
Chapter 4

Doubt intuitionistic fuzzy

Sub-implicative ideals in

BCI-algebras∗

4.1 Introduction
Taking queue from Atanassov’s thought, Palaniappan et al. [60] introduced the

notions of IF SI-ideals and IF SC-ideals in BCI-algebras. Mostafa [59] established the

idea of anti fuzzy SI-ideals in BCI-algebras. Jianming and Zhisong [40] described the

notion of DFP-ideals in BCI-algebra.

Solairaju [79] investigated the idea of IF P-ideal including some related features in

BCI-algebra.

A FS M = {〈q′ , ζM(q
′
)〉 : q

′ ∈ V } in V is named as a DF SI-ideal [59] in V if

(i) ζM(0) ≤ ζM(q
′
)

(ii) ζM(r
′ ∗ (r

′ ∗ q′)) ≤ ζM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′)

∨
ζM(s

′
), for all q

′
, r
′
, s
′ ∈ V.

A FS M = {〈q′ , ζM(q
′
)〉 : q

′ ∈ V } in V is identified as a DFP-ideal [40] in V if (i)

ζM(0) ≤ ζM(q
′
)

(ii) ζM(q
′
) ≤ ζM((q

′ ∗ s′) ∗ (r
′ ∗ s′))

∨
ζM(r

′
)∀q′ , r′ , s′ ∈ V.

The objective of this chapter is to define DIF SI-ideals and DIFP-ideals in BCI-

algebras and to study its characteristics. The conditions for a DIF-ideal to be a DIF

SI-ideals in BCI-algebras are also presented and relations among DIFP-ideals and
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DIF SI-ideals are studied. Findings of the study concludes that every DIF-ideal in V

is not a DIF SI-ideal in V . The conditions are presented for a DIF-ideal to be a DIF

SI-ideals in BCI-algebras.

4.2 DIF SI-ideals in BCI-algebras
The current section introduces the concept of DIF SI-ideal in BCI-algebras and

studies its properties.

Definition 4.2.1. Let M = (αM , ζM) be an IFS of a BCI-algebra V , then M is

recognized as DIF SI-ideal in V if

(i) αM(0) ≤ αM(q
′
), ζM(0) ≥ ζM(q

′
)

(ii) αM(r
′ ∗ (r

′ ∗ q′)) ≤ αM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′)

∨
αM(s

′
)

(iii) ζM(r
′ ∗ (r

′ ∗ q′)) ≥ ζM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′)

∧
ζM(s

′
), for all q

′
, r
′
, s
′ ∈ V.

Theorem 4.2.1. If a DIF SI-ideal in V meets the inequility q
′ ≤ s

′
then (i) αM(q

′
) ≤

αM(s
′
) and (ii) ζM(q

′
) ≥ ζM(s

′
).

Proof. Let q
′
, r
′
, s
′ ∈ V be such that q

′ ≤ s
′

then q
′ ∗ s′ = 0 and since M is a DIF SI-

ideal in V , so αM(r
′ ∗(r′ ∗q′)) ≤ αM(((q

′ ∗(q′ ∗r′))∗(r′ ∗q′))∗s′)
∨
αM(s

′
), when r

′
= q

′
,

then using (A3) and (P5), we get αM(q
′
) ≤ αM(q

′ ∗ s′)
∨
αM(s

′
) = αM(0)

∨
αM(s

′
) =

αM(s
′
). Therefore, αM(q

′
) ≤ αM(s

′
).

Again, ζM(r
′ ∗(r′ ∗q′)) ≥ ζM(((q

′ ∗(q′ ∗r′))∗(r′ ∗q′))∗s′)
∧
ζM(s

′
), when r

′
= q

′
, then

using (A3) and (P5), we get ζM(q
′
) ≥ ζM(q

′ ∗ s′)
∧
ζM(s

′
) = ζM(0)

∧
ζM(s

′
) = ζM(s

′
).

Therefore, ζM(q
′
) ≥ ζM(s

′
). Thus the proof ends.

Proposition 4.2.2. Let M = (αM , ζM) be a DIF SI-ideal in a BCI-algebra V . Then

αM(0 ∗ (0 ∗ q′)) ≤ αM(q
′
) and ζM(0 ∗ (0 ∗ q′)) ≥ ζM(q

′
), for all q

′ ∈ V .

Proof. αM(0∗(0∗q′)) ≤ αM(((q
′∗(q′∗0))∗(0∗q′))∗s′)

∨
αM(s

′
) = αM(((q

′∗q′)∗(0∗q′))∗

s
′
)
∨
αM(s

′
) = αM((0 ∗ (0 ∗ q′)) ∗ s′)

∨
αM(s

′
). When s

′
= q

′
we get, αM(0 ∗ (0 ∗ q′)) ≤

αM((0 ∗ (0 ∗ q′)) ∗ q′)
∨
αM(q

′
) or, αM(0 ∗ (0 ∗ q′)) ≤ αM(0)

∨
αM(q

′
) [by using A2].

Therefore, αM(0 ∗ (0 ∗ q′)) ≤ αM(q
′
), for all q

′ ∈ V.

