Chapter 7

Fuzzy translation of a doubt interval-valued fuzzy ideals in BCK-algebras *

7.1 Introduction

In [89], Zadeh made an extension of the concept of a FS by an IVFS (i.e., a FS with an IV MSF). An IVFS is a FS whose MSF is many-valued and forms an interval with respect to the membership scale. IVFSs have many applications in several areas. In various algebraic structures, see [?, 16, 69, 70], the concept of IVFSs have been studied.

Biswas [16, 17], defined IVFSG of Rosenfeld's nature and anti fuzzy subgroup and in 2000, Jun [46] introduced the notion of IVFSAs/IVF-ideals in *BCK*-algebras.

Intertwining Zadeh's notion of IVFS and Jun's(1994) idea of DFSAs/DF-ideals in BCK/BCI–algebras, in this chapter we have introduced the concept of a DIVFSA /DIVF-ideal of *BCK* algebra and worked on its properties. Further, we have tried to develop into the relations among DIVFSAs and DIVF-ideals. We have also introduced F-translation, F-multiplication of a DIVFSA/DIVF-ideal in a BCK-algebra and have discussed the product of DIVF-ideals in BCK algebras.

^{*}A part of the work presented in this chapter is accepted for publication as a special issue in *International Journal of Fuzzy System Applications*, to appear in $\mathbf{8}(4)$ (2019).

7.2 DIVFSA in *BCK*-algebras

This section contains the idea of DIVFSA in BCK-algebras with its relevant properties.

Definition 7.2.1. An IVFS M in V is called a DIVFSA of BCK-algeba V if $\bar{\zeta}_M(v_1 * v_2) \leq rmax\{\bar{\zeta}_M(v_1), \bar{\zeta}_M(v_2)\}$, for all $v_1, v_2 \in V$.

EXAMPLE 31. Let consider $V = \{0, s, t, u, v\}$ as a BCK-algebra given in Example 5, Chapter 2 as follows:

*	0	s	t	u	v
0	0	0	0	0	0
s	s	0	s	0	s
t	t	t	0	t	0
u	u	s	u	0	u
v	v	v	t	v	0

Let $M = \{(v_1, \overline{\zeta}_M(v_1)) : v_1 \in V\}$ be an IVFS defined as

Then M is a DIVFSA in V.

Theorem 7.2.1. If R and S be two DIVFSAs of a BCK-algebra V. Then the union of R and S is also a DIVFSA in V.

Rroof: Let R and S be two DIVFSAs in V. Again let $v_1, v_2 \in R \cup S$. Then $v_1, v_2 \in R$ and $v_1, v_2 \in S$. Now

$$\begin{split} \bar{\zeta}_{R\cup S}(v_1 * v_2) &= [\zeta_{R\cup S}^L(v_1 * v_2), \zeta_{R\cup S}^U(v_1 * v_2)] \\ &= [max(\zeta_R^L(v_1 * v_2), \zeta_S^L(v_1 * v_2)), max(\zeta_R^U(v_1 * v_2), \zeta_S^U(v_1 * v_2))] \\ &\leq [max(\zeta_{R\cup S}^L(v_1), \zeta_{R\cup S}^L(v_2)), max(\zeta_{R\cup S}^U(v_1), \zeta_{R\cup S}^U(v_2))] \\ &= rmax\{\bar{\zeta}_{R\cup S}(v_1), \bar{\zeta}_{R\cup S}(v_2)\} \end{split}$$

Thus the proof ends.

Also, the theorem is interpreted with the help of the example given below.

EXAMPLE 32. Consider the BCK-algebra V that was taken in Example 6 as follows:

*	0	d	e	f
0	0	0	0	0
d	d	0	d	d
e	e	d	0	0
f	f	d	f	0

Let $M = (\alpha_M, \zeta_M)$ be an IFS of V defined by

V	0	d	e	f
$\bar{\zeta}_M$	[0.1, 0.2]	[0.3, 0.7]	[0.3, 0.7]	[0.5, 0.8]

Then M is a DIVFSA in V.

Again, let $N = \{(v_1, \overline{\zeta}_N(v_1)) : v_1 \in V\}$ be an IVFS defined as

V
 0
 d
 e
 f

$$\bar{\zeta}_N$$
 [0.2, 0.4]
 [0.4, 0.6]
 [0.5, 0.7]
 [0.6, 0.8]

Then N is a DIVFSA in V.

We also assume that $G = M \cup N$ so G is given by:

V
 0
 d
 e
 f

$$\bar{\zeta}_G$$
 [0.2, 0.4]
 [0.4, 0.7]
 [0.5, 0.7]
 [0.6, 0.8]

Then G is a DIVFSA in V.

