \zeta_M(q'*s') \wedge \zeta_M(s') = \zeta_M(0) \wedge \zeta_M(s') = \zeta_M(s')$. Therefore, $\zeta_M(q') \ge \zeta_M(s')$. Thus the proof ends.

Proposition 4.2.2. Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in a BCI-algebra V. Then $\alpha_M(0*(0*q')) \leq \alpha_M(q')$ and $\zeta_M(0*(0*q')) \geq \zeta_M(q')$, for all $q' \in V$.

Proof. $\alpha_M(0*(0*q')) \leq \alpha_M(((q'*(q'*0))*(0*q'))*s') \bigvee \alpha_M(s') = \alpha_M(((q'*q')*(0*q'))*s') \bigvee \alpha_M(s') = \alpha_M((0*(0*q'))*s') \bigvee \alpha_M(s')$. When s' = q' we get, $\alpha_M(0*(0*q')) \leq \alpha_M((0*(0*q'))*q') \bigvee \alpha_M(q')$ or, $\alpha_M(0*(0*q')) \leq \alpha_M(0) \bigvee \alpha_M(q')$ [by using A2]. Therefore, $\alpha_M(0*(0*q')) \leq \alpha_M(q')$, for all $q' \in V$.

Again, $\zeta_M(0*(0*q')) \ge \zeta_M(((q'*(q'*0))*(0*q'))*s') \wedge \zeta_M(s') = \zeta_M(((q'*q')*(0*q'))*s') \wedge \zeta_M(s') = \zeta_M(((q'*q')*(0*q'))*s') \wedge \zeta_M(s')$. When s' = q' we get, $\zeta_M(0*(0*q')) \le \zeta_M((0*(0*q'))*q') \wedge \zeta_M(q')$ or, $\zeta_M(0*(0*q')) \le \zeta_M(0) \wedge \zeta_M(q')$ [by using A2]. Therefore, $\zeta_M(0*(0*q')) \ge \zeta_M(q')$, for all $q' \in V$.

EXAMPLE 16. Consider a BCI-algebra $V = \{0, d, e, f\}$ as given in Example3 with table as follows:

*	0	d	e	f
0	0	0	0	0
d	$egin{array}{c c} 0 \\ d \\ e \\ f \end{array}$	0	0	d
e	e	d	0	e
f	$\int f$	f	f	0

Let $M = (\alpha_M, \zeta_M)$ is an IFS of V defined by

V	0	d	e	f
α_M	0.1	0.4	0.5	0.6
ζ_M	0.8	0.6	0.5	0.4

which is a DIF SI-ideal in V.

Theorem 4.2.3. Every DIF SI-ideal in V is a DIFSA in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V. If r' = q', then from hypothesis(ii) and (iii) in Definition 4.2.1, $\alpha_M(q') \leq \alpha_M(q'*s') \bigvee \alpha_M(s')$ and $\zeta_M(q') \geq \zeta_M(q'*s') \land \zeta_M(s'), \forall q', s' \in V$. Hence it also implies that, $\alpha_M(q'*s') \leq \alpha_M((q'*s')*s') \lor \alpha_M(s')$ and $\zeta_M(q'*s') \geq \zeta_M((q'*s')*s') \land \zeta_M(s')$, for all $q', r', s' \in V$. Again, $((q'*s')*s') \leq (q'*s')*(s'*s') = q'*s' \leq q'$, [by using (P6), (A3), (P5), (P2)]. Hence by Theorem 4.2.1, $\alpha_M((q'*s')*s') \leq \alpha_M(q')$.

Thus, $\alpha_M(q'*s') \leq \alpha_M(q') \bigvee \alpha_M(s')$ and also, $\zeta_M((q'*s')*s') \geq \zeta_M(q')$. So, $\zeta_M(q'*s') \leq \zeta_M(q') \wedge \zeta_M(s')$. Hence, M is a DIFSA in V.

Theorem 4.2.4. Every DIF SI-ideal in V is a DIF-ideal in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V. If r' = q', then from hypothesis(ii) and (iii) in Definition 4.2.1, $\alpha_M(q') \leq \alpha_M(q' * s') \bigvee \alpha_M(s')$ and $\zeta_M(q') \geq \zeta_M(q' * s') \bigwedge \zeta_M(s'), \forall q', s' \in V.$

Hence, M is a DIF-ideal in V.

Reversly it may not hold. That is every DIF-ideal in V is not a DIF SI-ideal in V. It can be interpreted by the help of example below:

EXAMPLE 17. Let us consider the BCI-algebra V as defined in Example 16.

