Chapter 2

Doubt intuitionistic fuzzy ideals *

2.1 Introduction

The notion of uncertainty has drawn a havoc attention of the reasearchers during the last few decades and as a result its concept and definition have gone through a frequent modification during this time making it a much discussed term in science and mathematics having a vast sphere of utility. In its dazzling evolution, Zadeh [86], played the role of an avant-garde. Following him several sebsequent researchers worked in this field among them Atanassov's [2] name must be mentioned who propounded the idea of IFSs as an extension and generalisation of the notion of FSs.

Xi [84], in 1991, introduced concept of FS in BCK-algebras. Then in 1992, Huang gave another notion of fuzzy set in BCI-algebras. Following the same rout in 1994, Jun [43] established the definition of DFSA and DF-ideals in BCK/BCI-algebras to avoid the confusion created in [27] Huang's defination of fuzzy BCI-algebras by means of some effective results.

In 2000, Jun and Kim [42] explored the idea of IFSA and IF-ideals in BCK-algebras.

This chapter has inside the concept of DIFSAs and DIF-ideals in BCK/BCI-algebras. Findings of this chapter show that an IFS of BCK/BCI-algebra is DIFSA and DIFideal if and only if the complement of this IFS is an IFSA and an IF-ideal. And at the same time we are establishing some common properties related to them.

^{*}Part of the work presented in this chapter is published in International Journal of Fuzzy Logic Systems, **5**(1) 1-13 (2015).

2.2 DIFSA in BCK/BCI-algebras

In this section we have defined DIFSA and thereafter moved on investigating its several properties with the help of some certain examples.

Definition 2.2.1. Let $M = (\alpha_M, \zeta_M)$ be an IFS in V, then M is called a **DIFSA** in V if

(i) $\alpha_M(v_1 * v_2) \leq \alpha_M(v_1) \bigvee \alpha_M(v_2)$, and (ii) $\zeta_M(v_1 * v_2) \geq \zeta_M(v_1) \bigwedge \zeta_M(v_2), \forall v_1, v_2 \in V$.

Theorem 2.2.1. Let $M = (\alpha_M, \zeta_M)$ is a DIFSA in V, then (i) $\alpha_M(0) \leq \alpha_M(v_1)$, and (ii) $\zeta_M(0) \geq \zeta_M(v_1), \forall v_1 \in V.$

Proof. We have that
$$\alpha_M(0) = \alpha_M(v_1 * v_1) \le \alpha_M(v_1) \bigvee \alpha_M(v_1) \le \alpha_M(v_1)$$
.
 $\therefore \alpha_M(0) \le \alpha_M(v_1), \forall v_1 \in V.$
Again we have $\zeta_M(0) = \zeta_M(v_1 * v_1) \ge \zeta_M(v_1) \bigwedge \zeta_M(v_1) \ge \zeta_M(v_1).$
 $\therefore \zeta_M(0) \ge \zeta_M(v_1), \forall v_1 \in V.$

Theorem 2.2.2. Let $M = (\alpha_M, \zeta_M)$ be a DIFSA in V. Then for any $v_1 \in V$, we have

$$\alpha_M(v_1^m * v_1) \begin{cases} \leq \alpha_M(v_1), & \text{if } m \text{ is odd} \\ = \alpha_M(v_1), & \text{if } m \text{ is even.} \end{cases}$$

and

$$\zeta_M(v_1^m * v_1) \begin{cases} \geq \zeta_M(v_1), & \text{if } m \text{ is odd} \\ = \zeta_M(v_1), & \text{if } m \text{ is even.} \end{cases}$$

Proof. Let $v_1 \in V$, then $\alpha_M(v_1 * v_1) = \alpha_M(0) \leq \alpha_M(v_1)$. Let *m* is odd, and m = 2q - 1, where *q* is a positive integer. Now assume that $\alpha_M(v_1^{2q-1} * v_1) \leq \alpha_M(v_1)$ for some positive integer *q*.

Then, $\alpha_M(v_1^{2q-1} * v_1) = \alpha_M(v_1^{2q+1} * v_1).$

$$\begin{aligned} \alpha_M(v_1^{2(q+1)-1} * v_1) &= & \alpha_M(v_1^{2q+1} * v_1), \\ &= & \alpha_M(v_1^{2q-1} * (v_1 * (v_1 * v_1))) \\ &= & \alpha_M(v_1^{2q-1} * (v_1 * 0)) \\ &= & \alpha_M(v_1^{2q-1} * v_1) \\ &\leq & \alpha_M(v_1) \end{aligned}$$

Hence, $\alpha_M(v_1^m * v_1) \leq \alpha_M(v_1)$, if *m* is odd. Again, let *m* is even, and m = 2q. Now for q = 1, $\alpha_M(v_1^2 * v_1) = \alpha_M(v_1 * (v_1 * v_1)) = \alpha_M(v_1 * 0) = \alpha_M(v_1)$.

