Chapter 8

Doubt interval-valued fuzzy ideals in *BF*-algebras^{*}

8.1 Introduction

Andrzej Walendziak introduced the BF-algebra [83] in 2007.

" [83] An algebra (V; *, 0) is said to be a *BF*-algebra if it fulfills the below stated postulates:

(I)
$$u_1 * u_1 = 0$$

(II) $u_1 * 0 = u_1$
(III) $0 * (u_1 * u_2) = (u_2 * u_1)$, for all $u_1, u_2 \in U$."

Let $M = [0; \infty)$. Define the binary operation * on M as follows: $u_1 * u_2 = |u_1 - u_2|, \forall u_1, u_2 \in M$. Then (M; *, 0) is a *BF*-algebra.

In [89], Zadeh made an extension of a FS by an IVFS as stated previous chapter.

Saeid and Rezvani [64] extends the concepts of BF-algebra to fuzzy set. Several researchers investigated properties of FSAs and ideals in BCK/BCI-algebras and other algebraic structers see [11], [12], [41], [43], [49], [53], [56], [58], [68], [69], [70], [74]].

Extending the idea of fuzzy *BF*-SAs, Zarandi and Saeid [90] defined IVF *BF*-SAs [90] (IVF *BF*-SA) An IVFS *M* in *U* is called an IVF *BF*-SA in *U* if $\bar{\mu}_M(u_1 * u_2) \ge rmin\{\bar{\mu}_M(u_1), \bar{\mu}_M(u_2)\}$, for all $u_1, u_2 \in U$.

Communicated

In this chapter we are going to investigate the concept of DIVFSA and DIVF-ideals in BF-algebras. After a detailed study of its properties, we come to this conclusion that in BF-algebras, an IVFS is a DIVF-ideal in BF-algebras if and only if the complement of this IVFS is an IVF-ideal. Finally, results based on DIVFSAs of BF-algebras and DIVF-ideals of BF-algebras are established. At the same time the product of DIVFideals in BF-algebras has been introduced.

8.2 DIVFSA in *BF*-algebras

In this section, we define DIVFSA in BF-algebras and investigated its properties.

Definition 8.2.1. An IVFS M in U is named as a DIVFSA in U if $\overline{\Upsilon}_M(u_1 * u_2) \leq rmax\{\overline{\Upsilon}_M(u_1), \overline{\Upsilon}_M(u_2)\}$ for all $u_1, u_2 \in U$.

EXAMPLE 35. Let $U = \{0, k, l, m, n\}$ be a BF-algebra as follows:

*			l	m	n
0	0	n	m	l	k
k	k	0		m	l
l	l	k		n	m
m	m	l	k	0	n
n	0 k l m n	m	l	k	0

Let $M = \{(u_1, \bar{\Upsilon}_M(u_1)) : u_1 \in U\}$ be an IVFS defined as $\bar{\Upsilon}_M(0) = [0, 0.2], \bar{\Upsilon}_M(k) = [0.2, 0.4], \bar{\Upsilon}_M(l) = [0.3, 0.4], \bar{\Upsilon}_M(m) = [0.5, 0.6], \bar{\Upsilon}_M(n) = [0.3, 0.4].$ Then M is a DIVF BF-SA in U.

Theorem 8.2.1. An IVFS $M = (\Upsilon_M^L, \Upsilon_M^U)$ in U is a DIVFSA of a BF-algebra U if and only if the FSs Υ_M^L and Υ_M^U are DFSAs in U.

Proof: Let Υ_M^L and Υ_M^U are DFSAs in U and $u_1, u_2 \in U$, then

$$\begin{split} \bar{\Upsilon}_{M}(u_{1} * u_{2}) &= [\Upsilon_{M}^{L}(u_{1} * u_{2}), \Upsilon_{M}^{U}(u_{1} * u_{2})] \\ &\leq [max(\Upsilon_{M}^{L}(u_{1}), \Upsilon_{M}^{L}(u_{2})), max(\Upsilon_{M}^{U}(u_{1}), \Upsilon_{M}^{U}(u_{2}))] \\ &= rmax([\Upsilon_{M}^{L}(u_{1}), \Upsilon_{M}^{U}(u_{1})], [\Upsilon_{M}^{L}(u_{2}), \Upsilon_{M}^{U}(u_{2})]) \\ &= rmax\{\bar{\Upsilon}_{M}(u_{1}), \bar{\Upsilon}_{M}(u_{2})\}. \end{split}$$

Hence, $M = (\Upsilon_M^L, \Upsilon_M^U)$ in U is a DIVFSA in a *BF*-algebra U.