*	0	d	e	f
0	0	0	0	0
d	d	0	0	d
e	$egin{array}{c} 0 \\ d \\ e \\ f \end{array}$	d	0	e
f	f	f	f	0

Let $M = (\alpha_M, \zeta_M)$ is an IFS of V defined by

V	0	d	e	f
α_M	0	0.5	0.5	0.6
ζ_M	1	0.5	0.5	0.4

Here M is a DIF-ideal in V. But, M is not a DIF SI-ideal in V, as $\alpha_M(e * (e * d)) \not\leq \max\{\alpha_M(((d * (d * e)) * (e * d)) * 0), \alpha_M(0)\}\}$. As it implies that, $\alpha_M(d) \leq \alpha_M(0)$, which is a contradiction.

Now a condition for a DIF-ideal in V to be a DIF SI-ideal in V is given here.

Theorem 4.2.5. If a DIF-ideal in V fulfills the inequalities, $\alpha_M(r' * (r' * q')) \leq \alpha_M((q' * (q' * r')) * (r' * q'))$, and $\zeta_M(r' * (r' * q')) \geq \zeta_M((q' * (q' * r')) * (r' * q'))$, then it becomes a DIF SI-ideal in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIF-ideal in V satisfying the inequalities, $\alpha_M(r'*(r'*q')) \leq \alpha_M((q'*(q'*r'))*(r'*q'))$, and $\zeta_M(r'*(r'*q')) \geq \zeta_M((q'*(q'*r'))*(r'*q'))$. Now, $\alpha_M(r'*(r'*q')) \leq \alpha_M((q'*(q'*r'))*(r'*q')) \leq \alpha_M(((q'*(q'*r'))*(r'*q'))*s') \bigvee \alpha_M(s'),$ and $\zeta_M(r'*(r'*q')) \geq \zeta_M((q'*(q'*r'))*(r'*q')) \geq \zeta_M(((q'*(q'*r'))*(r'*q'))*s') \land \zeta_M(s'),$ for all $q', r', s' \in V$, [because M is a DIF-ideal]. Hence, M is a DIF SI-ideal in V. Hence the result follows.

Lemma 4.2.1. Every DIF-ideal in V becomes a DIF SI-ideal in V, when V is implicative BCI-algebra.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIF-ideal in V, where V is an implicative BCIalgebra, then $\alpha_M(q') \leq max\{\alpha_M(q'*s'), \alpha_M(s')\}$, for all $q', r', s' \in V$. So, $\alpha_M(r'*(r'*q')) \leq max\{\alpha_M(r'*((r'*q'))*s'), \alpha_M(s')\}$, but V is implicative BCI-algebra, then ((q'*(q'*r'))*(r'*q')) = (r'*(r'*q')). Hence $\alpha_M(r'*(r'*q')) \leq max\{\alpha_M(((q'*q'*r'))*(r'*q')) = (r'*(r'*q'))$. Thus the proof ends.

Theorem 4.2.6. If V is implicative BCI-algebra, then an IFS M in V is a DIF-ideal in V if and only if it is an DIF SI-ideal in V.

Proof. By using Lemma 4.2.1 and Theorem 4.2.3 we can prove it easily. \Box

Illustrate the Theorem 4.2.5, 4.2.6 and Lemma 4.2.1 by the help of example given below.

EXAMPLE 18. Let us consider an implicative BCI-algebra $V = \{0, q, r\}$ with the table as follows:

*	0	q	r
0	0	r	q
q	q	0	r
r	r	q	0

Let $M = (\alpha_M, \zeta_M)$ be an IFS in V as defined by

V	0	q	r
α_M	0	0.8	0.8
ζ_M	1	0.2	0.2

Hence, M is a DIF-ideal as well as DIF SI-ideal in V.

Theorem 4.2.7. Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V. Then, so is $\bigoplus M = \{\langle q', \alpha_M(q'), \bar{\alpha}_M(q') \rangle / q' \in V\}.$

Proof. Since $M = (\alpha_M, \zeta_M)$ is a DIF SI-ideal in V, then $\alpha_M(0) \leq \alpha_M(q')$ and $\alpha_M(r'*(r'*q')) \leq max\{\alpha_M(((q'*(q'*r'))*(r'*q'))*s'), \alpha_M(s')\}$. Now, $\alpha_M(0) \leq \alpha_M(q')$, or $1 - \bar{\alpha}_M(0) \leq 1 - \bar{\alpha}_M(q')$, or $\bar{\alpha}_M(0) \geq \bar{\alpha}_M(q')$, for any $q' \in V$. Now for any $q', r', s' \in V, \alpha_M(r'*(r'*q')) \leq max\{\alpha_M(((q'*(q'*r'))*(r'*q'))*s'), \alpha_M(s')\}$. This gives, $1 - \bar{\alpha}_M(r'*(r'*q')) \leq max\{1 - \bar{\alpha}_M(((q'*(q'*r'))*(r'*q'))*s'), 1 - \bar{\alpha}_M(s')\}$ or, $\bar{\alpha}_M(r'*(r'*q')) \geq 1 - max\{1 - \bar{\alpha}_M(((q'*(q'*r'))*(r'*q'))*s'), 1 - \bar{\alpha}_M(s')\}$. Finally, $\bar{\alpha}_M(r'*(r'*q')) \geq min\{\bar{\alpha}_M(((q'*(q'*r'))*(r'*q'))*s'), \bar{\alpha}_M(s')\}$. Hence, $\bigoplus M = \{(q', \alpha_M(q'), \bar{\alpha}_M(q'))/q' \in V\}$ is a DIF SI-ideal in V. □