Also assume that, $\alpha_M(v_1^{2q} * v_1) = \alpha_M(v_1)$ for some positive integer q, then,

$$\alpha_M(v_1^{2(q+1)} * v_1) = \alpha_M(v_1^{2q} * (v_1 * (v_1 * v_1))),$$

= $\alpha_M(v_1^{2q} * v_1)$
= $\alpha_M(v_1)$

Hence, $\alpha_M(v_1^m * v_1) = \alpha_M(v_1)$, if m is even.

This proves the first part. similarly we can prove the second part. \Box

Theorem 2.2.3. Let $M = (\alpha_M, \zeta_M)$ be a DIFSA in V. Then for any $v_1 \in V$, we have $\alpha_M(v_1 * v_1^m) = \alpha_M(0).$ and $\zeta_M(v_1 * v_1^m) = \zeta_M(0).$ for m = 1, 2, 3, ...

Proof: Straightforward

EXAMPLE 3. Let a BCK-algebra $V = \{0, d, e, f\}$ be given by the table below:

	0	d	e	f
0	0	0	0	0
d	d	0	0	d
e	e	d	0	e
f	$egin{array}{c} 0 \\ d \\ e \\ f \end{array}$	f	f	0

Let $M = (\alpha_M, \zeta_M)$ is an IFS in V defined by

	0			
α_M	$0.5 \\ 0.5$	0.5	0.6	0.5
ζ_M	0.5	0.5	0.3	0.5

Then $M = (\alpha_M, \zeta_M)$ is a DIFSA in V.

2.3 DIF-ideals in *BCK/BCI*-algebras

Current section we have defined DIF-ideal in BCK/BCI-algebras and thereafter moved on investigating its several properties taking help of some certain examples.

Definition 2.3.1. Let V be a BCK/BCI-algebra. An IFS $M = (\alpha_M, \zeta_M)$ in V is said to be a **DIF-ideal** if $(F1) \alpha_M(0) \leq \alpha_M(v_1); \zeta_M(0) \geq \zeta_M(v_1),$ $(F2) \alpha_M(v_1) \leq \alpha_M(v_1 * v_2) \bigvee \alpha_M(v_2),$ $(F3) \zeta_M(v_1) \geq \zeta_M(v_1 * v_2) \bigwedge \zeta_M(v_2), \forall v_1, v_2 \in V.$

Theorem 2.3.1. Let an IFS $M = (\alpha_M, \zeta_M)$ in V be a DIF-ideal in V. If the inequility $v_1 * p_1 \leq q_1$ holds in V, then (i) $\alpha_M(v_1) \leq max\{\alpha_M(p_1), \alpha_M(q_1)\}$ (ii) $\zeta_M(v_1) \geq min\{\zeta_M(p_1), \zeta_M(q_1)\}$

Proof: Let $v_1, p_1, q_1 \in V$, such that $v_1 * p_1 \leq q_1$. So $(v_1 * p_1) * q_1 = 0$ and thus,

$$\begin{aligned}
\alpha_{M}(v_{1}) &\leq \max\{\alpha_{M}(v_{1} * p_{1}), \alpha_{M}(p_{1})\}, \\
&\leq \max\{\max\{\alpha_{M}((v_{1} * p_{1}) * q_{1}), \alpha_{M}(q_{1})\}, \alpha_{M}(p_{1})\} \\
&= \max\{\max\{\alpha_{M}(0), \alpha_{M}(q_{1})\}, \alpha_{M}(p_{1})\} \\
&= \max\{\alpha_{M}(q_{1}), \alpha_{M}(p_{1})\}
\end{aligned}$$

 $\therefore \alpha_M(v_1) \le \max\{\alpha_M(p_1), \alpha_M(q_1)\}.$

Again,
$$\zeta_M(v_1) \geq \min\{\zeta_M(v_1 * p_1), \zeta_M(p_1)\},\$$

$$\geq \min\{\min\{\zeta_M((v_1 * p_1) * q_1), \zeta_M(q_1)\}, \zeta_M(p_1)\}\$$

$$= \min\{\min\{\zeta_M(0), \zeta_M(q_1)\}, \zeta_M(p_1)\}\$$

$$= \min\{\zeta_M(q_1), \zeta_M(p_1)\}\$$

$$= \min\{\zeta_M(p_1), \zeta_M(q_1)\}\$$

Thus it is proved.