Conversely, let $M = (\Upsilon_M^L, \Upsilon_M^U)$ be a DIVFSA in a *BF*-algebra *U*. Then for any $u_1, u_2 \in U$, we have

$$\begin{split} [\Upsilon_{M}^{L}(u_{1} * u_{2}), \Upsilon_{M}^{U}(u_{1} * u_{2})] &= \bar{\Upsilon}_{M}(u_{1} * u_{2}) \\ &\leq rmax\{\bar{\Upsilon}_{M}(u_{1}), \bar{\Upsilon}_{M}(u_{2})\} \\ &= rmax([\Upsilon_{M}^{L}(u_{1}), \Upsilon_{M}^{U}(u_{1})], [\Upsilon_{M}^{L}(u_{2}), \Upsilon_{M}^{U}(u_{2})]) \\ &= [max(\Upsilon_{M}^{L}(u_{1}), \Upsilon_{M}^{L}(u_{2})), max(\Upsilon_{M}^{U}(u_{1}), \Upsilon_{M}^{U}(u_{2}))]. \end{split}$$

Therefore, $\Upsilon_M^L(u_1 * u_2) \leq max(\Upsilon_M^L(u_1), \Upsilon_M^L(u_2))$ and $\Upsilon_M^U(u_1 * u_2) \leq max(\Upsilon_M^U(u_1), \Upsilon_M^U(u_2))$, hence Υ_M^L and Υ_M^U are DFSAs in U. Thus the proof ends.

Lemma 8.2.1. If $M = \{(u_1, \bar{\Upsilon}_M(u_1)) : u_1 \in U\}$ is a DIVFSA in U, then for all $u_1 \in U, \ \bar{\Upsilon}_M(0) \leq \bar{\Upsilon}_M(u_1).$

Proof:

$$\begin{split} \bar{\Upsilon}_M(0) &= \bar{\Upsilon}_M(u_1 * u_1) \\ &\leq rmax\{\bar{\Upsilon}_M(u_1), \bar{\Upsilon}_M(u_1)\} \\ &= rmax([\Upsilon^L_M(u_1), \Upsilon^U_M(u_1)], [\Upsilon^L_M(u_1), \Upsilon^u_M(u_1)]) \\ &= \bar{\Upsilon}_M(u_1). \end{split}$$

This completes the proof.

Corollary 8.2.1. Let $M = \{(u_1, \overline{\Upsilon}_M(u_1)) : u_1 \in U\}$ be a DIVFSA in U. Then the set, $D_{\overline{\Upsilon}_M} = \{u_1 \in U/\overline{\Upsilon}_M(u_1) = \overline{\Upsilon}_M(0)\}$, is a BF-SA in U.

Proof: Here $M = \{(u_1, \bar{\Upsilon}_M(u_1)) : u_1 \in U\}$ is a DIVFSA in U. Obviously, $0 \in D_{\bar{\Upsilon}_M}$. Now, let $u_1, u_2 \in D_{\bar{\Upsilon}_M}$, then $\bar{\Upsilon}_M(u_1) = \bar{\Upsilon}_M(0) = \bar{\Upsilon}_M(u_2)$. Also, $\bar{\Upsilon}_M(u_1 * u_2) \leq rmax\{\bar{\Upsilon}_M(u_1), \bar{\Upsilon}_M(u_2)\} = rmax\{\bar{\Upsilon}_M(0), \bar{\Upsilon}_M(0)\} = \bar{\Upsilon}_M(0)$.

Again, by Lemma 3.4, $\bar{\Upsilon}_M(0) \leq \bar{\Upsilon}_M(u_1 * u_2)$. So, $\bar{\Upsilon}_M(u_1 * u_2) = \bar{\Upsilon}_M(0)$. This means that $u_1 * u_2 \in D_{\bar{\Upsilon}_M}$. Hence, $D_{\bar{\Upsilon}_M}$ is a *BF*-SA in *U*.

Definition 8.2.2. Let M and N be two IVDF BF-SAs in U. Then union of M and Nis defined as $M \cup N = \overline{\Upsilon}_{M \cup N}(u_1) = [\Upsilon^L_{M \cup N}(u_1), \Upsilon^U_{M \cup N}(u_1)] = [max{\Upsilon^L_M(u_1), \Upsilon^L_N(u_1)}, max{\Upsilon^U_M(u_1), for all <math>u_1 \in U$. **Theorem 8.2.2.** Union of any two DIVFSAs in a BF-algebra U, is also a DIVFSA in U.

