
Chapter 6

Doubt intuitionistic fuzzy hyper

filters in hyper BE-algebras∗

6.1 Introduction

Naturally, system identification problems involve non probabilistic characteristics

and as a solution Zadeh [86] first introduced theory of FS as an innovative alternative

to probability theory. Since then the theory of FSs gaining massive attention among

the researchers and the scope of its applications has already been expanded in several

fields like coding theory, engineering, graph theory medical science, social science etc.

The theory of algebric hyperstructure, in recent times has become a well-recognised

branch in algebric theory due to its wide applications. Generalizing the concept of

algebric structures, Marty [55] first developed the theory of algebraic hyperstructures.

The uniqueness of this algebraic hyperstructures is that a set is generated due to

the composition of two elements, having meaningful applications in several fields like

automata, probability, lattices, geometry, binary relations, codes, graphs, hypergraphs,

cryptography etc.

After the introduction of BE-algebra by Kim and Kim as a generalization of a

dual BCK-algebra [51], Radfar et al. [61] applied the hyperstructures theory to BE-

algebra and define the notion of a Hyp BE-algebra. After that in 2015, Rezaei et

al. [62] introduced commutative Hyp BE-algebra, also see [8, 9]. At the same time

they proved that every commutative(row diagonal, column row, very thin) Hyp BE-
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algebra is a BE-algebra.

Hundred of papers were written to established the relationship between the FSs and

algebraic hyperstructures as fuzzy hyperstructure is an interesting topic of research.

In 2015 Tang et al. [82], introduced the concept of Hyp-filterand fuzzy Hyp-filterof an

ordered semihypergroup.

In 2009, Shabir and Khan [78] introduced the notion of IF-filters of ordered semi-

groups. They established a relation between IF-filters and IF-prime ideals of ordered

semigroups. Next in 2012, Palaniappen et al. [60] applied the notion of IF-ideals in

Hyp BCI-algebras. And in recent past Cheng and Xin [20], focused on investigating

implicative Hyp-filters and PI Hyp-filters on Hyp BE-algebras.

In 2016, Hamidi et al. [25] introduced the notion of fuzzy homomorphisms in fuzzy

Hyp BE-SAs and thus made a connection between fuzzy BE-algebras and Hyp BE-

algebras. They also defined the concept of normal fuzzy Hyp BE-SA and investi-

gated some of its properties. Moreover they introduced fuzzy Hyp-filters on Hyp

BE-algebras.

The present study considers the DIF Hyp-filters of Hyp BE-algebras and its related

properties. Applying some important conditions on IFSs in Hyp BE-filters, we have

formed DIF Hyp-filters in Hyp BE-algebras and have given the characterizations of

DIF Hyp-filters in Hyp BE-algebras. Besides the authors also give characterizations

of DIF Hyp-filters in commutative Hyp BE-algebras. At the same time we deal with

the doubt intuitionistic fuzzification of the notion of implicative Hyp-filters in Hyp

BE-algebras. We show that every DIFI Hyp-filters in Row-Hyp BE-algebras are DIF

Hyp-filters in Hyp BE-algebras and also give the condition such thmt a DIF Hyp-

filters in Hyp BE-algebras to be a DIFI Hyp-filters in Hyp BE-algebras. Thus the

aim of this study is to extend the IF results to hyperstructures.

6.2 DIF Hyp-filters in hyper BE-algebras

The DIF Hyp-filters in Hyp BE-algebras can be defined in the following two ways;

Definition 6.2.1. An IFS M = (αM , ζM) of a Hyp BE-algebra V is called a DIF

Hyp-filter in Hyp BE-algebra V if

(1) αM(1) ≤ αM(v2), ζM(1) ≥ ζM(v2);
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(2) αM(v1) ≤ max{supw∈v1◦v2 αM(w), αM(v2)};

(3) ζM(v1) ≥ min{infw∈v1◦v2 ζM(w), ζM(v2)}, for all v1, v2 ∈ V.