Corollary 2.3.1. If $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V, then for any $v_1, p_1, p_2, p_3, \dots p_n \in V$ and $(\dots (v_1 * p_1) * p_2) * \dots) * p_n = 0$, $\alpha_M(v_1) \le max\{\alpha_M(p_1), \alpha_M(p_2), \alpha_M(p_3), \dots \alpha_M(p_n)\}$ $\zeta_M(v_1) \ge min\{\zeta_M(p_1), \zeta_M(p_2), \zeta_M(p_3), \dots \zeta_M(p_n)\}$

Proposition 2.3.2. In V let $M = (\alpha, \zeta)$ be a DIF-ideal. Then the followings hold for all $v_1, v_2, v_3 \in V$ (a) if $v_1 \leq v_2$ then $\alpha(v_1) \leq \alpha(v_2), \zeta(v_1) \geq \zeta(v_2)$ (b) $\alpha(v_1 * v_2) \leq \alpha(v_1 * v_3) \bigvee \alpha(v_3 * v_2)$ and $\zeta(v_1 * v_2) \geq \zeta(v_1 * v_3) \bigwedge \zeta(v_3 * v_2)$

Proof. (a) If $v_1 \leq v_2$ then $v_1 * v_2 = 0$ Hence $\alpha(v_1) \leq \alpha(v_1 * v_2) \bigvee \alpha(v_2) = \alpha(0) \bigvee \alpha(v_2) = \alpha(v_2)$, and $\zeta(v_1) \geq \zeta(v_1 * v_2) \bigwedge \zeta(v_2) = \zeta(0) \bigwedge \zeta(v_2) = \zeta(v_2)$.

(b) Since $(v_1 * v_2) * (v_1 * v_3) \leq (v_3 * v_2)$ It follows from (a) that $\alpha\{(v_1 * v_2) * (v_1 * v_3)\} \leq \alpha(v_3 * v_2)$ Now $\alpha\{(v_1 * v_2) \leq \alpha\{(v_1 * v_2) * (v_1 * v_3)\} \lor \alpha(v_1 * v_3)$ [$:: M = (\alpha, \zeta)$ is a DIF-ideal.] $\therefore \alpha(v_1 * v_2) \leq \alpha(v_3 * v_2) \lor \alpha(v_1 * v_3)$ Again, $\zeta(v_1 * v_2) \geq \zeta\{(v_1 * v_2) * (v_1 * v_3)\} \land \zeta(v_1 * v_3) \geq \zeta(v_3 * v_2) \land \zeta(v_1 * v_3)$ $\therefore \zeta(v_1 * v_2) \geq \zeta(v_1 * v_3) \land \zeta(v_3 * v_2)$ **Theorem 2.3.3.** If an IFS $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V, it must be a DIFSA in V.

Proof. Let
$$M = (\alpha_M, \zeta_M)$$
 be a DIF-ideal in V.
Since $v_1 * v_2 \leq v_1, \forall v_1, v_2 \in V$.
Then $\alpha_M(v_1 * v_2) \leq \alpha_M(v_1)$
and $\zeta_M(v_1 * v_2) \geq \zeta_M(v_1)$
So, $\alpha_M(v_1 * v_2) \leq \alpha_M(v_1) \leq \alpha_M(v_1 * v_2) \bigvee \alpha_M(v_2) \leq \alpha_M(v_1) \bigvee \alpha_M(v_2), \forall v_1, v_2 \in V$.
[$\therefore M = (\alpha_M, \zeta_M)$ is a DIF-ideal.]

and $\zeta_M(v_1 * v_2) \ge \zeta_M(v_1) \ge \zeta_M(v_1 * v_2) \bigwedge \zeta_M(v_2) \ge \zeta_M(v_1) \bigwedge \zeta_M(v_2), \forall v_1, v_2 \in V.$ This shows that, $M = (\alpha_M, \zeta_M)$ is a DIFSA in V.

EXAMPLE 4. Let us consider $V = \{0, d, f, g, h\}$ as a BCK-algebra in below tabulated form:

*	0	d	f	g	h
0	0	0	0	0	0
d	d	0	0	0	0
f	$\begin{vmatrix} d \\ f \\ g \\ h \end{vmatrix}$	f	0	f	0
g	g	g	g	0	0
h	h	f	d	f	0

Let $M = (\alpha_M, \zeta_M)$ be an IFS in V defined by

_	V	0	d	f	g	h
	α_M	0	0.4	0.6	0.6	0.6
	ζ_M	1	0.5	0.4	0.4	0.4

Then $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V.

Thus M is a DIF-ideal as well as DIFSA in V.

Converse of Theorem 2.3.3 may not true. Which can be consolidated through Example 3 .

As $\zeta_M(e) = 0.3$

 $\zeta_M(e) = 0.3 \geq 0.5 = \zeta_M(e * d) \bigwedge \zeta_M(d)$, therefore, $M = (\alpha_M, \zeta_M)$ is not a DIF-ideal.