Theorem 7.2.2. An IVFS $M = (\zeta_M^L, \zeta_M^U)$ in V is a DIVFSA of a BCK-algebra V if and only if the FSs ζ_M^L and ζ_M^U are DFSAs in V.

Proof: Let ζ_M^L and ζ_M^U are DFSAs in V and $v_1, v_2 \in V$, then

$$\begin{split} \bar{\zeta}_{M}(v_{1} * v_{2}) &= [\zeta_{M}^{L}(v_{1} * v_{2}), \zeta_{M}^{U}(v_{1} * v_{2})] \\ &\leq [max(\zeta_{M}^{L}(v_{1}), \zeta_{M}^{L}(v_{2})), max(\zeta_{M}^{U}(v_{1}), \zeta_{M}^{U}(v_{2}))] \\ &= rmax\{\bar{\zeta}_{M}(v_{1}), \bar{\zeta}_{M}(v_{2})\}. \end{split}$$

Hence, $M = (\zeta_M^L, \zeta_M^U)$ in V is an DIVFSA of a *BCK*-algebra V.

Conversely, let $M = (\zeta_M^L, \zeta_M^U)$ in V be a DIVFSA of a *BCK*-algebra V. Then for any $v_1, v_2 \in V$, we have

$$\begin{aligned} [\zeta_M^L(v_1 * v_2), \zeta_M^U(v_1 * v_2)] &= \bar{\zeta}_M(v_1 * v_2) \\ &\leq rmax\{\bar{\zeta}_M(v_1), \bar{\zeta}_M(v_2)\} \\ &= [max(\zeta_M^L(v_1), \zeta_M^L(v_2)), max(\zeta_M^U(v_1), \zeta_M^U(v_2))]. \end{aligned}$$

Therefore, $\zeta_M^L(v_1 * v_2) \leq max(\zeta_M^L(v_1), \zeta_M^L(v_2))$ and $\zeta_M^U(v_1 * v_2) \leq max(\zeta_M^U(v_1), \zeta_M^U(v_2))$, hence ζ_M^L and ζ_M^U are DFSAs in V. Thus the proof ends.

Lemma 7.2.1. If $M = \{(v_1, \bar{\zeta}_M(v_1)) : v_1 \in V\}$ is a DIVFSA in V, then for all $v_1 \in V$, $\bar{\zeta}_M(0) \leq \bar{\zeta}_M(v_1)$.

Proof:

$$\bar{\zeta}_M(0) = \bar{\zeta}_M(v_1 * v_1)$$

$$\leq rmax\{\bar{\zeta}_M(v_1), \bar{\zeta}_M(v_1)\}$$

$$= \bar{\zeta}_M(v_1).$$

Corollary 7.2.1. Let $M = \{(v_1, \overline{\zeta}_M(v_1)) : v_1 \in V\}$ be a DIVFSA in V. Then the set, $D_{\overline{\zeta}_M} = \{v_1 \in V/\overline{\zeta}_M(v_1) = \overline{\zeta}_M(0)\}, \text{ is a BCK-SA in } V.$

Proof: Here $M = \{(v_1, \bar{\zeta}_M(v_1)) : v_1 \in V\}$ is a DIVFSA in V. Obviously, $0 \in D_{\bar{\zeta}_M}$. Now, let $v_1, v_2 \in D_{\bar{\zeta}_M}$, then $\bar{\zeta}_M(v_1) = \bar{\zeta}_M(0) = \bar{\zeta}_M(v_2)$. Also, $\bar{\zeta}_M(v_1 * v_2) \leq max\{\bar{\zeta}_M(v_1), \bar{\zeta}_M(v_2)\} = rmax\{\bar{\zeta}_M(0), \bar{\zeta}_M(0)\} = \bar{\zeta}_M(0)$.

Again, by Lemma 7.2.1, $\bar{\zeta}_M(0) \leq \bar{\zeta}_M(v_1 * v_2)$. So, $\bar{\zeta}_M(v_1 * v_2) = \bar{\zeta}_M(0)$. This means that $v_1 * v_2 \in D_{\bar{\zeta}_M}$. Hence, $D_{\bar{\zeta}_M}$ is a *BCK*-SA in *V*.

7.3 DIVF-ideal in *BCK*-algebras

In this section, we define DIVF-ideal in BCK-algebras and investigated its properties.

Definition 7.3.1. An IVFS M in V is called a **DIVF-ideal** of BCK-algebra V if (i) $\bar{\zeta}_M(0) \leq \bar{\zeta}_M(v_1)$ (ii) $\bar{\zeta}_M(v_1) \leq rmax\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\}$ for all $v_1, v_2 \in V$. EXAMPLE 33. Consider V as a BCK-algebra, that was given in Example 3 Chapter 2, as in the table below:

*	0	d	e	f
0	0	0	0	0
d	d	0	0	d
e	e	d	0	e
f	f	f	f	0

Let $M = (\alpha_M, \zeta_M)$ is an IFS of V defined by

V	0	d	e	f
$\bar{\zeta}_M$	[0.1, 0.5]	[0.2, 0.7]	[0.2, 0.7]	[0.5, 0.8]

Then M is a DIVF-ideal in V.