Definition 6.2.2. Let M = (αM , ζM) be an IFS of a Hyp BE-algebra V , then M is

called a DIF Hyp-filter in Hyp BE-algebra V if

(1) αM(1) ≤ αM(v1), ζM(1) ≥ ζM(v1);

(2) αM(v2) ≤ max{supw∈v1◦v2 αM(w), αM(v1)};

(3) ζM(v2) ≥ min{infw∈v1◦v2 ζM(w), ζM(v1)}, for all v1, v2 ∈ V.

For a DIF Hyp-filter in V , if v1 << v2 then αM(v2) ≤ αM(v1), ζM(v2) ≥ ζM(v1).

An IFS of a HypBE-algebra V is said to satisfy the inf-sup property if for any SS S of

V there exist u◦, v◦ ∈ S such that αM(u◦) = infu∈SαM(u), and ζM(v◦) = supv∈SζM(v).

Example 29. Let V = {1, r′ , s′}. Then (V; o, 1) is a Hyp BE-algebra with the table

below:

o 1 r
′

s
′

1 {1} {r′ , s′} {s′}

r
′ {1} {1, r′} {1, s′}

s
′ {1} {1, r′ , s′} {1}

Let M = (αM , ζM) be an IFS of V as defined by

V 1 r
′

s
′

αM 0.4 0.5 0.7

ζM 0.6 0.5 0.3

Then M = (αM , ζM) is a DIF Hyp-filter in Hyp BE-algebra V .

Definition 6.2.3. For an IFS M in V and c, d ∈ [0, 1], the set

U(αM ; c) := {v1 ∈ V | αM(v1) ≤ c},

L(ζM ; d) := {v1 ∈ V | ζM(v1) ≥ d}.

are the UC of level c and LC of level d of the set M .

Or

M<c,d> = {v1 ∈ X/αM(v1) ≤ c, ζM(v1) ≥ d}.
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Theorem 6.2.1. Let M = (αM , ζM) be a DIF Hyp-filter in Hyp BE-algebra V . Then,

for v1 ≤ v2

(1) αM(v2) ≤ αM(v1);

(2) ζM(v2) ≥ ζM(v1), for all v1, v2 ∈ V.

Proof. Since v1 ≤ v2, it follows that 1 ∈ v1 ◦ v2 for all v1, v2 ∈ V . Then, we

have, supa∈v1◦v2 αM(a) ≤ αM(1) and infb∈v1◦v2 ζM(a) ≥ ζM(1). Also from hypothesis,

αM(1) ≤ αM(v1), ζM(1) ≥ ζM(v1). Hence

αM(v2) ≤ max{supa∈v1◦v2 αM(a), αM(v1)}

≤ max{αM(1), αM(v1)}

= αM(v1).

Therefore, αM(v2) ≤ αM(v1). Similarly, we obtain

ζM(v2) ≥ max{infa∈v1◦v2 ζM(a), ζM(v1)}

≥ max{ζM(1), ζM(v1)}

= ζM(v1).

So, ζM(v2) ≥ ζM(v1). Thus the proof ends.

Proposition 6.2.2. If M = (αM , ζM) is a DIF Hyp-filter in Hyp BE-algebra V with

the condition v1 ◦ v2 < v3, for all v1, v2, v3 ∈ V. Then, αM(v1) ≤ max{αM(v3), αM(v2)}

and ζM(v1) ≥ min{ζM(v3), ζM(v2)}.

Proof. Let M be a DIF Hyp BE-filter.

Then, αM(v1) ≤ max{supv3∈v1◦v2 αM(v3), αM(v2)} = max{αM(v3), αM(v2)} [as v1 ◦

v2 < v3 implies that αM(v1◦v2) ≤ αM(v3)]. Similarly, we have, ζM(v1) ≥ min{infv3∈v1◦v2 ζM(v3), ζM(v2)}

= min{ζM(v3), ζM(v2)} [as v1 ◦ v2 < v3 implies that ζM(v1 ◦ v2) ≥ ζM(v3)].