We now provide a condition for an IFS $M = (\alpha_M, \zeta_M)$ which is a DIFSA in V to be a DIF-ideal in V. **Theorem 2.3.4.** Let an IFS $M = (\alpha_M, \zeta_M)$ be a DIFSA in V. If the inequiality $v_1 * v_2 \leq v_3$ holds in V, then M would be a DIF-ideal in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ be the DIFSA in V. Then from Theorem 2.2.1, $\alpha_M(0) \leq \alpha_M(v_1) \dots (1)$, and $\zeta_M(0) \geq \zeta_M(v_1) \dots (2), \forall v_1 \in V.$

As $v_1 * v_2 \le v_3$ holds in V, then from Theorem 2.3.1,

We get, $\alpha_M(v_1) \le max\{\alpha_M(v_2), \alpha_M(v_3)\}, \zeta_M(v_1) \ge min\{\zeta_M(v_2), \zeta_M(v_3)\}, \forall v_1, v_2, v_3 \in V.$

Again since, $v_1 * (v_1 * v_2) \le v_2$, Then, $\alpha_M(v_1) \le max\{\alpha_M(v_1 * v_2), \alpha_M(v_2)\},\$ and $\zeta_M(v_1) \ge min\{\zeta_M(v_1 * v_2), \zeta_M(v_2)\}.$

Hence, $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V.

Theorem 2.3.5. Let an IFS $M = (\alpha_M, \zeta_M)$ be a DIF-ideal in V. Then

$$\alpha_M(0*(0*v_1)) \le \alpha_M(v_1).$$

$$\zeta_M(0*(0*v_1)) \ge \zeta_M(v_1), \forall v_1 \in V$$

Proof. $\alpha_M(0 * (0 * v_1)) \leq \alpha_M\{(0 * (0 * v_1)) * v_1\} \vee \alpha_M(v_1) \leq \alpha_M(0) \vee \alpha_M(v_1) = \alpha_M(v_1), \forall v_1 \in V.$

Therefore, $\alpha_M(0 * (0 * v_1)) \leq \alpha_M(v_1), \forall v_1 \in V.$

Again,

$$\zeta_M(0*(0*v_1)) \ge \zeta_M\{(0*(0*v_1))*v_1\} \land \zeta_M(v_1) \ge \zeta_M(0) \land \zeta_M(v_1) = \zeta_M(v_1), \forall v_1 \in V.$$

Therefore, $\zeta_M(0*(0*v_1)) \ge \zeta_M(v_1), \forall v_1 \in V.$

Theorem 2.3.6. Let $M = (\alpha_M, \zeta_M)$ be a DIF-ideal in V. Then so is $\bigoplus M = \{(v_1, \alpha_M(v_1), \bar{\alpha}_M(v_1)) | v_1 \in V\}.$

Proof. Since $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V, then

 $\alpha_M(0) \leq \alpha_M(v_1), \text{ and } \alpha_M(v_1) \leq \alpha_M(v_1 * v_2) \bigvee \alpha_M(v_2).$ Now, $\alpha_M(0) \leq \alpha_M(v_1) \Rightarrow 1 - \bar{\alpha}_M(0) \leq 1 - \bar{\alpha}_M(v_1) \Rightarrow \bar{\alpha}_M(0) \geq \bar{\alpha}_M(v_1), \text{ for any}$ $v_1 \in V.$

Now for arbitrary $v_1, v_2 \in V$,

$$\begin{aligned} \alpha_M(v_1) &\leq \max\{\alpha_M(v_1 * v_2), \alpha_M(v_2)\} \\ \Rightarrow 1 - \bar{\alpha}_M(v_1) &\leq \max\{1 - \bar{\alpha}_M(v_1 * v_2), 1 - \bar{\alpha}_M(v_2)\} \\ \Rightarrow \bar{\alpha}_M(v_1) &\geq 1 - \max\{1 - \bar{\alpha}_M(v_1 * v_2), 1 - \bar{\alpha}_M(v_2)\} \\ \Rightarrow \bar{\alpha}_M(v_1) &\geq \min\{\bar{\alpha}_M(v_1 * v_2), \bar{\alpha}_M(v_2)\}. \end{aligned}$$

So, $\bigoplus M = \{(v_1, \alpha_M(v_1), \bar{\alpha}_M(v_1)) | v_1 \in V\}$ is a DIF-ideal in V.

Theorem 2.3.7. Let $M = (\alpha_M, \zeta_M)$ be a DIF-ideal in V. Then so is $\bigotimes M = \{(v_1, \overline{\zeta}_M(v_1), \zeta_M(v_1))/v_1 \in V\}.$

Proof. Since $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V, then $\zeta_M(0) \ge \zeta_M(v_1)$. And $\zeta_M(v_1) \ge \zeta_M(v_1 * v_2) \bigwedge \zeta_M(v_2)$. Also we have, $\zeta_M(0) \ge \zeta_M(v_1) \Rightarrow 1 - \overline{\zeta}_M(0) \ge 1 - \overline{\zeta}_M(v_1) \Rightarrow \overline{\zeta}_M(0) \le \overline{\zeta}_M(v_1)$, for any $v_1 \in V$. Consider, for any $v_1, v_2 \in V$,

$$\begin{split} \zeta_M(v_1) &\geq \min\{\zeta_M(v_1 * v_2), \zeta_M(v_2)\}\\ \Rightarrow 1 - \bar{\zeta}_M(v_1) &\geq \min\{1 - \bar{\zeta}_M(v_1 * v_2), 1 - \bar{\zeta}_M(v_2)\}\\ \Rightarrow \bar{\zeta}_M(v_1) &\leq 1 - \min\{1 - \bar{\zeta}_M(v_1 * v_2), 1 - \bar{\zeta}_M(v_2)\}\\ \Rightarrow \bar{\zeta}_M(v_1) &\leq \max\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\}. \end{split}$$

Hence, $\bigotimes M = \{(v_1, \overline{\zeta}_M(v_1), \zeta_M(v_1)) | v_1 \in V\}$ is a DIF-ideal in V.