Again, ζM(0∗(0∗q′)) ≥ ζM(((q
′∗(q′∗0))∗(0∗q′))∗s′)

∧
ζM(s

′
) = ζM(((q

′∗q′)∗(0∗q′))∗

s
′
)
∧
ζM(s

′
) = ζM((0 ∗ (0 ∗ q′)) ∗ s′)

∧
ζM(s

′
). When s

′
= q

′
we get, ζM(0 ∗ (0 ∗ q′)) ≤

ζM((0 ∗ (0 ∗ q′)) ∗ q′)
∧
ζM(q

′
) or, ζM(0 ∗ (0 ∗ q′)) ≤ ζM(0)

∧
ζM(q

′
) [by using A2].

Therefore, ζM(0 ∗ (0 ∗ q′)) ≥ ζM(q
′
), for all q

′ ∈ V.
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Example 16. Consider a BCI-algebra V = {0, d, e, f} as given in Example3 with

table as follows:

∗ 0 d e f

0 0 0 0 0

d d 0 0 d

e e d 0 e

f f f f 0

Let M = (αM , ζM) is an IFS of V defined by

V 0 d e f

αM 0.1 0.4 0.5 0.6

ζM 0.8 0.6 0.5 0.4

which is a DIF SI-ideal in V .

Theorem 4.2.3. Every DIF SI-ideal in V is a DIFSA in V .

Proof. Let M = (αM , ζM) be a DIF SI-ideal in V . If r
′

= q
′
, then from hypothesis(ii)

and (iii) in Definition 4.2.1, αM(q
′
) ≤ αM(q

′ ∗ s′)
∨
αM(s

′
) and ζM(q

′
) ≥ ζM(q

′ ∗

s
′
)
∧
ζM(s

′
),∀q′ , s′ ∈ V . Hence it also implies that, αM(q

′ ∗ s′) ≤ αM((q
′ ∗ s′) ∗

s
′
)
∨
αM(s

′
) and ζM(q

′ ∗ s′) ≥ ζM((q
′ ∗ s′) ∗ s′)

∧
ζM(s

′
), for all q

′
, r
′
, s
′ ∈ V . Again,

((q
′ ∗ s′) ∗ s′) ≤ (q

′ ∗ s′) ∗ (s
′ ∗ s′) = q

′ ∗ s′ ≤ q
′
, [by using (P6), (A3), (P5), (P2) ].

Hence by Theorem 4.2.1, αM((q
′ ∗ s′) ∗ s′) ≤ αM(q

′
).

Thus, αM(q
′ ∗s′) ≤ αM(q

′
)
∨
αM(s

′
) and also, ζM((q

′ ∗s′)∗s′) ≥ ζM(q
′
). So, ζM(q

′ ∗

s
′
) ≤ ζM(q

′
)
∧
ζM(s

′
). Hence, M is a DIFSA in V .

Theorem 4.2.4. Every DIF SI-ideal in V is a DIF-ideal in V .

Proof. Let M = (αM , ζM) be a DIF SI-ideal in V . If r
′

= q
′
, then from hypothesis(ii)

and (iii) in Definition 4.2.1, αM(q
′
) ≤ αM(q

′ ∗ s′)
∨
αM(s

′
) and ζM(q

′
) ≥ ζM(q

′ ∗

s
′
)
∧
ζM(s

′
),∀q′ , s′ ∈ V .

Hence, M is a DIF-ideal in V .

Reversly it may not hold. That is every DIF-ideal in V is not a DIF SI-ideal in V .

It can be interpreted by the help of example below:
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Example 17. Let us consider the BCI-algebra V as defined in Example 16.

∗ 0 d e f

0 0 0 0 0

d d 0 0 d

e e d 0 e

f f f f 0

Let M = (αM , ζM) is an IFS of V defined by

V 0 d e f

αM 0 0.5 0.5 0.6

ζM 1 0.5 0.5 0.4

Here M is a DIF-ideal in V . But, M is not a DIF SI-ideal in V , as αM(e ∗ (e ∗ d)) �

max{αM(((d∗ (d∗ e))∗ (e∗d))∗0), αM(0)}. As it implies that, αM(d) ≤ αM(0), which

is a contradiction.

Now a condition for a DIF-ideal in V to be a DIF SI-ideal in V is given here.

Theorem 4.2.5. If a DIF-ideal in V fulfills the inequalities, αM(r
′ ∗ (r

′ ∗ q′)) ≤

αM((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)), and ζM(r

′ ∗ (r
′ ∗ q′)) ≥ ζM((q

′ ∗ (q
′ ∗ r′)) ∗ (r

′ ∗ q′)), then

it becomes a DIF SI-ideal in V .