The converse of the above proposition also true if v1 ◦ v2 < v3.

Proposition 6.2.3. If αM(v1) ≤ max{αM(v3), αM(v2)} and ζM(v1) ≥ min{ζM(v3), ζM(v2)},

with the condition v1 ◦ v2 < v3, for all v1, v2, v3 ∈ V . Then M = (αM , ζM) is a DIF

Hyp-filter in Hyp BE-algebra V .

Proof. Let αM(v1) ≤ max{αM(v3), αM(v2)} = max{supv3∈v1◦v2 αM(v3), αM(v2)} [as

v1 ◦ v2 < v3 implies that αM(v1 ◦ v2) ≤ αM(v3)]. Similarly, we have, ζM(v1) ≥
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min{ζM(v3), ζM(v2)} = min{infv3∈v1◦v2 ζM(v3), ζM(v2)} [as v1 ◦ v2 < v3 implies that

ζM(v1 ◦ v2) ≥ ζM(v3)].

Hence M is a DIF Hyp-filter in Hyp BE-algebra V .

Theorem 6.2.4. If M = (αM , ζM) is a DIF Hyp-filter in Hyp BE-algebra V , then

the non empty sets U(αM ; c) and L(ζM ; d) are Hyp-filters of V that is M<c,d> is a

Hyp-filter on Hyp BE-algebra V for any c, d ∈ [0, 1] and vice-versa.

Proof. Let M = (αM , ζM) be a DIF Hyp-filter of V and U(αM ; c) and L(ζM ; d) are non

empty set for any c, d ∈ [0, 1]. Since αM(1) ≤ αM(v1) ≤ c and ζM(1) ≥ ζM(v1) ≥ d,

for any v1 ∈M<c,d>, it follows that 1 ∈M<c,d>. Now let, v1, v2 ∈ V such that v1 ◦v2 <

M<c,d> and v2 ∈M<c,d> implies that αM(v2) ≤ c and ζM(v2) ≥ d. For any w ∈ v1 ◦ v2

there exist v3 ∈M<c,d> such that v3 < w, which implies that c ≥ αM(w) ≥ αM(v3) and

d ≤ ζM(w) ≤ ζM(v3) then, αM(v1) ≤ max{supw∈v1◦v2 αM(w), αM(v2)} ≤ max{c, c} =

c. And ζM(v1) ≥ min{infw∈v1◦v2 ζM(w), ζM(v2)} ≥ min{d, d} = d. This implies that

v1 ∈M<c,d>. So, M<c,d> is a Hyp-filter on Hyp BE-algebra.

Conversely, let, M<c,d> is a Hyp-filter of V . For any v1 ∈ V let αM(v1) = c and

ζM(v1) = d. Then v1 ∈ M<c,d>. Since 1 ∈ M<c,d>, so αM(1) ≤ αM(v1) and ζM(1) ≥

ζM(v1) for all v1 ∈ V . Again for any v1, v2 ∈ V , let c = max{supw∈v1◦v2αM(w), αM(v2)}

and d = min{infw∈v1◦v2ζM(w), ζM(v2)}. Then for v2 ∈ M<c,d> and v3 ∈ v1 ◦ v2, we

have

αM(v3) ≤ {supw∈v1◦v2 αM(w)} ≤ max{supw∈v1◦v2 αM(w), αM(v2)} = c;

ζM(v3) ≥ {infw∈v1◦v2 ζM(w)} ≥ min{infw∈v1◦v2 ζM(w), ζM(v2)} = d.

This implies that, v3 ∈ M<c,d>, so v1 ◦ v2 < M<c,d>, v2 ∈ M<c,d> implies that v1 ∈

M<c,d>. Therefore, we have

αM(v1) ≤ c = max{supw∈v1◦v2 αM(w), αM(v2)};

ζM(v1) ≥ d = min{infw∈v1◦v2 ζM(w), ζM(v2)}.