Proposition 7.3.1. For a DIVF-ideal in a BCK-algebra V, we have the followings: (a) If $v_1 \leq v_2$ then $\bar{\zeta}_M(v_1) \leq \bar{\zeta}_M(v_2)$.

(b) If $v_1 * v_2 \le v_3$ then $\bar{\zeta}_M(v_1) \le rmax\{\bar{\zeta}_M(v_2), \bar{\zeta}_M(v_3)\}$, for all $v_1, v_2, v_3 \in V$.

Proof: (a) Let $v_1 \leq v_2$, then $v_1 * v_2 = 0$. Now

$$\begin{split} \bar{\zeta}_M(v_1) &\leq rmax\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\} \quad [\text{Since } \bar{\zeta}_M(v_1) \text{ is a DIVF-ideal}] \\ &= rmax\{\bar{\zeta}_M(0), \bar{\zeta}_M(v_2)\} \\ &= \bar{\zeta}_M(v_2) \quad [\text{Since } \bar{\zeta}_M(0) \leq \bar{\zeta}_M(v_2) \text{ for DIVF-ideal}]. \end{split}$$

So, $\overline{\zeta}_M(v_1) \leq \overline{\zeta}_M(v_2)$.

(b) Here $v_1 * v_2 \le v_3$, therefore $(v_1 * v_2) * v_3 = 0$. Now,

$$\begin{split} \bar{\zeta}_M(v_1 * v_2) &\leq \ rmax\{\bar{\zeta}_M((v_1 * v_2) * v_3), \bar{\zeta}_M(v_3)\} \quad [\text{Since } \bar{\zeta}_M(v_1) \text{ is a DIVF-ideal}] \\ &= \ rmax\{\bar{\zeta}_M(0), \bar{\zeta}_M(v_3)\} \\ &= \ \bar{\zeta}_M(v_3) \quad [\text{Since } \bar{\zeta}_M(0) \leq \bar{\zeta}_M(v_3) \text{ for DIVF-ideal}]. \end{split}$$

Therefore, $\bar{\zeta}_M(v_1 * v_2) \leq \bar{\zeta}_M(v_3)$.

Again, as $\overline{\zeta}_M(v_1)$ is a DIVF-ideal, so

$$\begin{split} \bar{\zeta}_M(v_1) &\leq \ rmax\{\bar{\zeta}_M(v_1 \ast v_2), \bar{\zeta}_M(v_2)\} \\ &\leq \ rmax\{\bar{\zeta}_M(v_3), \bar{\zeta}_M(v_2)\} \quad [\text{Since } \bar{\zeta}_M(v_1 \ast v_2) \leq \bar{\zeta}_M(v_3)]. \end{split}$$

Hence, $\overline{\zeta}_M(v_1) \leq rmax\{\overline{\zeta}_M(v_2), \overline{\zeta}_M(v_3)\}$, for all $v_1, v_2, v_3 \in V$.

Theorem 7.3.2. For a DIVF-ideal $M = \{(v_1, \bar{\zeta}_M(v_1)) : v_1 \in V\}$ in a BCK-algebra V, the set, $D_{\bar{\zeta}_M} = \{v_1 \in V/\bar{\zeta}_M(v_1) = \bar{\zeta}_M(0)\}$, becomes an ideal in V.

Proof: $M = \{(v_1, \overline{\zeta}_M(v_1)) : v_1 \in V\}$ is an DIVF-ideal in V. Obviously, $0 \in D_{\overline{\zeta}_M}$. Now, let $v_1 * v_2, v_2 \in D_{\overline{\zeta}_M}$, then $\overline{\zeta}_M(v_1 * v_2) = \overline{\zeta}_M(0) = \overline{\zeta}_M(v_2)$.

Now,

$$\begin{aligned} \bar{\zeta}_M(v_1) &\leq \ rmax\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\} \\ &= \ rmax\{\bar{\zeta}_M(0), \bar{\zeta}_M(0)\} \\ &= \ \bar{\zeta}_M(0). \end{aligned}$$

Therefore, $\bar{\zeta}_M(v_1) \leq \bar{\zeta}_M(0)$. Also, $\bar{\zeta}_M(0) \leq \bar{\zeta}_M(v_1)$ [Since M is a DIVF-ideal]. Hence, $\bar{\zeta}_M(v_1) = \bar{\zeta}_M(0)$. So, $v_1 \in D_{\bar{\zeta}_M}$. That is, $v_1 * v_2, v_2 \in D_{\bar{\zeta}_M}$, implies that $v_1 \in D_{\bar{\zeta}_M}$. So, $D_{\bar{\zeta}_M}$ is an ideal. Thus the proof ends.