Theorem 4.2.8. Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V. Then so is $\bigotimes M = \{\langle q', \overline{\zeta}_M(q'), \zeta_M(q') \rangle / q' \in V \}.$

Proof. Since $M = (\alpha_M, \zeta_M)$ is a DIF SI-ideal in V, then $\zeta_M(0) \ge \zeta_M(q')$. Also, $\zeta_M(r'*(r'*q')) \ge min\{\zeta_M(((q'*(q'*r'))*(r'*q'))*s'), \zeta_M(s')\}.$

Again, we have, $\zeta_M(0) \ge \zeta_M(q')$, or $1 - \bar{\zeta}_M(0) \ge 1 - \bar{\zeta}_M(q')$, or $\bar{\zeta}_M(0) \le \bar{\zeta}_M(x)$, for any $q' \in V$. Also for any $q', r', s' \in V$, $\zeta_M(r' * (r' * q')) \ge \min\{\zeta_M(((q' * (q' * r')) * (r' * q')) * s'), \zeta_M(s')\}$.

This implies, $1 - \bar{\zeta}_M(r'*(r'*q') \ge \min\{1 - \bar{\zeta}_M(((q'*(q'*r'))*(r'*q'))*s'), 1 - \bar{\zeta}_M(s')\}.$ That is, $\bar{\zeta}_M(r'*(r'*q') \le 1 - \min\{1 - \bar{\zeta}_M(((q'*(q'*r'))*(r'*q'))*s'), 1 - \bar{\zeta}_M(s')\}$ or, $\bar{\zeta}_M(r'*(r'*q') \le \max\{\bar{\zeta}_M(((q'*(q'*r'))*(r'*q'))*s'), \bar{\zeta}_M(s')\}.$ Hence, $\bigotimes M = \{\langle q', \bar{\zeta}_M(q'), \zeta_M(q') \rangle / q' \in V\}$ is a DIF SI-ideal in V.

Theorem 4.2.9. Let $M = (\alpha_M, \zeta_M)$ be an IFS in V. Then $M = (\alpha_M, \zeta_M)$ is a DIF SI-ideal in V if and only if $\bigoplus M = \{\langle q', \alpha_M(q'), \bar{\alpha}_M(q') \rangle / q' \in V\}$ and $\bigotimes M = \{\langle q', \bar{\zeta}_M(q'), \zeta_M(q') \rangle / q' \in V\}$ are DIF SI-ideals in V.

Proof. The proof follows the same route that was used in Theorem 4.2.7 and Theorem 4.2.8. $\hfill \square$

The example provided below supports the Theorem 4.2.7, 4.2.8 and 4.2.9.

EXAMPLE 19. Let us consider a BCI-algebra $V = \{0, s, t, u\}$ as given by below tabulated form:

*	0	s	t	u
0	0	0	0	u
s	s	0	0	u
t	t	t	0	u
u	$egin{array}{c} s \ t \ u \end{array}$	u	u	0

Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V defined by

V	0	s	t	u
α_M	0	0.3	0.5	0.6
ζ_M	0.8	0.6	0.5	0.4

Then $\bigoplus M = \{\langle q', \alpha_M(q'), \bar{\alpha}_M(q') \rangle / q' \in V\}$, where $\alpha_M(q')$ and $\bar{\alpha}_M(q')$ are defined as follows:

V	0	s	t	u
		0.3		
$\bar{\alpha}_M$	1	0.7	0.5	0.4

Also $\bigotimes M = \{\langle q', \bar{\zeta}_M(q'), \zeta_M(q') \rangle / q' \in V\}$, whose $\zeta_M(q')$ and $\bar{\zeta}_M(q')$ are defined by

V	0	s	t	u
$\bar{\zeta}_M$	0.2	0.4	0.5	0.6
ζ_M	0.8	0.6	0.5	0.4

So, it can be verified that $\bigoplus M$ and $\bigotimes M$ are DIF SI-ideals of V.

Theorem 4.2.10. An IFS $M = (\alpha_M, \zeta_M)$ is a DIF SI-ideal in a BCI-algebra V if and only if the DIVFs α_M and $\overline{\zeta}_M$ are DF SI-ideals in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V. Then it is obvious that α_M is a DF SI-ideals in V, and from Theorem 4.2.8, we can prove that $\overline{\zeta}_M$ is a DF SI-ideals in V.