Hence M is a DIF Hyp-filter in Hyp BE-algebra V .

Theorem 6.2.5. Let M be a DIF Hyp-filter of a R-Hyp BE-algebra V . If v1 ◦ v2 =

v2 ◦ v1 = {1}, then αM(v1 ◦ v2) ≤ αM(v2) and ζM(v1 ◦ v2) ≤ ζM(v2).
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Proof. Let M be a DIF Hyp-filter of a R-Hyp BE-algebra V . Then,

αM(v1 ◦ v2) ≤ max{supw∈(v1◦v2)◦v2 αM(w), αM(v2)}

= max{supw∈1◦v2 αM(w), αM(v2)} [by the given condition]

= max{αM(v2), αM(v2)} [as V is R-Hyp BE-algebra]

= αM(v2).

So, αM(v1 ◦ v2) ≤ αM(v2). Also, we have

ζM(v1 ◦ v2) ≥ min{infw∈(v1◦v2)◦v2 ζM(w), ζM(v2)}

= min{infw∈1◦v2 ζM(w), ζM(v2)} [by the given condition]

= min{ζM(v2), ζM(v2)} [as V is R-Hyp BE-algebra]

= ζM(v2).

Hence, ζM(v1 ◦ v2) ≤ ζM(v2).

Theorem 6.2.6. Assume that M is a DIF Hyp-filter of a R-Hyp BE-algebra V . Then

the assertions below are equivalent-

(1) αM(v1 ◦ v2) ≤ αM(v1 ◦ (v1 ◦ v2)), ζM(v1 ◦ v2) ≥ ζM(v1 ◦ (v1 ◦ v2));

(2) αM(v1 ◦ v2) ≤ max{supa∈w◦(v1◦(v1◦v2)) αM(a), αM(w)} and

ζM(v1 ◦ v2) ≥ min{infa∈w◦(v1◦(v1◦v2)) ζM(a), ζM(w)}.

Proof. (1⇒2) Let M be a DIF Hyp-filter in Hyp BE-algebra V and (1) holds. Then

αM(v1 ◦ v2) ≤ αM(v1 ◦ (v1 ◦ v2)) and ζM(v1 ◦ v2) ≥ ζM(v1 ◦ (v1 ◦ v2)). (6.1)

Again since M is a DIF Hyp-filter of V , it follows that

αM(v1 ◦ (v1 ◦ v2)) ≤ max{supa∈w◦(v1◦(v1◦v2)) αM(a), αM(w)};

ζM(v1 ◦ (v1 ◦ v2)) ≥ min{infa∈w◦(v1◦(v1◦v2)) ζM(a), ζM(w)}.
(6.2)

By using (6.1) and (6.2), we obtain

αM(v1 ◦ v2) ≤ αM(v1 ◦ (v1 ◦ v2)) ≤ max{supa∈w◦(v1◦(v1◦v2)) αM(a), αM(w)};

ζM(v1 ◦ v2) ≥ ζM(v1 ◦ (v1 ◦ v2)) ≥ min{infa∈w◦(v1◦(v1◦v2)) ζM(a), ζM(w)}.

Hence the desired result.

(2⇒1) Suppose that (2) holds. Then

αM(v1 ◦ v2) ≤ max{supa∈w◦(v1◦(v1◦v2)) αM(a), αM(w)};

ζM(v1 ◦ v2) ≥ min{infa∈w◦(v1◦(v1◦v2)) ζM(a), ζM(w)}.
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Putting w = 1, we get αM(v1 ◦ v2) ≤ max{supa∈1◦(v1◦(v1◦v2)) αM(a), αM(1)} and

ζM(v1 ◦ v2) ≥ min{infa∈1◦(v1◦(v1◦v2)) ζM(a), ζM(1)}. As V is R-Hyp BE-algebra and

αM(1) ≤ αM(v1), ζM(1) ≥ ζM(v1), so αM(v1 ◦ v2) ≤ αM(v1 ◦ (v1 ◦ v2)), ζM(v1 ◦ v2) ≥

ζM(v1 ◦ (v1 ◦ v2)). Thus the proof ends.