Proof: Let P and Q be two DIVF BF-SAs in U. Again let $u_1, u_2 \in P \cup Q$. Then $u_1, u_2 \in P$ and $u_1, u_2 \in Q$. Now

$$\begin{split} \bar{\Upsilon}_{P\cup Q}(u_1 * u_2) &= [\Upsilon^L_{P\cup Q}(u_1 * u_2), \Upsilon^U_{P\cup Q}(u_1 * u_2)] \\ &= [max(\Upsilon^L_P(u_1 * u_2), \Upsilon^L_Q(u_1 * u_2)), max(\Upsilon^U_P(u_1 * u_2), \Upsilon^U_Q(u_1 * u_2))] \\ &\leq [max(\Upsilon^L_{P\cup Q}(u_1), \Upsilon^L_{P\cup Q}(u_2)), max(\Upsilon^U_{P\cup Q}(u_1), \Upsilon^U_{P\cup Q}(u_2))] \\ &= rmax\{\bar{\Upsilon}_{P\cup Q}(u_1), \bar{\Upsilon}_{P\cup Q}(u_2)\} \end{split}$$

Thus the proof ends.

Also, the above theorem is interpreted with the help of the example given below. EXAMPLE 36. Consider a BF-algebra $U = \{0, i, j, k\}$ with the table as follows:

	0	i	j	k
0	$\begin{vmatrix} 0\\i \end{vmatrix}$	k	0	i
i	i	0	i	k
j	$egin{array}{c} j \ k \end{array}$	k	0	i
k	k	i	k	0

Let $M = \{(u_1, \bar{\Upsilon}_M(u_1)) : u_1 \in U\}$ be an IVFS defined as

U	0	i	j	k
$\bar{\Upsilon}_M$	[0.1, 0.2]	[0.2, 0.3]	[0.3, 0.5]	[0.2, 0.3]

Then M is a DIVFSA in U.

Again, let $N = \{(u_1, \bar{\Upsilon}_N(u_1)) : u_1 \in U\}$ be an IVFS defined as $\frac{U | 0 \quad i \quad j \quad k}{\bar{\Upsilon}_N | [0, 0.1] \quad [0.1, 0.2] \quad [0.4, 0.5] \quad [0.1, 0.2]}$

Then N is a DIVFSA in U.

We also assume that $R = M \cup N$ and R is defined as:

$$U$$
 0
 i
 j
 k
 $\bar{\Upsilon}_P$
 [0.1, 0.2]
 [0.2, 0.3]
 [0.4, 0.5]
 [0.2, 0.3]

Then R is a DIVFSA in U.

Theorem 8.2.3. Let $M = \{(u_1, \overline{\Upsilon}_M(u_1)) : u_1 \in U\}$ be a DIVFSA in U. Then for any $u_1 \in U$, we have (i) $\overline{\Upsilon}_M(u_1^m * u_1) \leq \overline{\Upsilon}_M(u_1)$, if m is odd (ii) $\overline{\Upsilon}_M(u_1^m * u_1) = \overline{\Upsilon}_M(u_1)$, if m is even.

Proof: (i) Let $u_1 \in U$, then $\bar{\Upsilon}_M(u_1 * u_1) = \bar{\Upsilon}_M(0) \leq \bar{\Upsilon}_M(u_1)$ [by Lemma8.2.1]. If m is odd then let m = 2p - 1, where p is some positive integer . Now, assume that $\bar{\Upsilon}_M(u_1^{2p-1} * u_1) \leq \bar{\Upsilon}_M(u_1)$, for some positive integer p. Then,

$$\begin{split} \bar{\Upsilon}_M(u_1^{2(p+1)-1} * u_1) &= \bar{\Upsilon}_M(u_1^{2p+1} * u_1), \\ &= \bar{\Upsilon}_M(u_1^{2p-1} * (u_1 * (u_1 * u_1))) \\ &= \bar{\Upsilon}_M(u_1^{2p-1} * (u_1 * 0)) \\ &= \bar{\Upsilon}_M(u_1^{2p-1} * u_1) \\ &\leq \bar{\Upsilon}_M(u_1). \end{split}$$

Hence, $\overline{\Upsilon}_M(u_1^m * u_1) \leq \overline{\Upsilon}_M(u_1)$, if *m* is odd.

(ii) Again, let m be even, and m = 2q.

Now for q = 1, $\overline{\Upsilon}_M(u_1^2 * u_1) = \overline{\Upsilon}_M(u_1 * (u_1 * u_1)) = \overline{\Upsilon}_M(u_1 * 0) = \overline{\Upsilon}_M(u_1)$. Also assume that, $\overline{\Upsilon}_M(u_1^{2q} * u_1) = \overline{\Upsilon}_M(u_1)$, for some positive integer q.