Conversely, let α_M be a DF SI-ideals in V. Therefore $\alpha_M(0) \leq \alpha_M(q')$ and $\alpha_M(r' * (r' * q')) \leq max\{\alpha_M(((q' * (q' * r')) * (r' * q')) * s'), \alpha_M(s')\}, \text{ for all } q', r', s' \in V.$ Again, let $\overline{\zeta}_M$ is a DF SI-ideals in V, so, $\overline{\zeta}_M(0) \leq \overline{\zeta}_M(q')$, gives $1 - \zeta_M(0) \leq 1 - \zeta_M(q')$, implies $\zeta_M(0) \geq \zeta_M(q')$.

Also, $\bar{\zeta}_{M}(r'*(r'*q')) \leq \max\{\bar{\zeta}_{M}(((q'*(q'*r'))*(r'*q'))*s'), \bar{\zeta}_{M}(s')\}$ or, $1 - \zeta_{M}(r'*(r'*q')) \leq \max\{1 - \zeta_{M}(((q'*(q'*r'))*(r'*q'))*s'), 1 - \zeta_{M}(s')\}$ or, $\zeta_{M}(r'*(r'*q')) \geq 1 - \max\{1 - \zeta_{M}(((q'*(q'*r'))*(r'*q'))*s'), 1 - \zeta_{M}(s')\}$. Finally, $\zeta_{M}(r'*(r'*q')) \geq \min\{\zeta_{M}(((q'*(q'*r'))*(r'*q'))*s'), \zeta_{M}(s')\}$, for all $q', r', s' \in V$. Hence, $M = (\alpha_{M}, \zeta_{M})$ is a DIF SI-ideal in V.

Corollary 4.2.1. The sets, $D_{\alpha_M} = \{q' \in V/\alpha_M(q') = \alpha_M(0)\}$ and $D_{\zeta_M} = \{q' \in V/\zeta_M(q') = \zeta_M(0)\}$ are SI-ideals in V, when $M = (\alpha_M, \zeta_M)$ is a DIF SI-ideal in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V. Obviously, $0 \in D_{\alpha_M}$ and D_{ζ_M} . Now, let $q', r', s' \in V$, such that $(((q' * (q' * r')) * (r' * q')) * s') \in D_{\alpha_M}, s' \in D_{\alpha_M}$. Then $\alpha_M(((q' * (q' * r')) * (r' * q')) * s') = \alpha_M(0) = \alpha_M(s')$. Now, $\alpha_M(r' * (r' * q')) \leq max\{\alpha_M(((q' * (q' * r')) * (r' * q')) * s'), \alpha_M(s')\} = \alpha_M(0)$. Again, since α_M is a DF SI-ideals in V, $\alpha_M(0) \leq \alpha_M(r' * (r' * q'))$. Therefore, $\alpha_M(0) = \alpha_M(r' * (r' * q'))$. which shows that, $(r' * (r' * q')) \in D_{\alpha_M}$, for all $q', r' \in V$. Therefore, D_{α_M} is a SI-ideal in V.

Also, let $q', r', s' \in V$, such that $(((q' * (q' * r')) * (r' * q')) * s') \in D_{\zeta_M}, s' \in D_{\zeta_M}$. Then $\zeta_M(((q' * (q' * r')) * (r' * q')) * s') = \zeta_M(0) = \zeta_M(s')$. Now, $\zeta_M(r' * (r' * q')) \ge min\{\zeta_M(((q' * (q' * r')) * (r' * q')) * s'), \zeta_M(s')\} = \zeta_M(0)$.

Again, since $\overline{\zeta}_M$ is a DF SI-ideals in V, $\zeta_M(0) \geq \zeta_M(r' * (r' * q'))$. Therefore, $\zeta_M(0) = \zeta_M(r' * (r' * q'))$. So, $(r' * (r' * q')) \in D_{\zeta_M}$, for all $q', r' \in V$. Therefore, D_{ζ_M} is a SI-ideal in V.

Definition 4.2.2. Let $M = (\alpha_M, \zeta_M)$ be an IFS in V, and $c, d \in [0, 1]$, then UC of level c and LC of level d of M, is as follows:

$$\alpha_{M,c}^{\leq} = \{q' \in V/\alpha_M(q') \leq c\}$$

and
$$\zeta_{M,d}^{\geq} = \{q' \in V/\zeta_M(q') \geq d\}$$

Theorem 4.2.11. If $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V, then $\alpha_{M,c}^{\leq}$ and $\zeta_{M,d}^{\geq}$ are SI-ideals in V for any $c, d \in [0, 1]$.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V, and let $c \in [0, 1]$ with $\alpha_M(0) \leq c$. Also we have, $\alpha_M(0) \leq \alpha_M(q')$, for all $q' \in V$, but $\alpha_M(q') \leq c$, for all $q' \in \alpha_{M,c}^{\leq}$. So, $0 \in \alpha_{M,cc}^{\leq}$. Let $q', r', s' \in V$ with $(((q' * (q' * r')) * (r' * q')) * s') \in \alpha_{M,c}^{\leq}$ and $s' \in \alpha_{M,c}^{\leq}$, then, $\alpha_M(((q' * (q' * r')) * (r' * q')) * s') \in \alpha_{M,c}^{\leq}$ and $\alpha_M(s') \in \alpha_{M,c}^{\leq}$. Therefore, $\alpha_M(((q' * (q' * r')) * (r' * q')) * s') \leq c$ and $\alpha_M(s') \leq c$. Since α_M is a DF SI-ideals in V, it follows that, $\alpha_M(r' * (r' * q')) \leq \alpha_M(((q' * (q' * r')) * (r' * q')) * s') \lor \alpha_M(s') \leq c$ and hence $(r' * (r' * q')) \in \alpha_{M,c}^{\leq}$, for all $q', r', s' \in V$. Therefore, $\alpha_{M,c}^{\leq}$ is a SI-ideal in Vfor $c \in [0, 1]$. In such way, it also proved that $\zeta_{M,d}^{\geq}$ is a SI-ideal in V for $d \in [0, 1]$. \Box

Theorem 4.2.12. If $\alpha_{M,c}^{\leq}$ and $\zeta_{M,d}^{\geq}$ are either empty or SI-ideals in V for $c, d \in [0, 1]$, then $M = (\alpha_M, \zeta_M)$ is a DIF SI-ideal in V.

Proof. Let $\alpha_{M,c}^{\leq}$ and $\zeta_{M,d}^{\geq}$ be either empty or SI-ideals in V for $c, d \in [0,1]$. For any $q' \in V$, let $\alpha_M(q') = c$ and $\zeta_M(q') = d$. Then $q' \in \alpha_{M,c}^{\leq} \bigwedge \zeta_{M,d}^{\geq}$, so $\alpha_{M,c}^{\leq} \neq \phi \neq \zeta_{M,d}^{\geq}$. Since $\alpha_{M,c}^{\leq}$ and $\zeta_{M,d}^{\geq}$ are SI-ideals of V, therefore $0 \in \alpha_{M,c}^{\leq} \bigwedge \zeta_{M,d}^{\geq}$. Hence, $\alpha_M(0) \leq c = \alpha_M(q')$ and $\zeta_M(0) \geq d = \zeta_M(q')$, where $q' \in V$. If there exist $k_1, k_2, k_3 \in V$ such that $\alpha_M(k_2 * (k_2 * k_1)) > max\{\alpha_M(((k_1 * (k_1 * k_2)) * (k_2 * k_1)) * k_3), \alpha_M(k_3)\}$, then by taking, $c_{0} = \frac{1}{2}(\alpha_{M}(k_{2}*(k_{2}*k_{1})) + max\{\alpha_{M}(((k_{1}*(k_{1}*k_{2}))*(k_{2}*k_{1}))*k_{3}), \alpha_{M}(k_{3})\}). \text{ We have,}$ $\alpha_{M}(k_{2}*(k_{2}*k_{1}) > c_{0} > max\{\alpha_{M}(((k_{1}*(k_{1}*k_{2}))*(k_{2}*k_{1}))*k_{3}), \alpha_{M}(k_{3})\}. \text{ Hence,}$ $k_{2}*(k_{2}*k_{1}) \notin \alpha_{M,c_{0}}^{\leq}, (((k_{1}*(k_{1}*k_{2}))*(k_{2}*k_{1}))*k_{3}) \in \alpha_{M,c_{0}}^{\leq} \text{ and } k_{3} \in \alpha_{M,c_{0}}^{\leq}, \text{ that}$ is $\alpha_{M,c_{0}}^{\leq}$ is not a SI-ideal in V, which is a contradiction. Therefore, $\alpha_{M}(r'*(r'*q')) \leq \alpha_{M}(((q'*(q'*r'))*s') \bigvee \alpha_{M}(s'), \text{ for some } q', r', s' \in V.$ $\zeta_{M}(r'*(r'*q')) \geq \zeta_{M}(((q'*(q'*r'))*(r'*q'))*s') \bigwedge \zeta_{M}(s'), \text{ for some } q', r', s' \in V.$ Hence, $M = (\alpha_{M}, \zeta_{M})$ is a DIF SI-ideal in V.

4.3 DIFP-ideal in *BCI*-algebras

In this section, we define DIF *P*-ideal in *BCI*-algebras and investigate its properties.

Definition 4.3.1. Let $M = (\alpha_M, \zeta_M)$ be an IFS in a BCI-algebra V, then M is identified as **DIFP-ideal** in V if $(i) \alpha_M(0) \leq \alpha_M(q'), \zeta_M(0) \geq \zeta_M(q')$ $(ii) \alpha_M(q') \leq \max\{\alpha_M((q' * s') * (r' * s')), \alpha_M(r')\}$ $(iii) \zeta_M(q') \geq \min\{\zeta_M((q' * s') * (r' * s')), \zeta_M(r')\}, \text{ for all } q', r', s' \in V$

EXAMPLE 20. Let us consider a BCI-algebra $V = \{0, r, s, t\}$ as presented in the table below:

*	0	r	s	t
0	0	0	t	s
$egin{array}{c} 0 \\ r \\ s \\ t \end{array}$	r	0	t	s
s	s	s	0	t
t	t	t	s	0

Now let consider a DIFS $M = (\alpha_M, \zeta_M)$ in V as follows:

Then $M = (\alpha_M, \zeta_M)$ be a DIFP-ideal in V.