Theorem 6.2.7. Let M be a DIF Hyp-filter of a RD-Hyp BE-algebra V , with the

conditions, αM((v1 ◦ v2) ◦ (v1 ◦ w)) ≤ αM(v1 ◦ (v2 ◦ w)), and ζM((v1 ◦ v2) ◦ (v1 ◦ w)) ≥

ζM(v1 ◦ (v2 ◦ w)). Then αM(v1 ◦ v2) ≤ max{supa∈w◦(v1◦(x◦v2)) αM(a), αM(w)}, and

ζM(v1 ◦ v2) ≥ min{infa∈w◦(v1◦(v1◦v2)) ζM(a), ζM(w)} for all v1, v2, w ∈ V .

Proof. As M is a DIF Hyp-filter of a RD-Hyp BE-algebra V , we have

(1) αM(v2) ≤ max{supa∈v1◦v2 αM(a), αM(v1)};

(2) ζM(v2) ≥ min{infa∈v1◦v2 ζM(a), ζM(v1)}, for all v1, v2 ∈ V. Also, αM(v1 ◦ v2) ≤

max{supa∈w◦(v1◦v2) αM(a), αM(w)};

(3) ζM(v1 ◦ v2) ≥ min{infa∈w◦(v1◦v2) ζM(a), ζM(w)}, for all v1, v2, w ∈ V .

Since V is a RD-Hyp BE-algebra, it follows that

αM(w ◦ (v1 ◦ v2)) = αM((v1 ◦ (w ◦ v2)

= αM((v1 ◦ v1) ◦ (v1 ◦ (w ◦ v2)))

≤ αM(v1 ◦ (v1 ◦ (w ◦ v2))) [by the given condition]

= αM(v1 ◦ (w ◦ (v1 ◦ v2)))

= αM(w ◦ (v1 ◦ (v1 ◦ v2))).

So, αM(v1 ◦ v2) ≤ max{supa∈w◦(v1◦v2) αM(a), αM(w)}. Similarly, we have

ζM(w ◦ (v1 ◦ v2)) = ζM((v1 ◦ (w ◦ v2)

= ζM((v1 ◦ v1) ◦ (v1 ◦ (w ◦ v2)))

≥ ζM(v1 ◦ (v1 ◦ (w ◦ v2))) [by the given condition]

= ζM(v1 ◦ (w ◦ (v1 ◦ v2)))

= ζM(w ◦ (v1 ◦ (v1 ◦ v2))).

Thus, ζM(v1 ◦ v2) ≥ min{infa∈w◦(v1◦v2) ζM(a), ζM(w)} for all v1, v2, w ∈ V . Hence the

desired result..
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Theorem 6.2.8. An IFS M = (αM , ζM) is a DIF Hyp-filter of a Hyp BE-algebra if

and only if ᾱM and ζM are fuzzy Hyp-filters of V .

Proof. Let M = (αM , ζM) be a DIF Hyp-filter of a Hyp BE-algebra V . Then by

hypothesis, αM(1) ≤ αM(v1) which implies that 1− αM(1) ≥ 1− αM(v1). Thus,

ᾱM(1) ≥ ᾱM(v1). (6.3)

Again,

αM(v1) ≤ max{supw∈v1◦v2 αM(w), αM(v2)};

or, 1− αM(v1) ≥ 1−max{supw∈v1◦v2 αM(w), αM(v2)};

or, ᾱM(v1) ≥ min{1− supw∈v1◦v2 αM(w), 1− αM(v2)};

or, ᾱM(v1) ≥ min{infw∈v1◦v2{1− αM(w)}, ᾱM(v2)};

that is,

ᾱM(v1) ≥ min{ inf
w∈v1◦v2

{ᾱM(w)}, ᾱM(v2)}. (6.4)

Then clearly from (6.3) and (6.4) we see that ᾱM is a fuzzy Hyp-filter of V , for all

v1, v2 ∈ V .