Theorem 7.3.3. Any DIVF-ideal in V is an DIVFSA in V.

Proof: Let M be a DIVF-ideal in V. Since $v_1 * v_2 \leq v_1$ for all $v_1, v_2 \in V$. Then from Proposition 7.3.1, $\bar{\zeta}_M(v_1 * v_2) \leq \bar{\zeta}_M(v_1)$. Hence $\bar{\zeta}_M(v_1 * v_2) \leq \bar{\zeta}_M(v_1) \leq rmax\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\} \leq rmax\{\bar{\zeta}_M(v_1), \bar{\zeta}_M(v_2)\}$, for all $v_1, v_2 \in V$. Therefore, M is an DIVFSA in V.

The Theorem 7.3.3 may not hold in reverse direction, to justify it let us consider the Example 31. As $\bar{\zeta}_M(u) \leq rmax\{\bar{\zeta}_M(u*s), \bar{\zeta}_M(s)\} \leq rmax\{\bar{\zeta}_M(s), \bar{\zeta}_M(s)\} \leq \bar{\zeta}_M(s)$. But, $\bar{\zeta}_M(u) \geq \bar{\zeta}_M(s)$. Therefore, M is not an DIVF-ideal in V.

Theorem 7.3.4. Let $M = \{(v_1, \overline{\zeta}_M(v_1)) : v_1 \in V\}$ be an DIVFSA in V, if $\overline{\zeta}_M(v_1) \leq rmax\{\overline{\zeta}_M(v_2), \overline{\zeta}_M(v_3)\}$, with $v_1 * v_2 \leq v_3$, then M is a DIVF-ideal in V.

Proof: Here $M = \{(v_1, \bar{\zeta}_M(v_1)) : v_1 \in V\}$ is a DIVFSA in V. We have, $\bar{\zeta}_M(0) \leq \bar{\zeta}_M(v_1)$. As, $v_1 * (v_1 * v_2) \leq v_2$ and by the hypothesis, $\bar{\zeta}_M(v_1) \leq rmax\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\}$. So, M is an DIVF-ideal in V.

Theorem 7.3.5. Let $M = \{(v_1, \overline{\zeta}_M(v_1)) : v_1 \in V\}$ be an IVFS of a BCK-algebra V, then M is a DIVF-ideal in V iff its complement is IVF-ideal in V.

Proof: Let M is an IVF-ideal in V, to prove M^c (complement of M) is DIVF-ideal,

let $v_1, v_2, v_3 \in V$. Now,

$$\begin{aligned} \bar{\zeta}_M^c(0) &= 1 - \bar{\zeta}_M(0) \\ &\leq 1 - \bar{\zeta}_M(v_1) \quad [\text{As } \bar{\zeta}_M(0) \ge \bar{\zeta}_M(v_1)] \\ &= \bar{\zeta}_M^c(v_1). \end{aligned}$$

So, $\bar{\zeta}_M^c(0) \leq \bar{\zeta}_M^c(v_1)$, for all $v_1 \in V$.

Again,

$$\begin{split} \bar{\zeta}_{M}^{c}(v_{1}) &= 1 - \bar{\zeta}_{M}(v_{1}) \\ &\leq 1 - rmin\{\bar{\zeta}_{M}(v_{1} * v_{2}), \bar{\zeta}_{M}(v_{2})\} \quad [\text{As } \bar{\zeta}_{M}(v_{1}) \geq rmin\{\bar{\zeta}_{M}(v_{1} * v_{2}), \bar{\zeta}_{M}(v_{2})] \\ &= 1 - rmin\{1 - \bar{\zeta}_{M}^{c}(v_{1} * v_{2}), 1 - \bar{\zeta}_{M}^{c}(v_{2})\} \\ &= rmax\{\bar{\zeta}_{M}^{c}(v_{1} * v_{2}), \bar{\zeta}_{M}^{c}(v_{2})\}. \end{split}$$

This implies that, M^c is a DIVF-ideal.

Conversely, let M^c is DIVF-ideal in V. Then, $\bar{\zeta}^c_M(0) \leq \bar{\zeta}^c_M(v_1)$ and $\bar{\zeta}^c_M(v_1) \leq rmax\{\bar{\zeta}^c_M(v_1 * v_2), \bar{\zeta}^c_M(v_2)\}.$

Now, $\bar{\zeta}_M^c(0) \leq \bar{\zeta}_M^c(v_1)$, which implies that, $1 - \bar{\zeta}_M(0) \leq 1 - \bar{\zeta}_M(v_1)$, that is, $\bar{\zeta}_M(0) \geq \bar{\zeta}_M(v_1)$.