Theorem 4.3.1. Every DIFP-ideal in V is a DIF-ideal in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIFP-ideal in V, then (i) $\alpha_M(0) \leq \alpha_M(q')$; $\zeta_M(0) \geq \zeta_M(q')$, (ii) $\alpha_M(q') \leq max\{\alpha_M((q'*s')*(r'*s')), \alpha_M(r')\}$ and (iii) $\zeta_M(q') \geq min\{\zeta_M((q'*s')*(r'*s')), \zeta_M(r')\}, \forall q', r', s' \in V$. If we put s' = 0, then from hypothesis(ii) and (iii), we get, $\alpha_M(q') \leq \alpha_M((q'*0)*(r'*0)) \bigvee \alpha_M(r')$ and $\zeta_M(q') \geq \zeta_M((q'*0)*(r'*0)) \bigwedge \zeta_M(r'), \forall q', r' \in V$. Hence, every DIFP-ideal in V satisfies the inequalities: $\alpha_M(q') \leq \alpha_M(q'*r') \bigvee \alpha_M(r')$ and $\zeta_M(q') \geq \zeta_M(q'*r') \bigwedge \zeta_M(r')$, for all $q', r' \in V$. Hence, M is a DIF-ideal in V.

Theorem 4.3.1 may not hold in reverse direction in general, the below given example proves this fact.

EXAMPLE 21. Consider the BCI-algebra V that was taken in Example 19:

*		s	t	u
0	$egin{array}{c} 0 \\ s \\ t \\ u \end{array}$	0	0	u
s	s	0	0	u
t	t	t	0	u
u	u	u	u	0

Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V defined by

V	0	s	t	u
α_M	0	0.3	0.4	0.5
ζ_M	1	0.7	0.6	0.5

But $M = (\alpha_M, \zeta_M)$ is not a DIFP-ideal in V, since $\alpha_M(t) = 0.4$ and $max(\alpha_M((t * u) * (s * u)), \alpha_M(s)) = \alpha_M(s) = 0.3$, that implies $\alpha_M(t) \nleq max(\alpha_M((t * u) * (s * u)), \alpha_M(s))$

Now let us uphold a new condition for the IFS $M = (\alpha_M, \zeta_M)$, which is a DIF-ideal in V to be a DIFP-ideal in V.

Proposition 4.3.2. A DIF-ideal in a BCI-algebra V becomes a DIFP-ideal if the below stated postulates meet.

(i) $\alpha_M(q'*r') \le \alpha_A((q'*s')*(r'*s'))$ and (ii) $\zeta_M(q'*r') \ge \alpha_M((q'*s')*(r'*s')), \forall q', r', s' \in V.$

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIF-ideal in V satisfying (i) $\alpha_M(q' * r') \leq \alpha_M((q' * s') * (r' * s'))$ and (ii) $\zeta_M(q' * r') \geq \alpha_M((q' * s') * (r' * s')), \forall q', r', s' \in V$. Then $\alpha_M((q' * s') * (r' * s')) \bigvee \alpha_M(r') \geq \alpha_M(q' * r') \bigvee \alpha_M(r') \geq \alpha_M(q')$. Again, $\zeta_M((q' * s') * (r' * s')) \bigwedge \zeta_M(r') \leq \zeta_M(q' * r') \land \zeta_M(r') \leq \zeta_M(q')$. In this way, the proof ends. \Box

Proposition 4.3.3. For a DIFP-ideal $M = (\alpha_M, \zeta_M)$ in a BCI-algebra $V, \alpha_M(q') \leq \alpha_M(0 * (0 * q'))$ and $\zeta_M(q') \geq \zeta_M(0 * (0 * q'))$, for all $q' \in V$.

Proof. It is straightforward

Corollary 4.3.1. The sets, $D_{\alpha_M} = \{q' \in V/\alpha_M(q') = \alpha_M(0)\}$ and $D_{\zeta_M} = \{q' \in V/\zeta_M(q') = \zeta_M(0)\}$ are *P*-ideals in *V* when $M = (\alpha_M, \zeta_M)$ is a DIFP-ideal of that BCI-algebra *V*.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIFP-ideal in V. Obviously, $0 \in D_{\alpha_M}$ and D_{ζ_M} . Now, assume $q', r', s' \in V$, so that $(q' * s') * (r' * s') \in D_{\alpha_M}$, and $r' \in D_{\alpha_M}$. Then $\alpha_M(q') \leq max\{\alpha_M((q' * s') * (r' * s')), \alpha_M(r')\} = \alpha_M(0)$. But $\alpha_M(0) \leq \alpha_M(q')$, for all $q' \in V$. Therefore, $\alpha_M(0) = \alpha_M(q')$. So, $q' \in D_{\alpha_M}$, for all $q', r', s' \in V$. Therefore, D_{α_M} is a *P*-ideal in *V*.