Theorem 2.3.8. An IFS $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V iff $\bigoplus M = \{(v_1, \alpha_M(v_1), \bar{\alpha}_M(v_1)) | v_1 \in V\}$ $V\}$ and $\bigotimes M = \{(v_1, \bar{\zeta}_M(v_1), \zeta_M(v_1)) | v_1 \in V\}$ are DIF-ideals in V.

Now Theorem 2.3.8 is illustrated by using the example provided below.

EXAMPLE 5. Let consider $V = \{0, s, t, u, v\}$ as a BCK-algebra in below tabulated form:

*	0	s	t	u	v
0	0	0	0	0	0
s	$egin{array}{c} s \\ t \\ u \\ v \end{array}$	0	s	0	s
t	t	t	0	t	0
u	u	s	u	0	u
v	v	v	t	v	0

Let $M = \{(v_1, \overline{\zeta}_M(v_1)) : v_1 \in V\}$ be an IVFS defined as

V	0	s	t	u	v
α_M	0.4	0.5	0.6	0.5	0.6
ζ_M	0.4 0.5	0.4	0.3	0.4	0.3

Then $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V.

Then $\bigoplus M = \{(v_1, \alpha_M(v_1), \bar{\alpha}_M(v_1)) | v_1 \in V\}$ be an IFS defined by

V	0	s	t	u	v
α_M $\bar{\alpha}_M$	0.4	0.5	0.6	0.5	0.6
$\bar{\alpha}_M$	0.6	0.5	0.4	0.5	0.4

And $\bigotimes M = \{(v_1, \overline{\zeta}_M(v_1), \zeta_M(v_1)) | v_1 \in V\}$ be an IFS defined by

V	0	s	t	u	v
$\bar{\zeta}_M$	0.5	0.6	0.7	0.6	0.7
ζ_M	$\begin{array}{c} 0.5\\ 0.5\end{array}$	0.4	0.3	0.4	0.3

So, it is clear that $\bigoplus M = \{(v_1, \alpha_M(v_1), \bar{\alpha}_M) / v_1 \in V\}$ and $\bigotimes M = \{(v_1, \bar{\zeta}_M(v_1), \zeta_M(v_1)) / v_1 \in V\}$ are DIF-ideal.

Theorem 2.3.9. An IFS $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V iff the FSs α_M and $\overline{\zeta_M}$ are DF-ideals in V.

Proof. In V let $M = (\alpha_M, \zeta_M)$ be a DIF-ideal. Then it is obvious that α_M is a DF-ideal in V. Further it can conclude from Theorem 2.3.7 that $\overline{\zeta}_M$ is a DF-ideal in V.

From reverse angle if, α_M is a DF-ideal in V, then

 $\alpha_M(0) \leq \alpha_M(v_1)$ And $\alpha_M(v_1) \leq max\{\alpha_M(v_1 * v_2), \alpha_M(v_2)\}, \forall v_1, v_2 \in V.$

Again since $\bar{\zeta}_M$ is a DIF-ideal in V, so, $\bar{\zeta}_M(0) \leq \bar{\zeta}_M(v_1) \Rightarrow 1 - \zeta_M(0) \leq 1 - \zeta_M(v_1) \Rightarrow \zeta_M(0) \geq \zeta_M(v_1).$

And

$$\bar{\zeta}_M(v_1) \le \max\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\}.$$

$$\Rightarrow 1 - \zeta_M(v_1) \le \max\{1 - \zeta_M(v_1 * v_2), 1 - \zeta_M(v_2)\}\}$$

$$\Rightarrow \zeta_M(v_1) \ge 1 - \max\{1 - \zeta_M(v_1 * v_2), 1 - \zeta_M(v_2)\}\}$$

$$\Rightarrow \zeta_M(v_1) \ge \min\{\zeta_M(v_1 * v_2), \zeta_M(v_2)\}, \forall v_1, v_2 \in V.$$

Hence, $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V.