Again, $\bar{\zeta}_M^c(v_1) \leq rmax\{\bar{\zeta}_M^c(v_1 * v_2), \bar{\zeta}_M^c(v_2)\}\)$, then $1 - \bar{\zeta}_M(v_1) \leq rmax\{1 - \bar{\zeta}_M(v_1 * v_2), 1 - \bar{\zeta}_M(v_2)\}\)$, next $\bar{\zeta}_M(v_1) \geq rmin\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\}\)$, which implies that, M is an IVF-ideal in V.

Theorem 7.3.6. If the FSs ζ_M^L and ζ_M^U are DF-ideals in V then the IVFS $M = (\zeta_M^L, \zeta_M^U)$ in V is a DIVF-ideal and vice-versa.

Proof: Let ζ_M^L and ζ_M^U are DF-ideals in V and $v_1, v_2 \in V$, then $\zeta_M^L(0) \leq \zeta_M^L(v_1)$ and $\zeta_M^U(0) \leq \zeta_M^U(v_1)$.

Also,
$$\zeta_M^L(v_1) \le max[\zeta_M^L(v_1 * v_2), \zeta_M^L(v_2)]$$
 and $\zeta_M^U(v_1) \le max[\zeta_M^U(v_1 * v_2), \zeta_M^U(v_2)]$. Now,

$$\begin{split} \bar{\zeta}_{M}(v_{1}) &= [\zeta_{M}^{L}(v_{1}), \zeta_{M}^{U}(v_{1})] \\ &\leq [max(\zeta_{M}^{L}(v_{1} * v_{2}), \zeta_{M}^{L}(v_{2})), max(\zeta_{M}^{U}(v_{1} * v_{2}), \zeta_{M}^{U}(v_{2}))] \\ &= rmax\{\bar{\zeta}_{M}(v_{1} * v_{2}), \bar{\zeta}_{M}(v_{2})\}. \end{split}$$

Therefore, $\bar{\zeta}_M(v_1) \leq rmax\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\}$. Hence, $M = (\zeta_M^L, \zeta_M^U)$ in V is a DIVF-ideal of a *BCK*-algebra V.

Conversely, let $M = (\zeta_M^L, \zeta_M^U)$ in V be a DIVF-ideal of a *BCK*-algebra V. Then for any $v_1, v_2 \in V$, we have

$$\begin{aligned} [\zeta_M^L(v_1), \zeta_M^U(v_1)] &= \bar{\zeta}_M(v_1) \\ &\leq rmax\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\} \\ &= [max(\zeta_M^L(v_1 * v_2), \zeta_M^L(v_2)), max(\zeta_M^U(v_1 * v_2), \zeta_M^U(v_2))]. \end{aligned}$$

Therefore, $\zeta_M^L(v_1) \leq max[\zeta_M^L(v_1 * v_2), \zeta_M^L(v_2)]$ and $\zeta_M^U(v_1) \leq max[\zeta_M^U(v_1 * v_2), \zeta_M^U(v_2)]$, hence we get ζ_M^L and ζ_M^U are DF-ideal in V. Thus the proof ends.

Theorem 7.3.7. Union of any two DIVF-ideals in a BCK-algebra V, is also a DIVF-ideal in V.

Proof: Let M and N be two doubt DIVF-ideals in V. Now let $v_1, v_2 \in M \cup N$. Then $v_1, v_2 \in M$ and $v_1, v_2 \in N$. Again let, $C = M \cup N = (\bar{\zeta}_C)$, where $\bar{\zeta}_C = \bar{\zeta}_M \vee \bar{\zeta}_N$. Let $v_1, v_2 \in V$, then,

$$\bar{\zeta}_C(0) = \bar{\zeta}_M(0) \lor \bar{\zeta}_N(0)$$

$$\leq \bar{\zeta}_M(v_1) \lor \bar{\zeta}_N(v_1)$$

$$= \bar{\zeta}_C(v_1).$$

Also,

$$\begin{split} \bar{\zeta}_{M\cup N}(v_1) &= [\zeta_{M\cup N}^L(v_1), \zeta_{M\cup N}^U(v_1)] \\ &= [max(\zeta_M^L(v_1), \zeta_N^L(v_1)), max(\zeta_M^U(v_1), \zeta_N^U(v_1))] \\ &\leq [max(\zeta_{M\cup N}^L(v_1 * v_2), \zeta_{M\cup N}^L(v_2)), max(\zeta_{M\cup N}^U(v_1 * v_2), \zeta_{M\cup N}^U(v_2))] \\ &= rmax\{\bar{\zeta}_{M\cup N}(v_1 * v_2), \bar{\zeta}_{M\cup N}(v_2)\}. \end{split}$$

Thus the proof ends.