Now, it is obvious that ζM is a fuzzy Hyp-filter of V as, ζM(1) ≥ ζM(v1) and

ζM(v1) ≥ min{infw∈v1◦v2 ζM(w), ζM(v2)}, for all v1, v2 ∈ V.

Conversely let, ᾱM and ζM are fuzzy Hyp-filters of V . Then ᾱM(1) ≥ ᾱM(v1)

and ᾱM(v1) ≥ min{infw∈v1◦v2{ᾱM(w)}, ᾱM(v2)}, for all v1, v2 ∈ V . From which we

can conclude, αM(1) ≤ αM(v1) and αM(v1) ≤ max{supw∈v1◦v2 αM(w), αM(v2)}, for all

v1, v2 ∈ V. Also, ζM(1) ≥ ζM(v1) and ζM(v1) ≥ min{infw∈v1◦v2 ζM(w), ζM(v2)}, for all

v1, v2 ∈ V. Thus, M is a DIF Hyp-filter of V .

Theorem 6.2.9. Let V be a Hyp BE-algebra and {Mi|i ∈ I} is a family of DIF

Hyp-filters of V . Then
⋃
i∈IMi is also DIF Hyp-filter of V .

Proof. Let M = (αM , ζM) and N = (αN , ζN) be two DIF Hyp-filters of V . Again

let, C = M ∪ N = (αC , ζC), where αC = αM ∨ αN and ζC = ζM ∧ ζN . Let v2 ∈ V ,

then, αC(1) = (αM ∨αN)(1) = max{αM(1), αN(1)} ≤ max{αM(v2), αN(v2)} = (αM ∨

αN)(v2) = αC(v2) and ζC(1) = (ζM∧ζN)(1) = min{ζM(1), ζN(1)} ≥ min{ζM(v2), ζN(v2)} =
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(ζM ∧ ζN)(v2) = ζC(v2) Also,

αC(v1) = max{αM(v1), αN(v1)}

≤ max{max{ sup
w∈v1◦v2

αM(w), αM(v2)},max{ sup
w∈v1◦v2

αN(w), αN(v2)}}

= max{max{ sup
w∈v1◦v2

αM(w), sup
w∈v1◦v2

αN(w)}},max{αM(v2), αN(v2)}}

= max{ sup
w∈v1◦v2

αC(w), αC(v2)}.

Alike, it can be proved that, ζC(v1) ≥ min{infw∈v1◦v2 ζC(w), ζC(v2)}.

Thus the union of any two DIF Hyp-filters of V is also DIF Hyp-filters of V .

Following the same root, it can be proved that
⋃
i∈IMi is a DIF Hyp-filter of V .

Theorem 6.2.10. If M be a DIF Hyp-filter in a commutative Hyp BE-algebra V .

Then, αM(v2 ◦ (v1 ◦ v1)) ≤ αM(v1) and ζM(v2 ◦ (v1 ◦ v1)) ≥ ζM(v1).

Proof. Suppose M be a DIF Hyp-filter in a commutative Hyp BE-algebra V , then by

the hypothesis (P6), we have, v1 < (v1 ◦ v2) ◦ v2. Also, as V is a commutative Hyp

BE-algebra so, (v1 ◦ v2) ◦ v2 = (v2 ◦ v1) ◦ v1, Which implies that v1 < (v2 ◦ v1) ◦ v1.

Thus, αM((v2 ◦v1)◦v1) ≤ αM(v1). And ζM((v2 ◦v1)◦v1) ≥ ζM(v1). Hence the required

results.

Theorem 6.2.11. If M be a DIF Hyp-filter in a commutative Hyp BE-algebra V .