Proof. Let M = (αM , ζM) be a DIF-ideal in V satisfying the inequalities, αM(r
′ ∗ (r

′ ∗

q
′
)) ≤ αM((q

′∗(q′∗r′))∗(r′∗q′)), and ζM(r
′∗(r′∗q′)) ≥ ζM((q

′∗(q′∗r′))∗(r′∗q′)). Now,

αM(r
′∗(r′∗q′)) ≤ αM((q

′∗(q′∗r′))∗(r′∗q′)) ≤ αM(((q
′∗(q′∗r′))∗(r′∗q′))∗s′)

∨
αM(s

′
),

and ζM(r
′∗(r′∗q′)) ≥ ζM((q

′∗(q′∗r′))∗(r′∗q′)) ≥ ζM(((q
′∗(q′∗r′))∗(r′∗q′))∗s′)

∧
ζM(s

′
),

for all q
′
, r
′
, s
′ ∈ V, [because M is a DIF-ideal]. Hence, M is a DIF SI-ideal in V .

Hence the result follows.

Lemma 4.2.1. Every DIF-ideal in V becomes a DIF SI-ideal in V , when V is im-

plicative BCI-algebra.

Proof. Let M = (αM , ζM) be a DIF-ideal in V , where V is an implicative BCI-

algebra, then αM(q
′
) ≤ max{αM(q

′ ∗s′), αM(s
′
)}, for all q

′
, r
′
, s
′ ∈ V . So, αM(r

′ ∗ (r
′ ∗

q
′
)) ≤ max{αM(r

′ ∗ ((r
′ ∗ q′)) ∗ s′), αM(s

′
)}, but V is implicative BCI-algebra, then

((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) = (r

′ ∗ (r
′ ∗ q′)). Hence αM(r

′ ∗ (r
′ ∗ q′)) ≤ max{αM(((q

′ ∗

(q
′ ∗ r′)) ∗ (r

′ ∗ q′)) ∗ s′), αM(s
′
)}. Thus the proof ends.
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Theorem 4.2.6. If V is implicative BCI-algebra, then an IFS M in V is a DIF-ideal

in V if and only if it is an DIF SI-ideal in V .

Proof. By using Lemma 4.2.1 and Theorem 4.2.3 we can prove it easily.

Illustrate the Theorem 4.2.5, 4.2.6 and Lemma 4.2.1 by the help of example given

below.

Example 18. Let us consider an implicative BCI-algebra V = {0, q, r} with the table

as follows:

∗ 0 q r

0 0 r q

q q 0 r

r r q 0

Let M = (αM , ζM) be an IFS in V as defined by

V 0 q r

αM 0 0.8 0.8

ζM 1 0.2 0.2

Hence, M is a DIF-ideal as well as DIF SI-ideal in V .

Theorem 4.2.7. Let M = (αM , ζM) be a DIF SI-ideal in V . Then, so is
⊕

M =

{〈q′ , αM(q
′
), ᾱM(q

′
)〉/q′ ∈ V }.

Proof. Since M = (αM , ζM) is a DIF SI-ideal in V , then αM(0) ≤ αM(q
′
) and

αM(r
′ ∗ (r

′ ∗ q′)) ≤ max{αM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), αM(s

′
)}. Now, αM(0) ≤

αM(q
′
), or 1− ᾱM(0) ≤ 1− ᾱM(q

′
), or ᾱM(0) ≥ ᾱM(q

′
), for any q

′ ∈ V . Now for any

q
′
, r
′
, s
′ ∈ V , αM(r

′ ∗ (r
′ ∗ q′)) ≤ max{αM(((q

′ ∗ (q
′ ∗ r′)) ∗ (r

′ ∗ q′)) ∗ s′), αM(s
′
)}. This

gives, 1− ᾱM(r
′ ∗ (r

′ ∗ q′)) ≤ max{1− ᾱM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), 1− ᾱM(s

′
)}

or, ᾱM(r
′ ∗ (r

′ ∗ q′)) ≥ 1 − max{1 − ᾱM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), 1 − ᾱM(s

′
)}.

Finally, ᾱM(r
′ ∗ (r

′ ∗ q′)) ≥ min{ᾱM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), ᾱM(s

′
)}. Hence,⊕

M = {(q′ , αM(q
′
), ᾱM(q

′
))/q

′ ∈ V } is a DIF SI-ideal in V .

Theorem 4.2.8. Let M = (αM , ζM) be a DIF SI-ideal in V . Then so is
⊗

M =

{〈q′ , ζ̄M(q
′
), ζM(q

′
)〉/q′ ∈ V }.
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Proof. Since M = (αM , ζM) is a DIF SI-ideal in V , then ζM(0) ≥ ζM(q
′
).

Also, ζM(r
′ ∗ (r

′ ∗ q′)) ≥ min{ζM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), ζM(s

′
)}.

Again, we have, ζM(0) ≥ ζM(q
′
), or 1− ζ̄M(0) ≥ 1− ζ̄M(q

′
), or ζ̄M(0) ≤ ζ̄M(x), for

any q
′ ∈ V . Also for any q

′
, r
′
, s
′ ∈ V , ζM(r

′ ∗ (r
′ ∗ q′)) ≥ min{ζM(((q

′ ∗ (q
′ ∗ r′)) ∗ (r

′ ∗

q
′
)) ∗ s′), ζM(s

′
)}.

This implies, 1−ζ̄M(r
′∗(r′∗q′) ≥ min{1−ζ̄M(((q

′∗(q′∗r′))∗(r′∗q′))∗s′), 1−ζ̄M(s
′
)}.