EXAMPLE 34. Let V be a BCK-algebra as given in Example 3 in Chapter 2 with the table below:

*	0	d	e	f
0	0	0	0	0
d	d	0	0	d
e	e	d	0	e
f	f	f	f	0

Let $M = (\alpha_M, \zeta_M)$ is an IFS of V defined by

V
 0
 d
 e
 f

$$\bar{\zeta}_M$$
 [0.2, 0.6]
 [0.3, 0.8]
 [0.3, 0.8]
 [0.4, 0.8]

and

V
 0
 d
 e
 f

$$\bar{\zeta}_N$$
 [0.2, 0.2]
 [0.3, 0.4]
 [0.3, 0.4]
 [0.5, 0.8]

We also assume that $C = M \cup N$ and C is defined as:

$$\begin{array}{c|ccccc} V & 0 & d & e & f \\ \hline \bar{\zeta}_C & [0.2, 0.6] & [0.3, 0.8] & [0.3, 0.8] & [0.5, 0.8] \end{array}$$

Then clearly, C is a DIVF-ideal in V.

This theorem can also be generalised as follows:

Corollary 7.3.1. Let $\{M_{\iota}|\iota = 1, 2, 3, ...\}$ be a family of DIVF-ideal in BCK-algebra V, then $\bigcup_{\iota=1}^{m} M_{\iota}$ is also a DIVF-ideal of BCK-algebra V, where $\bigcup(M_{\iota}) = max\{M_{\iota}(v_{1}) : \iota = 1, 2, 3, ...\}$.

Proposition 7.3.8. Let $M = \{(v_1, \overline{\zeta}_M(v_1)) : v_1 \in V\}$ be a DIVF-ideal of a BCKalgebra V. Then $\overline{\zeta}_M(0 * (0 * v_1)) \leq \overline{\zeta}_M(v_1)$.

Proof:

$$\begin{split} \bar{\zeta}_M(0*(0*v_1)) &\leq \ rmax\{\bar{\zeta}_M\{(0*(0*v_1))*v_1\}, \bar{\zeta}_M(v_1)\}\\ &= \ rmax\{\bar{\zeta}_M(0), \bar{\zeta}_M(v_1)\}\\ &= \ \bar{\zeta}_M(v_1), \text{ for all } v_1 \in V. \end{split}$$

Therefore, $\bar{\zeta}_M(0 * (0 * v_1)) \leq \bar{\zeta}_M(v_1)$, for all $v_1 \in V$.

7.4 F-translation and F-multiplication of DIVFSA/DIVFideal in *BCK*-algebras

This section deals with the notion of F-translation and F-multiplication of a DI-VFSA/ DIVF-ideal in BCK-algebras. For any IVFS $M = \{(v_1, \bar{\zeta}_M(v_1)) : v_1 \in V\}$, let $\bar{\delta} = [\delta^L, \delta^U]$ where $\delta^U = 1 - \sup\{\bar{\zeta}_M^U(v_1) : v_1 \in V\}$ and $\delta^L \leq \delta^U$. **Definition 7.4.1.** Let $M = (\zeta_M^L, \zeta_M^U)$ be an IVFS in V and $0 \leq \beta^U \leq \delta^U$, where $\bar{\beta} = [\beta^L, \beta^U]$. An object of the form $M_{\bar{\beta}}^T = [\zeta_{M\bar{\beta}}^{LT}, \zeta_{M\bar{\beta}}^{UT}]$ is identified as fuzzy β -translation of M if $M_{\bar{\beta}}^T(v_1) = \bar{\zeta}_M(v_1) + \bar{\beta}$ for all $v_1 \in V$.

Definition 7.4.2. Let $M = (\zeta_M^L, \zeta_M^U)$ be an IVFS in V and $\bar{\rho} \in [0, 1]$. An object having the form $M_{\bar{\rho}}^m = [\zeta_{M\bar{\rho}}^{Lm}, \zeta_{M\bar{\rho}}^{Um}]$ is called fuzzy ρ -multiplication of M if $M_{\bar{\rho}}^m(v_1) = \bar{\zeta}_M(v_1).\bar{\rho}$ for all $v_1 \in V$.

Theorem 7.4.1. Let $M = (\zeta_M^L, \zeta_M^U)$ be a DIVFSA/DIVF-ideal in V. Then the fuzzy β -translation $M_{\bar{\beta}}^T(v_1)$ of M is also a DIVFSA/DIVF-ideal in V for all $\bar{\beta} \in [\bar{0}, \bar{\delta}]$ and vice-versa.