EXAMPLE 6. Let us consider a BCK-algebra $V = \{0, d_1, e_1, f_1\}$ given by the table

below:

*	0	d_1	e_1	f_1
0	0	0	0	0
d_1	d_1	0	d_1	d_1
e_1	e_1 f_1	d_1	0	0
f_1	f_1	d_1	f_1	0

Let $M = (\alpha_M, \zeta_M)$ be an IFS in V defined by

V	0	d_1	e_1	f_1
α_M	0.1 0.8	0.5	0.7	0.6
ζ_M	0.8	0.4	0.2	0.4

Since $\alpha_M(e_1) = 0.7 \nleq 0.6 = max\{\alpha_M(e_1 * f_1), \alpha_M(f_1)\},\$ and $\zeta_M(e_1) = 0.2 \ngeq 0.4 = min\{\zeta_M(e_1 * f_1), \zeta_M(f_1)\}.\$ Therefore $M = (\alpha_M, \zeta_M)$ is not a DIF-ideal in V.

Corollary 2.3.2. For any DIF-ideal $M = (\alpha_M, \zeta_M)$ in a BCK/BCI-algebra V. The sets,

$$D_{\alpha_M} = \{ v_1 \in V / \alpha_M(v_1) = \alpha_M(0) \}, \text{ and } D_{\zeta_M} = \{ v_1 \in V / \zeta_M(v_1) = \zeta_M(0) \} \text{ are ideals}$$

in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIF-ideal of V. Obviously, $0 \in D_{\alpha_M}, D_{\zeta_M}$. Now let $v_1, v_2 \in V$, such that $v_1 * v_2, v_2 \in D_{\alpha_M}$. Then $\alpha_M(v_1 * v_2) = \alpha_M(0) = \alpha_M(v_2)$. And so, $\alpha_M(v_1) \leq max\{\alpha_M(v_1 * v_2), \alpha_M(v_2)\} = \alpha_M(0)$ Again, since α_M is a DF-ideal in $V, \alpha_M(0) \leq \alpha_M(v_1), \therefore \alpha_M(0) = \alpha_M(v_1)$. Hence, $v_1 \in D_{\alpha_M}$. Therefore, D_{α_M} is an ideal in V. Following the same path it is proved that D_{ζ_M} is also an ideal in V.

Theorem 2.3.10. Intersection of any two DIF-ideals in V, such that one is contained in another, is also a DIF-ideal in V.

Proof. Let $M = (\alpha_M, \zeta_M)$ and $N = (\alpha_N, \zeta_N)$ be two DIF-ideals in V.

Again let, $R = M \cap N = (\alpha_R, \zeta_R)$, Where $\alpha_R = \alpha_M \wedge \alpha_N$ and $\zeta_R = \zeta_M \vee \zeta_N$. Let $v_1, v_2 \in V$, then, $\alpha_R(0) = \alpha_M(0) \wedge \alpha_N(0) \leq \alpha_M(v_1) \wedge \alpha_N(v_1) = \alpha_R(v_1)$.

And $\zeta_R(0) = \zeta_M(0) \lor \zeta_N(0) \ge \zeta_M(v_1) \lor \zeta_N(v_1) = \zeta_R(v_1)$. Also,

$$\begin{aligned} \alpha_R(v_1) &= \alpha_M(v_1) \land \alpha_N(v_1) \\ &\leq \max[\alpha_M(v_1 * v_2), \alpha_M(v_2)] \land \max[\alpha_N(v_1 * v_2), \alpha_N(v_2)] \\ &= \max\{[\alpha_M(v_1 * v_2) \land \alpha_N(v_1 * v_2)], [\alpha_M(v_2) \land \alpha_N(v_2)]\} \\ &= \max[\alpha_R(v_1 * v_2), \alpha_R(v_2)]. \end{aligned}$$

Similarly, it can be verified that $\zeta_R(v_1) \ge \min[\zeta_R(v_1 * v_2), \zeta_R(v_2)].$ Thus it is proved.

Theorem 2.3.11. Union of any two DIF-ideals in V, is also a DIF-ideal in V.

Proof. Assume that $M = (\alpha_M, \zeta_M)$ and $N = (\alpha_N, \zeta_N)$ are two DIF-ideals in V. Again let, $R = M \cup N = (\alpha_R, \zeta_R)$. Where $\alpha_R = \alpha_M \vee \alpha_N$ and $\zeta_Q = \zeta_M \wedge \zeta_N$. Let $v_1, v_2 \in V$, then, $\alpha_R(0) = \alpha_M(0) \vee \alpha_N(0) \leq \alpha_M(v_1) \vee \alpha_N(v_1) = \alpha_R(v_1)$. And $\zeta_R(0) = \zeta_M(0) \wedge \zeta_N(0) \geq \zeta_M(v_1) \wedge \zeta_N(v_1) = \zeta_R(v_1)$. Also,

$$\begin{aligned} \alpha_{R}(v_{1}) &= \alpha_{M}(v_{1}) \lor \alpha_{N}(v_{1}) \\ &\leq max[\alpha_{M}(v_{1} \ast v_{2}), \alpha_{M}(v_{2})] \lor max[\alpha_{N}(v_{1} \ast v_{2}), \alpha_{N}(v_{2})] \\ &= max\{[\alpha_{M}(v_{1} \ast v_{2}) \lor \alpha_{N}(v_{1} \ast v_{2})], [\alpha_{M}(v_{2}) \lor \alpha_{N}(v_{2})]\} \\ &= max[\alpha_{R}(v_{1} \ast v_{2}), \alpha_{R}(v_{2})]. \end{aligned}$$

In the similer way, We can verify that, $\zeta_R(v_1) \ge \min[\zeta_R(v_1 * v_2), \zeta_R(v_2)]$. Thus it is proved.