That is, ζ̄M(r
′ ∗ (r

′ ∗ q′) ≤ 1−min{1− ζ̄M(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), 1− ζ̄M(s

′
)}

or, ζ̄M(r
′ ∗ (r

′ ∗ q′) ≤ max{ζ̄M(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), ζ̄M(s

′
)}. Hence,

⊗
M =

{〈q′ , ζ̄M(q
′
), ζM(q

′
)〉/q′ ∈ V } is a DIF SI-ideal in V .

Theorem 4.2.9. Let M = (αM , ζM) be an IFS in V . Then M = (αM , ζM) is a

DIF SI-ideal in V if and only if
⊕

M = {〈q′ , αM(q
′
), ᾱM(q

′
)〉/q′ ∈ V } and

⊗
M =

{〈q′ , ζ̄M(q
′
), ζM(q

′
)〉/q′ ∈ V } are DIF SI-ideals in V .

Proof. The proof follows the same route that was used in Theorem 4.2.7 and Theorem

4.2.8.

The example provided below supports the Theorem 4.2.7, 4.2.8 and 4.2.9.

Example 19. Let us consider a BCI-algebra V = {0, s, t, u} as given by below tabu-

lated form:

∗ 0 s t u

0 0 0 0 u

s s 0 0 u

t t t 0 u

u u u u 0

Let M = (αM , ζM) be a DIF SI-ideal in V defined by

V 0 s t u

αM 0 0.3 0.5 0.6

ζM 0.8 0.6 0.5 0.4

Then
⊕

M = {〈q′ , αM(q
′
), ᾱM(q

′
)〉/q′ ∈ V }, where αM(q

′
) and ᾱM(q

′
) are defined

as follows:
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V 0 s t u

αM 0 0.3 0.5 0.6

ᾱM 1 0.7 0.5 0.4

Also
⊗

M = {〈q′ , ζ̄M(q
′
), ζM(q

′
)〉/q′ ∈ V },whose ζM(q

′
) and ζ̄M(q

′
) are defined by

V 0 s t u

ζ̄M 0.2 0.4 0.5 0.6

ζM 0.8 0.6 0.5 0.4

So, it can be verified that
⊕

M and
⊗

M are DIF SI-ideals 0f V .

Theorem 4.2.10. An IFS M = (αM , ζM) is a DIF SI-ideal in a BCI-algebra V if

and only if the DIVFs αM and ζ̄M are DF SI-ideals in V .

Proof. Let M = (αM , ζM) be a DIF SI-ideal in V . Then it is obvious that αM is a DF

SI-ideals in V , and from Theorem 4.2.8, we can prove that ζ̄M is a DF SI-ideals in V .

Conversely, let αM be a DF SI-ideals in V . Therefore αM(0) ≤ αM(q
′
) and αM(r

′ ∗

(r
′ ∗ q′)) ≤ max{αM(((q

′ ∗ (q
′ ∗ r′)) ∗ (r

′ ∗ q′)) ∗ s′), αM(s
′
)}, for all q

′
, r
′
, s
′ ∈ V .

Again, let ζ̄M is a DF SI-ideals in V , so, ζ̄M(0) ≤ ζ̄M(q
′
), gives 1 − ζM(0) ≤ 1 −

ζM(q
′
), implies ζM(0) ≥ ζM(q

′
).

Also, ζ̄M(r
′ ∗ (r

′ ∗ q′)) ≤ max{ζ̄M(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), ζ̄M(s

′
)} or, 1 −

ζM(r
′ ∗ (r

′ ∗ q′)) ≤ max{1−ζM(((q
′∗(q′∗r′))∗(r′∗q′))∗s′), 1− ζM(s

′
)} or, ζM(r

′ ∗ (r
′ ∗ q′)) ≥

1−max{1− ζM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), 1− ζM(s

′
)}. Finally, ζM(r

′ ∗ (r
′ ∗ q′)) ≥

min{ζM(((q
′ ∗(q′ ∗r′))∗(r′ ∗q′))∗s′), ζM(s

′
)}, for all q

′
, r
′
, s
′ ∈ V. Hence, M = (αM , ζM)

is a DIF SI-ideal in V .

Corollary 4.2.1. The sets, DαM
= {q′ ∈ V/αM(q

′
) = αM(0)} and DζM = {q′ ∈

V/ζM(q
′
) = ζM(0)} are SI-ideals in V , when M = (αM , ζM) is a DIF SI-ideal in V .

Proof. Let M = (αM , ζM) be a DIF SI-ideal in V . Obviously, 0 ∈ DαM
and DζM .

Now, let q
′
, r
′
, s
′ ∈ V, such that (((q

′ ∗ (q
′ ∗ r′)) ∗ (r

′ ∗ q′)) ∗ s′) ∈ DαM
, s
′ ∈ DαM

.

Then αM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′) = αM(0) = αM(s

′
). Now, αM(r

′ ∗ (r
′ ∗ q′)) ≤

max{αM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), αM(s

′
)} = αM(0).
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Again, since αM is a DF SI-ideals in V , αM(0) ≤ αM(r
′ ∗ (r

′ ∗ q′)). Therefore,

αM(0) = αM(r
′ ∗ (r

′ ∗ q′)). which shows that, (r
′ ∗ (r

′ ∗ q′)) ∈ DαM
, for all q

′
, r
′ ∈ V.