Proof: Let $M = (\zeta_M^L, \zeta_M^U)$ be a DIVFSA in V and let $\beta \in [0, \overline{\delta}]$. Then $\overline{\zeta}_M(v_1 * v_2) \leq rmax\{\overline{\zeta}_M(v_1), \overline{\zeta}_M(v_2)\}$ for all $v_1, v_2 \in V$. Now,

$$M_{\bar{\beta}}^{T}(v_{1} * v_{2}) = \bar{\zeta}_{M}(v_{1} * v_{2}) + \bar{\beta}$$

$$\leq rmax\{\bar{\zeta}_{M}(v_{1}), \bar{\zeta}_{M}(v_{2})\} + \bar{\beta}$$

$$= rmax\{\bar{\zeta}_{M}(v_{1}) + \bar{\beta}, \bar{\zeta}_{M}(v_{2}) + \bar{\beta}\}$$

$$= rmax\{M_{\bar{\beta}}^{T}(v_{1}), M_{\bar{\beta}}^{T}(v_{2})\}$$

Hence, $M_{\bar{\beta}}^T$ is a DIVFSA.

Conversely, let $M^T_{\bar{\beta}}$ is a DIVFSA. Then

$$M_{\bar{\beta}}^{T}(v_{1} * v_{2}) \leq rmax\{M_{\bar{\beta}}^{T}(v_{1}), M_{\bar{\beta}}^{T}(v_{2})\}$$

$$= rmax\{\bar{\zeta}_{M}(v_{1}) + \bar{\beta}, \bar{\zeta}_{M}(v_{2}) + \bar{\beta}\}$$

$$= \bar{\zeta}_{M}(v_{1} * v_{2}) + \bar{\beta}$$

$$= rmax\{\bar{\zeta}_{M}(v_{1}), \bar{\zeta}_{M}(v_{2})\} + \bar{\beta}$$

So, $\bar{\zeta}_M(v_1 * v_2) + \bar{\beta} \leq rmax\{\bar{\zeta}_M(v_1), \bar{\zeta}_M(v_2)\} + \bar{\beta}$, implies that $\bar{\zeta}_M(v_1 * v_2) \leq rmax\{\bar{\zeta}_M(v_1), \bar{\zeta}_M(v_2)\}$, for all $v_1, v_2 \in V$. Hence, M is a DIVFSA in V.

Again let M is a DIVF-ideal of a BCK-algebra V and let $\bar{\beta} \in [\bar{0}, \bar{\delta}]$. Then for all $v_1, v_2 \in V, \ M_{\bar{\beta}}^T(0) = \bar{\zeta}_M(0) + \bar{\beta} \leq \bar{\zeta}_M(v_1) + \bar{\beta} = M_{\bar{\beta}}^T(v_1)$. That is $M_{\bar{\beta}}^T(0) \leq M_{\bar{\beta}}^T(v_1)$. And,

$$M_{\bar{\beta}}^{T}(v_{1}) = \bar{\zeta}_{M}(v_{1}) + \bar{\beta}$$

$$\leq rmax\{\bar{\zeta}_{M}(v_{1} * v_{2}), \bar{\zeta}_{M}(v_{2})\} + \bar{\beta}$$

$$= rmax\{\bar{\zeta}_{M}(v_{1} * v_{2}) + \bar{\beta}, \bar{\zeta}_{M}(v_{2}) + \bar{\beta}\}$$

$$= rmax\{M_{\bar{\beta}}^{T}(v_{1} * v_{2}), M_{\bar{\beta}}^{T}(v_{2})\}$$

Hence, $M_{\bar{\beta}}^T$ is a DIVF-ideal .

Conversely, let $M_{\bar{\beta}}^T$ is a DIVF-ideal. Then $M_{\bar{\beta}}^T(0) \leq M_{\bar{\beta}}^T(v_1)$, implies that $\bar{\zeta}_M(0) \leq \bar{\zeta}_M(v_1)$. Also,

$$M_{\bar{\beta}}^{T}(v_{1}) = \bar{\zeta}_{M}(v_{1}) + \bar{\beta}$$

$$\leq rmax\{M_{\bar{\beta}}^{T}(v_{1} * v_{2}), M_{\bar{\beta}}^{T}(v_{2})\}$$

$$= rmax\{\bar{\zeta}_{M}(v_{1} * v_{2}) + \bar{\beta}, \bar{\zeta}_{M}(v_{2}) + \bar{\beta}\}$$

$$= rmax\{\bar{\zeta}_{M}(v_{1} * v_{2}), \bar{\zeta}_{M}(v_{2})\} + \bar{\beta}$$

So, $\bar{\zeta}_M(v_1) + \bar{\beta} \leq rmax\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\} + \bar{\beta}$, implies that $\bar{\zeta}_M(v_1) \leq rmax\{\bar{\zeta}_M(v_1 * v_2), \bar{\zeta}_M(v_2)\}$, for all $v_1, v_2 \in V$. Hence, M is a DIVF-ideal in V.