Then,

αM((v2 ◦ w) ◦ (v1 ◦ w)) ≤ max{supb∈(w◦v2)◦((v1◦v2)◦(v1◦v2)) αM(b), αM(v1 ◦ v2)};

ζM((v2 ◦ w) ◦ (v1 ◦ w)) ≥ min{infb∈(w◦v2)◦((v1◦v2)◦(v1◦v2)) ζM(b), ζM(v1 ◦ v2)}.

Proof. Assume that M be a DIF Hyp-filter in a commutative Hyp BE-algebra V . So,

we have

αM((v2 ◦ w) ◦ (v1 ◦ w)) ≤ max{supb∈(v1◦v2)◦((v2◦w)◦(v1◦w)) αM(b), αM(v1 ◦ v2)};

ζM((v2 ◦ w) ◦ (v1 ◦ w)) ≥ min{infb∈(v1◦v2)◦((v2◦w)◦(v1◦w)) αM(b), αM(v1 ◦ v2)}.

Since V is a commutative Hyp BE-algebra, it follows that

αM((v1 ◦ v2) ◦ ((v2 ◦ w) ◦ (v1 ◦ w))) = αM((v1 ◦ v2) ◦ (v1 ◦ ((v2 ◦ w) ◦ w)))

= αM((v1 ◦ v2) ◦ (v1 ◦ ((w ◦ v2) ◦ v2)))

= αM((v1 ◦ v2) ◦ ((w ◦ v2) ◦ (v1 ◦ v2)))

= αM((w ◦ v2) ◦ ((v1 ◦ v2) ◦ (v1 ◦ v2))).
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Hence, αM((v2 ◦ w) ◦ (v1 ◦ w)) ≤ max{supb∈(w◦v2)◦((v1◦v2)◦(v1◦v2)) αM(b), αM(v1 ◦ v2)}.

Also,

ζM((v1 ◦ v2) ◦ ((v2 ◦ w) ◦ (v1 ◦ w))) = ζM((v1 ◦ v2) ◦ (v1 ◦ ((v2 ◦ w) ◦ w)))

= ζM((v1 ◦ v2) ◦ (v1 ◦ ((w ◦ v2) ◦ v2)))

= ζM((v1 ◦ v2) ◦ ((w ◦ v2) ◦ (v1 ◦ v2)))

= ζM((w ◦ v2) ◦ ((v1 ◦ v2) ◦ (v1 ◦ v2))).

Hence, ζM((v2 ◦w)◦ (v1 ◦w)) ≥ min{infb∈(w◦v2)◦((v1◦v2)◦(v1◦v2)) ζM(b), ζM(v1 ◦ v2)}. Thus

the proof ends.

Theorem 6.2.12. If M be a DIF Hyp-filter in a commutative R-Hyp BE-algebra V ,

and v2 ◦ v1 = 1. Then,

αM(v1 ◦ v2) ≤ αM(v2);

ζM(v1 ◦ v2) ≥ ζM(v2).

Proof. Let us consider a DIF Hyp-filter M in a commutative R-Hyp BE-algebra V .

Then, we obtain

αM(v1 ◦ v2) ≤ max{supw∈(v1◦v2)◦v2 αM(w), αM(v2)};

ζM(v1 ◦ v2) ≥ min{infw∈(v1◦v2)◦v2 ζM(w), ζM(v2)}.

Since V is a commutative R-Hyp BE-algebra, it follows that {v2} = 1◦v2 = (v2 ◦v1)◦

v1 = (v1 ◦ v2) ◦ v2. That implies, αM(v1 ◦ v2) ≤ αM(v2). In a similar way, it can be

proved that ζM(v1 ◦ v2) ≥ ζM(v2).

6.3 Product of DIF Hyp-filters in Hyp BE-algebras

This section deals with the product of DIF Hyp-filters in Hyp BE-algebras.