Therefore, DαM
is a SI-ideal in V .

Also, let q
′
, r
′
, s
′ ∈ V, such that (((q

′ ∗ (q
′ ∗ r′)) ∗ (r

′ ∗ q′)) ∗ s′) ∈ DζM , s
′ ∈ DζM .

Then ζM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′) = ζM(0) = ζM(s

′
). Now, ζM(r

′ ∗ (r
′ ∗ q′)) ≥

min{ζM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′), ζM(s

′
)} = ζM(0).

Again, since ζ̄M is a DF SI-ideals in V , ζM(0) ≥ ζM(r
′ ∗ (r

′ ∗ q′)). Therefore,

ζM(0) = ζM(r
′ ∗ (r

′ ∗ q′)). So, (r
′ ∗ (r

′ ∗ q′)) ∈ DζM , for all q
′
, r
′ ∈ V. Therefore, DζM is

a SI-ideal in V .

Definition 4.2.2. Let M = (αM , ζM) be an IFS in V , and c, d ∈ [0, 1], then UC of

level c and LC of level d of M , is as followes:

α≤M,c = {q′ ∈ V/αM(q
′
) ≤ c}

and ζ≥M,d = {q′ ∈ V/ζM(q
′
) ≥ d}.

Theorem 4.2.11. If M = (αM , ζM) be a DIF SI-ideal in V , then α≤M,c and ζ≥M,d are

SI-ideals in V for any c, d ∈ [0, 1].

Proof. Let M = (αM , ζM) be a DIF SI-ideal in V , and let c ∈ [0, 1] with αM(0) ≤ c.

Also we have, αM(0) ≤ αM(q
′
), for all q

′ ∈ V , but αM(q
′
) ≤ c, for all q

′ ∈ α≤M,c.

So, 0 ∈ α≤M,cc. Let q
′
, r
′
, s
′ ∈ V with (((q

′ ∗ (q
′ ∗ r′)) ∗ (r

′ ∗ q′)) ∗ s′) ∈ α≤M,c and

s
′ ∈ α≤M,c , then, αM(((q

′ ∗(q
′ ∗r′))∗(r

′ ∗q′))∗s′) ∈ α≤M,c and αM(s
′
) ∈ α≤M,c. Therefore,

αM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′) ≤ c and αM(s

′
) ≤ c. Since αM is a DF SI-ideals in

V , it follows that, αM(r
′ ∗ (r

′ ∗ q′)) ≤ αM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′)

∨
αM(s

′
) ≤ c

and hence (r
′ ∗ (r

′ ∗ q′)) ∈ α≤M,c, for all q
′
, r
′
, s
′ ∈ V. Therefore, α≤M,c is a SI-ideal in V

for c ∈ [0, 1]. In such way, it also proved that ζ≥M,d is a SI-ideal in V for d ∈ [0, 1].

Theorem 4.2.12. If α≤M,c and ζ≥M,d are either empty or SI-ideals in V for c, d ∈ [0, 1],

then M = (αM , ζM) is a DIF SI-ideal in V .

Proof. Let α≤M,c and ζ≥M,d be either empty or SI-ideals in V for c, d ∈ [0, 1]. For any

q
′ ∈ V, let αM(q

′
) = c and ζM(q

′
) = d. Then q

′ ∈ α≤M,c

∧
ζ≥M,d, so α≤M,c 6= φ 6= ζ≥M,d.

Since α≤M,c and ζ≥M,d are SI-ideals of V , therefore 0 ∈ α≤M,c

∧
ζ≥M,d. Hence, αM(0) ≤ c =

αM(q
′
) and ζM(0) ≥ d = ζM(q

′
), where q

′ ∈ V. If there exist k1, k2, k3 ∈ V such that

αM(k2 ∗ (k2 ∗k1)) > max{αM(((k1 ∗ (k1 ∗k2))∗ (k2 ∗k1))∗k3), αM(k3)}, then by taking,
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c0 = 1
2
(αM(k2∗(k2∗k1))+max{αM(((k1∗(k1∗k2))∗(k2∗k1))∗k3), αM(k3)}). We have,

αM(k2 ∗ (k2 ∗ k1) > c0 > max{αM(((k1 ∗ (k1 ∗ k2)) ∗ (k2 ∗ k1)) ∗ k3), αM(k3)}. Hence,

k2 ∗ (k2 ∗ k1) /∈ α≤M,c0
, (((k1 ∗ (k1 ∗ k2)) ∗ (k2 ∗ k1)) ∗ k3) ∈ α≤M,c0

and k3 ∈ α≤M,c0
, that

is α≤M,c0
is not a SI-ideal in V , which is a contradiction. Therefore, αM(r

′ ∗ (r
′ ∗ q′)) ≤

αM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′)

∨
αM(s

′
), for some q

′
, r
′
, s
′ ∈ V .

ζM(r
′ ∗ (r

′ ∗ q′)) ≥ ζM(((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) ∗ s′)

∧
ζM(s

′
), for some q

′
, r
′
, s
′ ∈ V .