EXAMPLE 7. Consider a BCK-algebra $V = \{0, k', l', m', n'\}$ as follows:

*	0	$k^{'}$	ľ	$m^{'}$	$n^{'}$
0	0	0	0	0	0
k^{\prime}	$k^{'}$	0	0	0	0
l^{\prime}	ľ	l^{\prime}	0	l^{\prime}	0
$m^{'}$	$m^{'}$	$m^{'}$	$m^{'}$	0	0
$n^{'}$	$n^{'}$	0 0 l' m' l'	$k^{'}$	$l^{'}$	0

Let an IFS $M = (\alpha_M, \zeta_M)$ in V, is given as follows:

V	0	$k^{'}$	$l^{'}$	$m^{'}$	$n^{'}$
α_M	0	0.62	0.65	0.62	0.65
ζ_M	1	0.34	0.32	0.34	0.32

Then $M = (\alpha_M, \zeta_M)$ is a DIF-ideal in V.

Again let, $N = (\alpha_N, \zeta_N)$ be an IFS in V defined by

V	0	k^{\prime}	l^{\prime}	$m^{'}$	$n^{'}$
α_N	0.22	0.56	0.58	0.56	0.58
ζ_N	0.72	0.44	0.42	0.44	0.42

Then $N = (\alpha_N, \zeta_N)$ is a DIF-ideal in V.

Now let $P = M \cap N = (\alpha_P, \zeta_P)$, Where $\alpha_P = \alpha_M \wedge \alpha_N$ and $\zeta_P = \zeta_M \vee \zeta_N$. Then P is an IFS which can be defined by:

V	0	k^{\prime}	$l^{'}$	$m^{'}$	$n^{'}$
α_P	0	0.56	0.58	0.56	0.58
ζ_P	1	0.44	0.42	0.44	0.42

Then $P = (\alpha_P, \zeta_P)$ is a DIF-ideal in V.

We also assume that $Q = M \cup N = (\alpha_Q, \zeta_Q)$. Where $\alpha_Q = \alpha_M \vee \alpha_N$ and $\zeta_R = \zeta_M \wedge \zeta_N$.

Now $Q = (\alpha_Q, \zeta_Q)$ has been defined as:

V	0	$k^{'}$	l^{\prime}	$m^{'}$	$n^{'}$
α_Q	0.22	0.62	0.65	0.62	0.65
ζ_Q	0.72	0.34	0.32	0.34	0.32

Then $Q = (\alpha_Q, \zeta_Q)$ is a DIF-ideal in V.

Let $M = (\alpha_M, \zeta_M)$ be an IFS in V, then UC of level c and LC of level d of the IFS $M = (\alpha_M, \zeta_M)$ in V, is as followes:

$$\alpha_{M,c}^{\leq} = \{ v_1 \in V / \alpha_M(v_1) \le c \},\$$

$$\zeta_{M,d}^{\geq} = \{ v_1 \in V / \zeta_M(v_1) \ge d \}, \text{where } c, d \in [0, 1].$$

Theorem 2.3.12. If $M = (\alpha_M, \zeta_M)$ be a DIF-ideal in V, then $\alpha_{M,c}^{\leq}$ and $\zeta_{M,d}^{\geq}$ are ideals in V for $c, d \in [0, 1]$

Proof. Let $M = (\alpha_M, \zeta_M)$ be a DIF-ideal in V, and let $c \in [0, 1]$ with $\alpha_M(0) \leq c$.

Then we have, $\alpha_M(0) \leq \alpha_M(v_1), \forall v_1 \in V$, but $\alpha_M(v_1) \leq c, \forall v_1 \in \alpha_{M,c}^{\leq}$. So $0 \in \alpha_{M,c}^{\leq}$. Let $v_1, v_2 \in V$ be such that $v_1 * v_2 \in \alpha_{M,c}^{\leq}$ and $v_2 \in \alpha_{M,c}^{\leq}$, then, $\alpha_M(v_1 * v_2) \in \alpha_{M,c}^{\leq}$ and $\alpha_M(v_2) \in \alpha_{M,c}^{\leq}$. So, $\alpha_M(v_1 * v_2) \leq c$ and $\alpha_M(v_2) \leq c$.