Also, let $q', r', s' \in V$, such that $(q' * s') * (r' * s') \in D_{\zeta_M}$, and $r' \in D_{\zeta_M}$. Then $\zeta_M(q') \ge max\{\zeta_M((q' * s') * (r' * s')), \zeta_M(r')\} = \zeta_M(0)$. But, $\zeta_M(0) \ge \zeta_M(q')$ for all $q' \in V$. Therefore, $\zeta_M(0) = \zeta_M(q')$. It follows that, $q' \in D_{\zeta_M}$, for all $q', r', s' \in V$. Therefore, D_{ζ_M} is a *P*-ideal in *V*.

Theorem 4.3.4. Every DIFP-ideal in V is a DIF SI-ideal in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIFP-ideal in V.

Now,

$$(0 * (0 * (r' * (r' * q')))) * ((q' * (q' * r')) * (r' * q'))$$

$$=(0 * ((q' * (q' * r')) * (r' * q'))) * (0 * (r' * (r' * q'))) [by P1]$$

$$=((0 * (q' * (q' * r'))) * (0 * (r' * q'))) * ((0 * r') * (0 * (r' * q')[by P6])$$

$$=(((0 * q') * (0 * (q' * r'))) * (0 * (r' * q'))) * ((0 * r') * (0 * (r' * q')))$$

$$\leq ((0 * q') * (0 * (q' * r'))) * (0 * (q' * r'))[by P3]$$

$$=((0 * (q' * r')) * (0 * (q' * r'))[by P1]$$

$$=(0 * (q' * r')) * (0 * (q' * r'))[by P6]$$

$$=0[by A3]$$

Hence, $(0 * (0 * (r' * (r' * q')))) \le ((q' * (q' * r')) * (r' * q')).$

Since, *M* is a DIF-ideal, then, $\alpha_M(0*(0*(r'*(r'*q')))) \leq \alpha_M((q'*(q'*r'))*(r'*q')))$ and $\zeta_M(0*(0*(r'*(r'*q')))) \geq \zeta_M((q'*(q'*r'))*(r'*q')).$ But by Proposition 4.3.3, we have $\alpha_M(r'*(r'*q')) \leq \alpha_M(0*(0*(r'*(r'*q')))))$ and $\zeta_M(r'*(r'*q')) \geq \zeta_M(0*(0*(r'*(r'*q')))).$ Hence, $\alpha_M(r'*(r'*q')) \leq \alpha_M((q'*(q'*r'))*(r'*q')) \leq \alpha_M((q'*(q'*r'))*(r'*q'))$ and $\zeta_M(r'*(r'*q')) \geq \zeta_M((q'*(q'*r'))*(r'*q')).$ By Theorem 4.2.5, we see that $M = (\alpha_M, \zeta_M)$ is a DIF SI-ideal in *V*.

But, the reverse of Theorem 4.3.4 may not be true, which is illustrated by Example 19. As, $\alpha_M(t) \nleq \alpha_M((t * u) * (s * u)) \bigvee \alpha_M(s)$.

Theorem 4.3.5. Union of any two DIFP-ideals in V, is also a DIFP-ideal in V if one is contained in another.

Proof. Let $M = (\alpha_M, \zeta_M)$ and $N = (\alpha_N, \zeta_N)$ be two DIFP-ideals in V. Again let, $C = M \cup N = (\alpha_C, \zeta_C)$, where $\alpha_C = \alpha_M \vee \alpha_N$ and $\zeta_C = \zeta_M \wedge \zeta_N$. Let $q', r', s' \in V$, then, $\alpha_C(0) = max\{\alpha_M(0), \alpha_N(0)\} \leq max\{\alpha_M(q'), \alpha_N(q')\} = \alpha_C(q')$ and $\zeta_C(0) = min\{\zeta_M(0), \zeta_N(0)\} \geq min\{\zeta_M(q'), \zeta_N(q')\} = \zeta_C(q')$, for all $q' \in V$.

Also,

$$\begin{aligned} \alpha_{C}(q') &= \max\{\alpha_{M}(q'), \alpha_{N}(q')\} \\ &\leq \max\{\max[\alpha_{M}((q'*s')*(r'*s')), \alpha_{M}(r')], \max[\alpha_{N}((q'*s')*(r'*s')), \alpha_{N}(r')]\} \\ &= \max\{\max[\alpha_{M}((q'*s')*(r'*s')), \alpha_{N}((q'*s')*(r'*s'))], \max[\alpha_{M}(r'), \alpha_{N}(r')]\} \\ &= \max[\alpha_{C}((q'*s')*(r'*s')), \alpha_{C}(r')]. \end{aligned}$$

Similarly, it can verify that, $\zeta_C(q') \ge \min[\zeta_C((q' * s') * (r' * s')), \zeta_C(r')].$ In this way, proof ends.