Hence, M = (αM , ζM) is a DIF SI-ideal in V .

4.3 DIFP-ideal in BCI-algebras

In this section, we define DIF P -ideal in BCI-algebras and investigate its properties.

Definition 4.3.1. Let M = (αM , ζM) be an IFS in a BCI-algebra V , then M is

identified as DIFP-ideal in V if (i) αM(0) ≤ αM(q
′
), ζM(0) ≥ ζM(q

′
)

(ii) αM(q
′
) ≤ max{αM((q

′ ∗ s′) ∗ (r
′ ∗ s′)), αM(r

′
)}

(iii) ζM(q
′
) ≥ min{ζM((q

′ ∗ s′) ∗ (r
′ ∗ s′)), ζM(r

′
)}, for all q

′
, r
′
, s
′ ∈ V

Example 20. Let us consider a BCI-algebra V = {0, r, s, t} as presented in the table

below:

∗ 0 r s t

0 0 0 t s

r r 0 t s

s s s 0 t

t t t s 0

Now let consider a DIFS M = (αM , ζM) in V as follows:

V 0 r s t

αM 0 0.5 0.6 0.6

ζM 1 0.5 0.4 0.4

Then M = (αM , ζM) be a DIFP-ideal in V .

Theorem 4.3.1. Every DIFP-ideal in V is a DIF-ideal in V .

Proof. Let M = (αM , ζM) be a DIFP-ideal in V , then (i) αM(0) ≤ αM(q
′
); ζM(0) ≥

ζM(q
′
), (ii) αM(q

′
) ≤ max{αM((q

′ ∗ s′) ∗ (r
′ ∗ s′)), αM(r

′
)}

and (iii) ζM(q
′
) ≥ min{ζM((q

′ ∗ s′) ∗ (r
′ ∗ s′)), ζM(r

′
)},∀q′ , r′ , s′ ∈ V . If we put s

′
= 0,
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then from hypothesis(ii) and (iii), we get, αM(q
′
) ≤ αM((q

′ ∗ 0) ∗ (r
′ ∗ 0))

∨
αM(r

′
)

and ζM(q
′
) ≥ ζM((q

′ ∗ 0) ∗ (r
′ ∗ 0))

∧
ζM(r

′
),∀q′ , r′ ∈ V . Hence, every DIFP-ideal

in V satisfies the inequalities: αM(q
′
) ≤ αM(q

′ ∗ r′)
∨
αM(r

′
) and ζM(q

′
) ≥ ζM(q

′ ∗

r
′
)
∧
ζM(r

′
), for all q

′
, r
′ ∈ V. Hence, M is a DIF-ideal in V .

Theorem 4.3.1 may not hold in reverse direction in general, the below given example

proves this fact.

Example 21. Consider the BCI-algebra V that was taken in Example 19:

∗ 0 s t u

0 0 0 0 u

s s 0 0 u

t t t 0 u

u u u u 0

Let M = (αM , ζM) be a DIF SI-ideal in V defined by

V 0 s t u

αM 0 0.3 0.4 0.5

ζM 1 0.7 0.6 0.5

But M = (αM , ζM) is not a DIFP-ideal in V , since αM(t) = 0.4 and max(αM((t ∗u) ∗

(s ∗u)), αM(s)) = αM(s) = 0.3, that implies αM(t) � max(αM((t ∗u) ∗ (s ∗u)), αM(s))

Now let us uphold a new condition for the IFS M = (αM , ζM), which is a DIF-ideal

in V to be a DIFP-ideal in V .

Proposition 4.3.2. A DIF-ideal in a BCI-algebra V becomes a DIFP-ideal if the

below stated postulates meet.

(i) αM(q
′ ∗ r′) ≤ αA((q

′ ∗ s′) ∗ (r
′ ∗ s′)) and (ii) ζM(q

′ ∗ r′) ≥ αM((q
′ ∗ s′) ∗ (r

′ ∗

s
′
)),∀q′ , r′ , s′ ∈ V .

Proof. Let M = (αM , ζM) be a DIF-ideal in V satisfying (i) αM(q
′ ∗ r′) ≤ αM((q

′ ∗

s
′
) ∗ (r

′ ∗ s′)) and (ii) ζM(q
′ ∗ r′) ≥ αM((q

′ ∗ s′) ∗ (r
′ ∗ s′)),∀q′ , r′ , s′ ∈ V . Then

αM((q
′ ∗ s′) ∗ (r

′ ∗ s′))
∨
αM(r

′
) ≥ αM(q

′ ∗ r′)
∨
αM(r

′
) ≥ αM(q

′
). Again, ζM((q

′ ∗ s′) ∗

(r
′ ∗ s′))

∧
ζM(r

′
) ≤ ζM(q

′ ∗ r′)
∧
ζM(r

′
) ≤ ζM(q

′
). In this way, the proof ends.
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Proposition 4.3.3. For a DIFP-ideal M = (αM , ζM) in a BCI-algebra V , αM(q
′
) ≤

αM(0 ∗ (0 ∗ q′)) and ζM(q
′
) ≥ ζM(0 ∗ (0 ∗ q′)), for all q

′ ∈ V .