Then,

$$\begin{split} \bar{\Upsilon}_M(u_1^{2(q+1)} * u_1) &= \bar{\Upsilon}_M(u_1^{2q} * (u_1 * (u_1 * u_1))) \\ &= \bar{\Upsilon}_M(u_1^{2q} * u_1) \\ &= \bar{\Upsilon}_M(u_1). \end{split}$$

Hence, $\overline{\Upsilon}_M(u_1^m * u_1) = \overline{\Upsilon}_M(u_1)$, if *m* is even.

8.3 DIVF-ideal in *BF*-algebras

In this section, we define DIVF-ideal in *BF*-algebras and investigated its properties.

Definition 8.3.1. An IVFS M in U is named as a **DIVF-ideal** of BF-algebra U if (i) $\overline{\Upsilon}_M(0) \leq \overline{\Upsilon}_M(u_1)$ (ii) $\overline{\Upsilon}_M(u_1) \leq rmax\{\overline{\Upsilon}_M(u_1 * u_2), \overline{\Upsilon}_M(u_2)\}$ for all $u_1, u_2 \in U$. EXAMPLE 37. Let $U = \{0, q, r\}$ be a BF-algebra with the table given below:

Let M be an IVFS in U as defined by

U	0	q	r	
$\bar{\Upsilon}_M$	[0.2, 0.3]	[0.4, 0.6]	[0.6, 0.8]	

Then M is a DIVF-ideal in U.

Proposition 8.3.1. Let $\overline{\Upsilon}_M(u_1)$ be a DIVF-ideal in U. Then (a) If $u_1 \leq u_2$ then $\overline{\Upsilon}_M(u_1) \leq \overline{\Upsilon}_M(u_2)$. (b) If $u_1 * u_2 \leq u_3$ then $\overline{\Upsilon}_M(u_1) \leq rmax\{\overline{\Upsilon}_M(u_2), \overline{\Upsilon}_M(u_3)\}$, for all $u_1, u_2, u_3 \in U$.

Proof: (a) Let $u_1 \le u_2$, then $u_1 * u_2 = 0$. Now

$$\begin{split} \bar{\Upsilon}_M(u_1) &\leq \ rmax\{\bar{\Upsilon}_M(u_1 * u_2), \bar{\Upsilon}_M(u_2)\} \quad [\text{Since } \bar{\Upsilon}_M(u_1) \text{ is a DIVF-ideal}] \\ &= \ rmax\{\bar{\Upsilon}_M(0), \bar{\Upsilon}_M(u_2)\} \\ &= \ \bar{\Upsilon}_M(u_2) \quad [\text{Since } \bar{\Upsilon}_M(0) \leq \bar{\Upsilon}_M(u_2) \text{ for DIVF-ideal}]. \end{split}$$

So, $\overline{\Upsilon}_M(u_1) \leq \overline{\Upsilon}_M(u_2)$.

(b) Here $u_1 * u_2 \le u_3$, therefore $(u_1 * u_2) * u_3 = 0$. Now,

$$\begin{split} \bar{\Upsilon}_M(u_1 * u_2) &\leq \ rmax\{\bar{\Upsilon}_M((u_1 * u_2) * u_3), \bar{\Upsilon}_M(u_3)\} \quad [\text{Since } \bar{\Upsilon}_M(u_1) \text{ is a DIVF-ideal}] \\ &= \ rmax\{\bar{\Upsilon}_M(0), \bar{\Upsilon}_M(u_3)\} \\ &= \ \bar{\Upsilon}_M(u_3) \quad [\text{Since } \bar{\Upsilon}_M(0) \leq \bar{\Upsilon}_M(u_3) \text{ for DIVF-ideal}]. \end{split}$$

Therefore, $\overline{\Upsilon}_M(u_1 * u_2) \leq \overline{\Upsilon}_M(u_3)$.

Again, as $\overline{\Upsilon}_M(u_1)$ is a DIVF-ideal, so

$$\begin{split} \bar{\Upsilon}_M(u_1) &\leq \ rmax\{\bar{\Upsilon}_M(u_1 \ast u_2), \bar{\Upsilon}_M(u_2)\} \\ &\leq \ rmax\{\bar{\Upsilon}_M(u_3), \bar{\Upsilon}_M(u_2)\} \quad [\text{Since } \bar{\Upsilon}_M(u_1 \ast u_2) \leq \bar{\Upsilon}_M(u_3)]. \end{split}$$

Hence, $\overline{\Upsilon}_M(u_1) \leq rmax\{\overline{\Upsilon}_M(u_2), \overline{\Upsilon}_M(u_3)\}$, for all $u_1, u_2, u_3 \in U$.