Theorem 4.3.6. Let M and N be two IFSs in V, such that one is subset of other. Also M and N are two DIFP-ideals in V. Then $M \cap N$ is also a DIFP-ideal in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ and $N = (\alpha_N, \zeta_N)$ be two DIFP-ideals in V. Again let, $D = M \cap N = (\alpha_D, \zeta_D)$, where $\alpha_D = min\{\alpha_M, \alpha_N\}$ and $\zeta_D = max\{\zeta_M, \zeta_N\}$. Let $q' \in V$, then $\alpha_D(0) = min\{\alpha_M(0), \alpha_N(0)\} \leq min\{\alpha_M(q'), \alpha_N(q')\} = \alpha_D(q')$ and $\zeta_D(0) = max\{\zeta_M(0), \zeta_N(0)\} \geq max\{\zeta_M(q'), \zeta_N(q')\} = \zeta_D(q')$.

Also, for $q', r', s' \in V$ $\alpha_D(q') = min\{\alpha_M(q'), \alpha_N(q')\}$ $\leq min[max\{\alpha_M((q' * s') * (r' * s')), \alpha_M(r')\}, max\{\alpha_N((q' * s') * (r' * s')), \alpha_N(r')\}]$ $= max[min\{\alpha_M((q' * s') * (r' * s')), \alpha_N((q' * s') * (r' * s'))\}, min\{\alpha_M(r'), \alpha_N(r')\}],$ [because one is contained in another] $= max[\alpha_D((q' * s') * (r' * s')), \alpha_D(r')].$

Again,

$$\begin{split} \zeta_{D}(q') &= \max\{\zeta_{M}(q'), \zeta_{N}(q')\} \\ &\geq \max[\min\{\zeta_{M}((q'*s')*(r'*s')), \zeta_{M}(r')\}, \min\{\zeta_{N}((q'*s')*(r'*s')), \zeta_{N}(r')\}] \\ &= \min[\max\{\zeta_{M}((q'*s')*(r'*s')), \zeta_{N}((q'*s')*(r'*s'))\}, \max\{\zeta_{M}(r'), \zeta_{N}(r')\}], \\ &\quad [\text{because one is contained in another}] \\ &= \min[\zeta_{D}((q'*s')*(r'*s')), \zeta_{D}(r')]. \end{split}$$

Thus the proof ends.

Now the Theorem 4.3.5 and Theorem 4.3.6 are verified by the following example. EXAMPLE 22. Consider a BCI-algebra that was given in Example 19 as follows:

*	0	s	t	u
0	0	0	0	u
s	s	0	0	u
t	t	t	0	u
u	$\begin{vmatrix} s \\ t \\ u \end{vmatrix}$	u	u	0

Let $M = (\alpha_M, \zeta_M)$ be a DIF SI-ideal in V defined by

V	0	s	t	u
α_M	0	$0.7 \\ 0.3$	0.7	0.8
ζ_M	1	0.3	0.3	0.2

Then $M = (\alpha_M, \zeta_M)$ is a DIFP-ideal in V.

Also, let $N = (\alpha_N, \zeta_N)$ be an IFS in V as defined by

V	0	s	t	u
		0.4		
ζ_N	1	0.6	0.6	0.5

Then $N = (\alpha_N, \zeta_N)$ is a DIFP-ideal in V.

Again assume that $P = M \cup N = (\alpha_P, \zeta_P)$, where $\alpha_P = \alpha_M \vee \alpha_N$ and $\zeta_P = \zeta_M \wedge \zeta_N$ and P is interpreted as:

V	0	s	t	u
α_P	0	0.7	0.7	0.8
ζ_P	1	0.3	0.3	0.2

Then $P = (\alpha_P, \zeta_P)$ is a DIFP-ideal in V.

Now let, $Q = M \cap N = (\alpha_Q, \zeta_Q)$ where $\alpha_Q = \alpha_M \wedge \alpha_N$ and $\zeta_Q = \zeta_M \vee \zeta_N$.

Then the IFS Q is represented by:

V	0	s	t	u
α_Q	0	0.4	0.4	0.5
ζ_Q	1	0.6	0.6	0.5

Then $Q = (\alpha_Q, \zeta_Q)$ is also a DIFP-ideal in V.

4.4 Summary

The notion of DIF SI-ideals and DIFP-ideals in BCI-algebras are introduced in current chapter. Here it is shown that any DIFP-ideal is always a DIF SI-ideal. We also examplifies that a DIF SI-ideal may not always be DIFP-ideal. Besides, the chapter also contains some other properties about DIF SI-ideals and DIFP-ideals in BCI-algebras.