Proof. It is straightforward

Corollary 4.3.1. The sets, DαM
= {q′ ∈ V/αM(q

′
) = αM(0)} and DζM = {q′ ∈

V/ζM(q
′
) = ζM(0)} are P -ideals in V when M = (αM , ζM) is a DIFP-ideal of that

BCI-algebra V .

Proof. Let M = (αM , ζM) be a DIFP-ideal in V . Obviously, 0 ∈ DαM
and DζM .

Now, assume q
′
, r
′
, s
′ ∈ V, so that (q

′ ∗ s′) ∗ (r
′ ∗ s′) ∈ DαM

, and r
′ ∈ DαM

. Then

αM(q
′
) ≤ max{αM((q

′ ∗ s′) ∗ (r
′ ∗ s′)), αM(r

′
)} = αM(0). But αM(0) ≤ αM(q

′
), for all

q
′ ∈ V . Therefore, αM(0) = αM(q

′
). So, q

′ ∈ DαM
, for all q

′
, r
′
, s
′ ∈ V. Therefore, DαM

is a P -ideal in V .

Also, let q
′
, r
′
, s
′ ∈ V, such that (q

′ ∗ s′) ∗ (r
′ ∗ s′) ∈ DζM , and r

′ ∈ DζM . Then

ζM(q
′
) ≥ max{ζM((q

′ ∗ s′) ∗ (r
′ ∗ s′)), ζM(r

′
)} = ζM(0). But, ζM(0) ≥ ζM(q

′
) for all

q
′ ∈ V . Therefore, ζM(0) = ζM(q

′
). It follows that, q

′ ∈ DζM , for all q
′
, r
′
, s
′ ∈ V.

Therefore, DζM is a P -ideal in V .

Theorem 4.3.4. Every DIFP-ideal in V is a DIF SI-ideal in V .

Proof. Let M = (αM , ζM) be a DIFP-ideal in V .

Now,

(0 ∗ (0 ∗ (r
′ ∗ (r

′ ∗ q′)))) ∗ ((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′))

=(0 ∗ ((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′))) ∗ (0 ∗ (r

′ ∗ (r
′ ∗ q′)))[by P1]

=((0 ∗ (q
′ ∗ (q

′ ∗ r′))) ∗ (0 ∗ (r
′ ∗ q′))) ∗ ((0 ∗ r′) ∗ (0 ∗ (r

′ ∗ q′)[ by P6 ]

=(((0 ∗ q′) ∗ (0 ∗ (q
′ ∗ r′))) ∗ (0 ∗ (r

′ ∗ q′))) ∗ ((0 ∗ r′) ∗ (0 ∗ (r
′ ∗ q′)))

≤((0 ∗ q′) ∗ (0 ∗ (q
′ ∗ r′))) ∗ (0 ∗ r′)[ by P3]

=((0 ∗ q′) ∗ (0 ∗ r′)) ∗ (0 ∗ (q
′ ∗ r′))[ by P1]

=(0 ∗ (q
′ ∗ r′)) ∗ (0 ∗ (q

′ ∗ r′))[ by P6]

=0[ by A3]

Hence, (0 ∗ (0 ∗ (r
′ ∗ (r

′ ∗ q′)))) ≤ ((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)).
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Since, M is a DIF-ideal, then, αM(0∗(0∗(r
′ ∗(r

′ ∗q′)))) ≤ αM((q
′ ∗(q

′ ∗r′))∗(r
′ ∗q′))

and ζM(0 ∗ (0 ∗ (r
′ ∗ (r

′ ∗ q′)))) ≥ ζM((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)).

But by Proposition 4.3.3, we have αM(r
′ ∗ (r

′ ∗ q′)) ≤ αM(0 ∗ (0 ∗ (r
′ ∗ (r

′ ∗ q′))))

and ζM(r
′ ∗ (r

′ ∗ q′)) ≥ ζM(0 ∗ (0 ∗ (r
′ ∗ (r

′ ∗ q′)))). Hence, αM(r
′ ∗ (r

′ ∗ q′)) ≤

αM((q
′ ∗ (q

′ ∗ r′)) ∗ (r
′ ∗ q′)) and ζM(r

′ ∗ (r
′ ∗ q′)) ≥ ζM((q

′ ∗ (q
′ ∗ r′)) ∗ (r

′ ∗ q′)). By

Theorem 4.2.5, we see that M = (αM , ζM) is a DIF SI-ideal in V .

But, the reverse of Theorem 4.3.4 may not be true, which is illustrated by Example

19. As, αM(t) � αM((t ∗ u) ∗ (s ∗ u))
∨
αM(s).

Theorem 4.3.5. Union of any two DIFP-ideals in V , is also a DIFP-ideal in V if

one is contained in another.

Proof. Let M = (αM , ζM) and N = (αN , ζN) be two DIFP-ideals in V . Again let,

C = M ∪ N = (αC , ζC), where αC = αM ∨ αN and ζC = ζM ∧ ζN . Let q
′
, r
′
, s
′ ∈ V ,

then, αC(0) = max{αM(0), αN(0)} ≤ max{αM(q
′
), αN(q

′
)} = αC(q

′
) and ζC(0) =

min{ζM(0), ζN(0)} ≥ min{ζM(q
′
), ζN(q

′
)} = ζC(q

′
), for all q

′ ∈ V.