Theorem 8.3.2. Let $M = \{(u_1, \bar{\Upsilon}_M(u_1)) : u_1 \in U\}$ be a DIVF-ideal of a BF-algebra U. Then the set, $D_{\bar{\Upsilon}_M} = \{u_1 \in U/\bar{\Upsilon}_M(u_1) = \bar{\Upsilon}_M(0)\}$, is an ideal in U.

Proof: $M = \{(u_1, \bar{\Upsilon}_M(u_1)) : u_1 \in U\}$ is a DIVF-ideal in U. Obviously, $0 \in D_{\bar{\Upsilon}_M}$. Now, let $u_1 * u_2, u_2 \in D_{\bar{\Upsilon}_M}$, then $\bar{\Upsilon}_M(u_1 * u_2) = \bar{\Upsilon}_M(0) = \bar{\Upsilon}_M(u_2)$.

Now,

$$\begin{split} \bar{\Upsilon}_M(u_1) &\leq \ rmax\{\bar{\Upsilon}_M(u_1 * u_2), \bar{\Upsilon}_M(u_2)\}\\ &= \ rmax\{\bar{\Upsilon}_M(0), \bar{\Upsilon}_M(0)\}\\ &= \ \bar{\Upsilon}_M(0). \end{split}$$

Therefore, $\bar{\Upsilon}_M(u_1) \leq \bar{\Upsilon}_M(0)$. Also, $\bar{\Upsilon}_M(0) \leq \bar{\Upsilon}_M(u_1)$ [Since M is a DIVF-ideal]. Hence, $\bar{\Upsilon}_M(u_1) = \bar{\Upsilon}_M(0)$. So, $u_1 \in D_{\bar{\Upsilon}_M}$. That is, $u_1 * u_2, u_2 \in D_{\bar{\Upsilon}_M}$, implies that $u_1 \in D_{\bar{\Upsilon}_M}$. So, $D_{\bar{\Upsilon}_M}$ is an ideal. Hence the proof ends.

Theorem 8.3.3. Let $M = \{(u_1, \overline{\Upsilon}_M(u_1)) : u_1 \in U\}$ be a DIVFS Of a BF-algebra U, then M is a DIVF-ideal in U iff its complement is DIVF-ideal in U.

Proof: Let M is an IVF-ideal in U, to prove M^c (complement of M) is DIVF-ideal, let $u_1, u_2, u_3 \in U$. Now,

$$\begin{split} \bar{\Upsilon}_{M}^{c}(0) &= 1 - \bar{\Upsilon}_{M}(0) \\ &\leq 1 - \bar{\Upsilon}_{M}(u_{1}) \quad [\text{As } \bar{\Upsilon}_{M}(0) \geq \bar{\Upsilon}_{M}(u_{1})] \\ &= \bar{\Upsilon}_{M}^{c}(u_{1}). \end{split}$$

So, $\bar{\Upsilon}^c_M(0) \leq \bar{\Upsilon}^c_M(u_1)$, for all $u_1 \in U$.

Again,

$$\begin{split} \bar{\Upsilon}_{M}^{c}(u_{1}) &= 1 - \bar{\Upsilon}_{M}(u_{1}) \\ &\leq 1 - rmin\{\bar{\Upsilon}_{M}(u_{1} * u_{2}), \bar{\Upsilon}_{M}(u_{2})\} \quad [\text{As } \bar{\Upsilon}_{M}(u_{1}) \geq rmin\{\bar{\Upsilon}_{M}(u_{1} * u_{2}), \bar{\Upsilon}_{M}(u_{2})\} \\ &= 1 - rmin\{1 - \bar{\Upsilon}_{M}^{c}(u_{1} * u_{2}), 1 - \bar{\Upsilon}_{M}^{c}(u_{2})\} \\ &= rmax\{\bar{\Upsilon}_{M}^{c}(u_{1} * u_{2}), \bar{\Upsilon}_{M}^{c}(u_{2})\}. \end{split}$$

This implies that, M^c is a DIVF-ideal.