7.5 Product of DIVF-ideal in *BCK*-algebras

Definition 7.5.1. Let M and N be two DIVF-ideals of a BCK-algebra V. Then the CP $M \times N$ is $(M \times N) : V \times V \rightarrow [0, 1]$, and is defined by $(M \times N)(u, v) = rmax\{\bar{\zeta}_M(u), \bar{\zeta}_N(v)\}, \text{ for all } u, v \in V.$

Theorem 7.5.1. Let M and N be two DIVF-ideal of a BCK-algebra V. Then the CP of M and N is also a DIVF-ideal of $V \times V$.

Proof: Let $(u, v) \in V \times V$, then by definition,

$$\begin{aligned} (\bar{\zeta}_{M} \times \bar{\zeta}_{N})(0,0) &= rmax\{\bar{\zeta}_{M}(0), \bar{\zeta}_{N}(0)\} \\ &= rmax\{(\zeta_{M}^{L}(0), \zeta_{M}^{U}(0)), (\zeta_{N}^{L}(0), \zeta_{N}^{U}(0))\} \\ &= max[(\zeta_{M}^{L}(0), \zeta_{N}^{L}(0)), (\zeta_{M}^{U}(0), \zeta_{N}^{U}(0))] \\ &\leq max[(\zeta_{M}^{L}(u), \zeta_{N}^{L}(v)), (\zeta_{M}^{U}(u), \zeta_{N}^{U}(v))] \\ &= rmax\{(\zeta_{M}^{L}(u), \zeta_{M}^{U}(u)), (\zeta_{N}^{L}(v), \zeta_{N}^{U}(v))\} \\ &= rmax\{\bar{\zeta}_{M}(u), \bar{\zeta}_{N}(v)\} \\ &= (\bar{\zeta}_{M} \times \bar{\zeta}_{N})(u, v). \end{aligned}$$

Therefore, $(\bar{\zeta}_M \times \bar{\zeta}_N)(0,0) \leq (\bar{\zeta}_M \times \bar{\zeta}_N)(u,v)$. Again let, $(u_1, u_2), (v_1, v_2) \in V \times V$. Then,

$$\begin{split} (\bar{\zeta}_M \times \bar{\zeta}_N)(u_1, u_2) &= rmax\{\bar{\zeta}_M(u_1), \bar{\zeta}_N(u_2)\} \\ &\leq rmax\{rmax\{\bar{\zeta}_M(u_1 * v_1), \bar{\zeta}_M(v_1)\}, rmax\{\bar{\zeta}_N(u_2 * v_2), \bar{\zeta}_N(v_2)\}\} \\ &= rmax\{[max[(\zeta_M^L(u_1 * v_1), \zeta_M^L(v_1))], max[(\zeta_M^U(u_1 * v_1), \zeta_M^U(v_1))]], \\ & [max[(\zeta_N^L(u_2 * v_2), \zeta_N^L(v_2))], max[(\zeta_N^U(u_2 * v_2), \zeta_N^U(v_2))]]\} \\ &= [max\{max[(\zeta_M^L(u_1 * v_1), (\zeta_N^L(u_2 * v_2)], max[\zeta_M^L(v_1), \zeta_N^L(v_2)]\}, \\ & max\{max[(\zeta_M^U(u_1 * v_1), (\zeta_N^U(u_2 * v_2)], max[\zeta_M^U(v_1), \zeta_N^U(v_2)]\}\} \\ &= rmax\{(\bar{\zeta}_M \times \bar{\zeta}_N)[(u_1 * v_1, u_2 * v_2), (\bar{\zeta}_M \times \bar{\zeta}_N)(v_1, v_2)\}. \end{split}$$

Hence, $(\bar{\zeta}_M \times \bar{\zeta}_N)(u_1, u_2) \leq rmax\{(\bar{\zeta}_M \times \bar{\zeta}_N)[(u_1 * v_1, u_2 * v_2), (\bar{\zeta}_M \times \bar{\zeta}_N)(v_1, v_2)\}.$ (*ii*) From (*i*) and (*ii*) see that $(M \times N)$ is also a DIVF-ideal of $V \times V$.

7.6 Summary

In this chapter, we have defined DIVFSAs and DIVF-ideals in BCK-algebras and have developed various characterizations of DIVFSAs and DIVF-ideals in BCK-algebras. Besides, we have introduced F-translation and F-multiplication of a DIVFSA/DIVFideal in BCK-algebras and have defined the product of DIVF-ideal in BCK-algebras.

(i)