Also,

αC(q
′
) = max{αM(q

′
), αN(q

′
)}

≤ max{max[αM((q
′ ∗ s′) ∗ (r

′ ∗ s′)), αM(r
′
)],max[αN((q

′ ∗ s′) ∗ (r
′ ∗ s′)), αN(r

′
)]}

= max{max[αM((q
′ ∗ s′) ∗ (r

′ ∗ s′)), αN((q
′ ∗ s′) ∗ (r

′ ∗ s′))],max[αM(r
′
), αN(r

′
)]}

= max[αC((q
′ ∗ s′) ∗ (r

′ ∗ s′)), αC(r
′
)].

Similarly, it can verify that, ζC(q
′
) ≥ min[ζC((q

′ ∗ s′) ∗ (r
′ ∗ s′)), ζC(r

′
)].

In this way, proof ends.

Theorem 4.3.6. Let M and N be two IFSs in V , such that one is subset of other.

Also M and N are two DIFP-ideals in V . Then M ∩N is also a DIFP-ideal in V .

Proof. Let M = (αM , ζM) and N = (αN , ζN) be two DIFP-ideals in V . Again let,

D = M ∩ N = (αD, ζD), where αD = min{αM , αN} and ζD = max{ζM , ζN}. Let

q
′ ∈ V , then αD(0) = min{αM(0), αN(0)} ≤ min{αM(q

′
), αN(q

′
)} = αD(q

′
) and

ζD(0) = max{ζM(0), ζN(0)} ≥ max{ζM(q
′
), ζN(q

′
)} = ζD(q

′
).
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Also, for q
′
, r
′
, s
′ ∈ V

αD(q
′
) = min{αM(q

′
), αN(q

′
)}

≤ min[max{αM((q
′ ∗ s′) ∗ (r

′ ∗ s′)), αM(r
′
)},max{αN((q

′ ∗ s′) ∗ (r
′ ∗ s′)), αN(r

′
)}]

= max[min{αM((q
′ ∗ s′) ∗ (r

′ ∗ s′)), αN((q
′ ∗ s′) ∗ (r

′ ∗ s′))},min{αM(r
′
), αN(r

′
)}],

[because one is contained in another]

= max[αD((q
′ ∗ s′) ∗ (r

′ ∗ s′)), αD(r
′
)].

Again,

ζD(q
′
) = max{ζM(q

′
), ζN(q

′
)}

≥ max[min{ζM((q
′ ∗ s′) ∗ (r

′ ∗ s′)), ζM(r
′
)},min{ζN((q

′ ∗ s′) ∗ (r
′ ∗ s′)), ζN(r

′
)}]

= min[max{ζM((q
′ ∗ s′) ∗ (r

′ ∗ s′)), ζN((q
′ ∗ s′) ∗ (r

′ ∗ s′))},max{ζM(r
′
), ζN(r

′
)}],

[because one is contained in another]

= min[ζD((q
′ ∗ s′) ∗ (r

′ ∗ s′)), ζD(r
′
)].

Thus the proof ends.

Now the Theorem 4.3.5 and Theorem 4.3.6 are verified by the following example.

Example 22. Consider a BCI-algebra that was given in Example 19 as follows:

∗ 0 s t u

0 0 0 0 u

s s 0 0 u

t t t 0 u

u u u u 0

Let M = (αM , ζM) be a DIF SI-ideal in V defined by

V 0 s t u

αM 0 0.7 0.7 0.8

ζM 1 0.3 0.3 0.2

Then M = (αM , ζM) is a DIFP-ideal in V .

Also, let N = (αN , ζN) be an IFS in V as defined by

V 0 s t u

αN 0 0.4 0.4 0.5

ζN 1 0.6 0.6 0.5
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Then N = (αN , ζN) is a DIFP-ideal in V .

Again assume that P = M ∪ N = (αP , ζP ), where αP = αM ∨ αN and ζP = ζM ∧ ζN
and P is interpreted as:

V 0 s t u

αP 0 0.7 0.7 0.8

ζP 1 0.3 0.3 0.2

Then P = (αP , ζP ) is a DIFP-ideal in V .

Now let, Q = M ∩N = (αQ, ζQ) where αQ = αM ∧ αN and ζQ = ζM ∨ ζN .

Then the IFS Q is represented by:

V 0 s t u

αQ 0 0.4 0.4 0.5

ζQ 1 0.6 0.6 0.5

Then Q = (αQ, ζQ) is also a DIFP-ideal in V .

4.4 Summary

The notion of DIF SI-ideals and DIFP-ideals in BCI-algebras are introduced in

current chapter. Here it is shown that any DIFP-ideal is always a DIF SI-ideal. We

also examplifies that a DIF SI-ideal may not always be DIFP-ideal. Besides, the

chapter also contains some other properties about DIF SI-ideals and DIFP-ideals in

BCI-algebras.