Conversely, let M^c is DIVF-ideal in U. Then, $\bar{\Upsilon}^c_M(0) \leq \bar{\Upsilon}^c_M(u_1)$ and $\bar{\Upsilon}^c_M(u_1) \leq rmax\{\bar{\Upsilon}^c_M(u_1 * u_2), \bar{\Upsilon}^c_M(u_2)\}.$

Now, $\bar{\Upsilon}_{M}^{c}(0) \leq \bar{\Upsilon}_{M}^{c}(u_{1})$, which implies that, $1 - \bar{\Upsilon}_{M}(0) \leq 1 - \bar{\Upsilon}_{M}(u_{1})$, that is, $\bar{\Upsilon}_{M}(0) \geq \bar{\Upsilon}_{M}(u_{1})$. Again, $\bar{\Upsilon}_{M}^{c}(u_{1}) \leq rmax\{\bar{\Upsilon}_{M}^{c}(u_{1}*u_{2}), \bar{\Upsilon}_{M}^{c}(u_{2})\}$, then $1 - \bar{\Upsilon}_{M}(u_{1}) \leq rmax\{1 - \bar{\Upsilon}_{M}(u_{1}*u_{2}), 1 - \bar{\Upsilon}_{M}(u_{2})\}$, next $\bar{\Upsilon}_{M}(u_{1}) \geq rmin\{\bar{\Upsilon}_{M}(u_{1}*u_{2}), \bar{\Upsilon}_{M}(u_{2})\}$, which implies that, M is an IVF-ideal in U.

Theorem 8.3.4. Let $M = \{(u_1, \overline{\Upsilon}_M(u_1)) : u_1 \in U\}$ be a DIVFSA in U, if $\overline{\Upsilon}_M(u_1) \leq rmax\{\overline{\Upsilon}_M(u_2), \overline{\Upsilon}_M(u_3)\}, \text{ with } u_1 * u_2 \leq u_3, \text{ then } M \text{ is a DIVF-ideal in } U.$

Proof: Here $M = \{(u_1, \bar{\Upsilon}_M(u_1)) : u_1 \in U\}$ is a DIVFSA in U. We have, $\bar{\Upsilon}_M(0) \leq \bar{\Upsilon}_M(u_1)$. Also since, $u_1 * (u_1 * u_2) \leq u_2$ and by the hypothesis, $\bar{\Upsilon}_M(u_1) \leq rmax\{\bar{\Upsilon}_M(u_1 * u_2), \bar{\Upsilon}_M(u_2)\}$. So, M is a DIVF-ideal in U.

Theorem 8.3.5. An IVFS $M = (\Upsilon_M^L, \Upsilon_M^U)$ in U is a DIVF-ideal of a BF-algebra U iff the FSs Υ_M^L and Υ_M^U are DF-ideals in U.

Proof: Let Υ_M^L and Υ_M^U are DF-ideals in U and $u_1, u_2 \in U$, then $\Upsilon_M^L(0) \leq \Upsilon_M^L(u_1)$ and $\Upsilon_M^U(0) \leq \Upsilon_M^U(u_1)$. Also, $\Upsilon_M^L(u_1) \leq max[\Upsilon_M^L(u_1 * u_2), \Upsilon_M^L(u_2)]$ and $\Upsilon_M^U(u_1) \leq max[\Upsilon_M^U(u_1 * u_2), \Upsilon_M^U(u_2)]$. Now,

$$\begin{split} \bar{\Upsilon}_{M}(u_{1}) &= [\Upsilon_{M}^{L}(u_{1}), \Upsilon_{M}^{U}(u_{1})] \\ &\leq [max(\Upsilon_{M}^{L}(u_{1} * u_{2}), \Upsilon_{M}^{L}(u_{2})), max(\Upsilon_{M}^{U}(u_{1} * u_{2}), \Upsilon_{M}^{U}(u_{2}))] \\ &= rmax\{\bar{\Upsilon}_{M}(u_{1} * u_{2}), \bar{\Upsilon}_{M}(u_{2})\}. \end{split}$$

Therefore, $\bar{\Upsilon}_M(u_1) \leq rmax\{\bar{\Upsilon}_M(u_1 * u_2), \bar{\Upsilon}_M(u_2)\}$. Hence, $M = (\Upsilon^L_M, \Upsilon^U_M)$ in U is a DIVF-ideal of a *BF*-algebra U.

Conversely, let $M = (\Upsilon_M^L, \Upsilon_M^U)$ in U be a DIVF-ideal of a *BF*-algebra U. Then for any $u_1, u_2 \in U$, we have

$$\begin{split} [\Upsilon_{M}^{L}(u_{1}),\Upsilon_{M}^{U}(u_{1})] &= \bar{\Upsilon}_{M}(u_{1}) \\ &\leq rmax\{\bar{\Upsilon}_{M}(u_{1}*u_{2}),\bar{\Upsilon}_{M}(u_{2})\} \\ &= [max(\Upsilon_{M}^{L}(u_{1}*u_{2}),\Upsilon_{M}^{L}(u_{2})),max(\Upsilon_{M}^{U}(u_{1}*u_{2}),\Upsilon_{M}^{U}(u_{2}))]. \end{split}$$

Therefore, $\Upsilon_M^L(u_1) \leq max[\Upsilon_M^L(u_1 * u_2), \Upsilon_M^L(u_2)]$ and $\Upsilon_M^U(u_1) \leq max[\Upsilon_M^U(u_1 * u_2), \Upsilon_M^U(u_2)]$, hence we get Υ_M^L and Υ_M^U are DF-ideal in U. Thus the proof is completed.