Since α_M is a DF-ideal in V, it follow that, $\alpha_M(v_1) \leq \alpha_M(v_1 * v_2) \bigvee \alpha_M(v_2) \leq c$ and hence $v_1 \in \alpha_{M,c}^{\leq}$. Therefore $\alpha_{M,c}^{\leq}$ is ideal in V for $c \in [0, 1]$.

In similar way, it is proved that $\zeta_{M,d}^{\geq}$ is ideal in V for $c, d \in [0, 1]$.

Theorem 2.3.13. If $\alpha_{M,c}^{\leq}$ and $\zeta_{M,d}^{\geq}$ are either contained no elements or formed ideals in V for $c, d \in [0, 1]$, then $M = [\alpha_M, \zeta_M]$ is a DIF-ideal in V.

Proof. Let $\alpha_{M,c}^{\leq}$ and $\zeta_{M,d}^{\geq}$ be either contained no elements or formed ideals in V for $c, d \in [0, 1]$. For any $v_1 \in V$, let $\alpha_M(v_1) = c$ and $\zeta_M(v_1) = d$. Then $v_1 \in \alpha_{M,c}^{\leq} \bigwedge \zeta_{M,d}^{\geq}$, so $\alpha_{M,c}^{\leq} \neq \phi \neq \zeta_{M,d}^{\geq}$. Since $\alpha_{M,c}^{\leq}$ and $\zeta_{M,d}^{\geq}$ are ideals in V, therefore $0 \in \alpha_{M,c}^{\leq} \bigwedge \zeta_{M,d}^{\geq}$.

Hence, $\alpha_M(0) \leq c = \alpha_M(v_1)$ and $\zeta_M(0) \geq d = \zeta_M(v_1)$, where $v_1 \in V$.

If there exist $v'_1, v'_2 \in V$ such that $\alpha_M(v'_1) > max\{\alpha_M(v'_1 * v'_2), \alpha_M(v'_2)\}$, then by taking, $c_0 = \frac{1}{2}(\alpha_M(v'_1) + max\{\alpha_M(v'_1 * v'_2), \alpha_M(v'_2)\}.$

We have, $\alpha_M(v'_1) > c_0 > max\{\alpha_M(v'_1 * v'_2), \alpha_M(v'_2)\}$. So, $v'_1 \notin \alpha_{M,c_0}^{\leq}, (v'_1 * v'_2) \in \alpha_{M,c_0}^{\leq}$ and $v'_2 \in \alpha_{M,c_0}^{\leq}$, that is α_{M,c_0}^{\leq} is not an ideal in V, Hence a contradiction arises.

Eventually, let there exist $p, q \in V$ such that $\zeta_M(p) < \min\{\zeta_M(p*q), \zeta_M(q)\}$. Taking $d_0 = \frac{1}{2}(\zeta_M(p') + \min\{\zeta_M(p'*q'), \zeta_M(q')\},$ then $\min\{\zeta_M(p'*q'), \zeta_M(q')\} > d_0 > \zeta_M(p').$

Therefore, $p * q \in \zeta_{M,d}^{\geq}$ and $q \in \zeta_{M,d}^{\geq}$ but $p \notin \zeta_{M,d}^{\geq}$. Again a contradiction. This completes the proof.

But if an IFS M is not a DIF-ideal in V, then $\alpha_{M,c}^{\leq}$ and $\zeta_{M,d}^{\geq}$ are not ideals in V for $c, d \in [0, 1]$, which is illustrated by the example below.

EXAMPLE 8. Let $V = \{0, d_1, e_1, f_1\}$ be a BCK-algebra [using Example 6] with the following cayley table:

*		d_1	e_1	f_1
0	0	0	0	0
d_1	d_1	0	d_1	d_1
e_1	e_1	d_1	0	0
f_1	0 d_1 e_1 f_1	d_1	f_1	0

Let $M = (\alpha_M, \zeta_M)$ be an IFS in V defined by

V
 0

$$d_1$$
 e_1
 f_1
 α_M
 0.1
 0.5
 0.7
 0.6

 ζ_M
 0.8
 0.4
 0.2
 0.4

Which is not a DIF-ideal in V.

For c = 0.67 and d = 0.25, we get $\alpha_{M,c}^{\leq} = \zeta_{M,d}^{\geq} = \{0, d_1, f_1\}$, which are not ideals in V, as $e_1 * d_1 = d_1 \in \{0, d_1, f_1\}$, and $d_1 \in \{0, d_1, f_1\}$, but $e_1 \notin \{0, d_1, f_1\}$.

2.4 Summary

The purpose of this chapter is to define the notion of DIFSAs, DIF-ideals as an extention of DFSAs and DF-ideals in BCK/BCI-algebras. It is shown that the union of two DIF-ideals in BCK/BCI-algebra is also a DIF-ideal. At the same time we also investigated that every DIF-ideal must be a DIFSA but in general it may not be true in reverse direction, that is illustrated by an example. Further a condition is presented to exibit that a DIFSA becomes a DIF-ideal in BCK/BCI-algebra.