Definition 8.3.2. Let M and N be two DIVF BF-ideals in U. Then union of M and N is given as

 $M \cup N = \overline{\Upsilon}_{M \cup N}(u_1)$ = $[\Upsilon^L_{M \cup N}(u_1), \Upsilon^U_{M \cup N}(u_1)] = [max\{\Upsilon^L_M(u_1), \Upsilon^L_N(u_1)\}, max\{\Upsilon^U_M(u_1), \Upsilon^U_N(u_1)\}], \text{ for all } u_1 \in U.$

Theorem 8.3.6. Union of any two DIVF-ideals of a BF-algebra U, is also a DIVFideal in U.

Proof: Let M and N be two DIVF-ideals in U. Now let $u_1, u_2 \in M \cup N$. Then $u_1, u_2 \in M$ and $u_1, u_2 \in N$. Again let, $C = M \cup N = (\bar{\Upsilon}_C)$, where $\bar{\Upsilon}_C = \bar{\Upsilon}_M \vee \bar{\Upsilon}_N$. Let $u_1, u_2 \in U$, then,

$$\begin{split} \bar{\Upsilon}_C(0) &= \bar{\Upsilon}_M(0) \vee \bar{\Upsilon}_N(0) \\ &\leq \bar{\Upsilon}_M(u_1) \vee \bar{\Upsilon}_N(u_1) \\ &= \bar{\Upsilon}_C(u_1). \end{split}$$

Also,

$$\begin{split} \bar{\Upsilon}_{M\cup N}(u_{1}) &= [\Upsilon_{M\cup N}^{L}(u_{1}), \Upsilon_{M\cup N}^{U}(u_{1})] \\ &= [max(\Upsilon_{M}^{L}(u_{1}), \Upsilon_{N}^{L}(u_{1})), max(\Upsilon_{M}^{U}(u_{1}), \Upsilon_{N}^{U}(u_{1}))] \\ &\leq [max(\Upsilon_{M\cup N}^{L}(u_{1} * u_{2}), \Upsilon_{M\cup N}^{L}(u_{2})), max(\Upsilon_{M\cup N}^{U}(u_{1} * u_{2}), \Upsilon_{M\cup N}^{U}(u_{2}))] \\ &= rmax\{\bar{\Upsilon}_{M\cup N}(u_{1} * u_{2}), \bar{\Upsilon}_{M\cup N}(u_{2})\}. \end{split}$$

Thus the proof ends.

Also, the theorem is interpreted with the help of the example given below.

EXAMPLE 38. Let $U = \{0, e, f, g\}$ be a BF-algebra with the table as below:

*	0	e	f	g
0	0	e	f	g
e	e f	0	g	f
f	f	g	0	e
g	g	f	e	0

Let M and N be two DIVF-ideals in U as defined by

and

We also assume that $C = M \cup N$ and C is defined as:

Then clearly, C is a DIVF-ideal in U.

The following corollary generalizes the Theorem 8.3.6.

Corollary 8.3.1. Let $\{M_j | j = 1, 2, 3, ...\}$ be a family of DIVF-ideal of BF-algebra U, then $\bigcup_{j=1}^n M_j$ is also a DIVF-ideal of BF-algebra U, where $\bigcup(M_j) = max\{M_j(u_1) : j = 1, 2, 3, ...\}$.

8.4 Product of DIVF-ideal in *BF*-algebras

Definition 8.4.1. Let $\bar{\Upsilon}_M$ and $\bar{\Upsilon}_N$ be two DIVF-ideal in a BF-algebra U. Then the $CP \ \bar{\Upsilon}_M \times \bar{\Upsilon}_N$ is $(\bar{\Upsilon}_M \times \bar{\Upsilon}_N) : U \times U \to [0, 1]$, and is defined by $(\bar{\Upsilon}_M \times \bar{\Upsilon}_N)(u, v) = rmax\{\bar{\Upsilon}_M(u), \bar{\Upsilon}_N(v)\}$, for all $u, v \in U$.

Theorem 8.4.1. Let $\overline{\Upsilon}_M$ and $\overline{\Upsilon}_N$ be two DIVF-ideal in a BF-algebra U. Then $\overline{\Upsilon}_M \times \overline{\Upsilon}_N$ is also a DIVF-ideal in $U \times U$.

Proof: Let $(u, v) \in U \times U$, then by definition,

$$\begin{aligned} (\bar{\Upsilon}_M \times \bar{\Upsilon}_N)(0,0) &= rmax\{\bar{\Upsilon}_M(0), \bar{\Upsilon}_N(0)\} \\ &= rmax\{(\Upsilon_M^L(0), \Upsilon_M^U(0)), (\Upsilon_N^L(0), \Upsilon_N^U(0))\} \\ &= max[(\Upsilon_M^L(0), \Upsilon_N^L(0)), (\Upsilon_M^U(0), \Upsilon_N^U(0))] \\ &\leq max[(\Upsilon_M^L(u), \Upsilon_N^L(v)), (\Upsilon_M^U(u), \Upsilon_N^U(v))] \\ &= rmax\{(\Upsilon_M^L(u), \Upsilon_M^U(u)), (\Upsilon_N^L(v), \Upsilon_N^U(v))\} \\ &= rmax\{\bar{\Upsilon}_M(u), \bar{\Upsilon}_N(v)\} \\ &= (\bar{\Upsilon}_M \times \bar{\Upsilon}_N)(u, v). \end{aligned}$$

Therefore, $(\bar{\Upsilon}_M \times \bar{\Upsilon}_N)(0,0) \le (\bar{\Upsilon}_M \times \bar{\Upsilon}_N)(u,v).$ (*i*) Again let, $(u_1, u_2), (v_1, v_2) \in U \times U$. Then,

$$\begin{split} (\bar{\Upsilon}_{M} \times \bar{\Upsilon}_{N})(u_{1}, u_{2}) &= rmax\{\bar{\Upsilon}_{M}(u_{1}), \bar{\Upsilon}_{N}(u_{2})\} \\ &\leq rmax\{rmax\{\bar{\Upsilon}_{M}(u_{1} * v_{1}), \bar{\Upsilon}_{M}(v_{1})\}, rmax\{\bar{\Upsilon}_{N}(u_{2} * v_{2}), \bar{\Upsilon}_{N}(v_{2})\}\} \\ &= rmax\{[max[(\Upsilon_{M}^{L}(u_{1} * v_{1}), \Upsilon_{M}^{L}(v_{1}))], max[(\Upsilon_{M}^{U}(u_{1} * v_{1}), \Upsilon_{M}^{U}(v_{1}))]], \\ & [max[(\Upsilon_{N}^{L}(u_{2} * v_{2}), \Upsilon_{N}^{L}(v_{2}))], max[(\Upsilon_{N}^{U}(u_{2} * v_{2}), \Upsilon_{N}^{U}(v_{2}))]]\} \\ &= [max\{max[(\Upsilon_{M}^{L}(u_{1} * v_{1}), (\Upsilon_{N}^{L}(u_{2} * v_{2})], max[\Upsilon_{M}^{L}(v_{1}), \Upsilon_{N}^{L}(v_{2})]\}, \\ & max\{max[(\Upsilon_{M}^{U}(u_{1} * v_{1}), (\Upsilon_{N}^{U}(u_{2} * v_{2})], max[\Upsilon_{M}^{U}(v_{1}), \Upsilon_{N}^{U}(v_{2})]\} \\ &= rmax\{(\bar{\Upsilon}_{M} \times \bar{\Upsilon}_{N})[(u_{1} * v_{1}, u_{2} * v_{2}), (\bar{\Upsilon}_{M} \times \bar{\Upsilon}_{N})(v_{1}, v_{2})\}. \end{split}$$

Hence, $(\bar{\Upsilon}_M \times \bar{\Upsilon}_N)(u_1, u_2) \leq rmax\{(\bar{\Upsilon}_M \times \bar{\Upsilon}_N)[(u_1 * v_1, u_2 * v_2), (\bar{\Upsilon}_M \times \bar{\Upsilon}_N)(v_1, v_2)\}.$ (*ii*)

From (i) and (ii) see that $\overline{\Upsilon}_M \times \overline{\Upsilon}_N$ is also a DIVF-ideal in $U \times U$.

8.5 Summary

This chapter focuses on the basics of a theory for such an IVFS becoming DIVFSA and DIVF-ideal of BF-algebras. We show that an IVFS of BF-algebras is a DIVFSA and a DIVF-ideal if and only if the complement of this IVFS is an IVFSA and an IVF-ideal. Product of DIVF-ideal in BF-algebras is also established and we have established some common properties related to them.