Definition 6.3.1. Let C = (αC , ζC) and D = (αD, ζD)be two DIF Hyp-filters in Hyp

BE-algebras U and V , respectively. Then the CP C ×D = (U × V, αC × αD, ζC × ζD)

is defined by

(αC × αD)(a
′
, b
′
) = max{αC(a

′
), αD(b

′
)} and

(ζC × ζD)(a
′
, b
′
) = min{ζC(a

′
), ζD(b

′
)},

where αC × αD : U × V → [0, 1] and ζC × ζD : U × V → [0, 1], for all (a
′
, b
′
) ∈ U × V .
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Based on Hyp BE-algebras Cheng et al. [20] defined the product of Hyp BE-algebras

as followes:

Let (U ; ◦1; 11) and (V ; ◦2; 12) be two Hyp BE-algebras and Y = U×V . Hyperopera-

tion ◦ on Y is defined by (a
′
, b
′
)◦(c′ , d′) = (a

′◦c′ , b′◦d′) for every (a
′
, b
′
) and (c

′
, d
′
) ∈

U × V . Then the product of Hyp BE-algebra Y is also a Hyp BE-algebra.

Theorem 6.3.1. Let (U ×V ; ◦, (11, 12)) be the product of Hyp BE-algebras (U ; ◦1, 11)

and (V ; ◦2, 12). If M and N are DIF Hyp-filters in Hyp BE-algebras U and V respec-

tively, then M ×N is a DIF Hyp-filter of U × V .

Proof. Suppose that M and N are DIF Hyp-filters of U and V respectively. Now for

any (u, v) ∈ U × V , we have

(αM × αN)(11, 12) = max{αM(11), αN(12)}

≤ max{αM(u), αN(v)}

= (αM × αN)(u, v)

and

(ζM × ζN)(11, 12) = min{ζM(11), ζN(12)}

≥ min{ζM(u), ζN(v)}

= (ζM × ζN)(u, v)

Let (u1, v1) and (u2, v2) ∈ U × V . Then

(αM × αN)(u1, v1)

= max{αM(u1), αN(v1)}

≤ max{max{supm∈u1◦u2 αM(m), αM(u2)},max{supn∈v1◦v2 αN(n), αN(v2)}}

= max{max{supm∈u1◦u2 αM(m), supn∈v1◦v2 αN(n)},max{αM(u2), αN(v2)}}

= max{supw∈(u1◦u2,v1◦v2)(αM × αN)(w), (αM × αN)(u2, v2)}

= max{supw∈(u1,v1)◦(u2,v2)(αM × αN)(w), (αM × αN)(u2, v2)}
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Again, we have

(ζM × ζN)(u1, v1) = min{ζM(u1), ζN(v1)}

≥ min{min{infm∈u1◦u2 ζM(m), ζM(u2)},min{infn∈v1◦v2 ζN(n), ζN(v2)}}

= min{min{infm∈u1◦u2 ζM(m), infn∈v1◦v2 ζN(n)},min{ζM(u2), ζN(v2)}}

= min{infw∈(u1◦u2,v1◦v2)(ζM × ζN)(w), (ζM × ζN)(u2, v2)}

= min{infw∈(u1,v1)◦(u2,v2)(ζM × ζN)(w), (ζM × ζN)(u2, v2)}.

∴M ×N is a DIF Hyp-filter of U × V .

Theorem 6.3.2. Let M and N are DIF Hyp-filters in Hyp BE-algebras U ×V . Then

⊗
(M ×N) = (αM × αN , ᾱM × ᾱN).

is a DIF Hyp-filter of U × V .

Proof. The proof is straightforward.

6.4 DIFI Hyp-filters in hyper BE-algebras

In this section, DIFI Hyp-filter in Hyp BE-algebras is defined and proved some

essential theorems of it.

Definition 6.4.1. Let M = (αM , ζM) be an IFS in a Hyp BE-algebra V , then M is

called a DIFI Hyp-filter in Hyp BE-algebra V if

(1) αM(1) ≤ αM(u), ζM(1) ≥ ζM(u);

(2) αM(u ◦ w) ≤ max{supa∈u◦(v◦w) αM(a), supb∈u◦v αM(b)};

(3) ζM(u ◦ w) ≥ min{infa∈u◦(v◦w) ζM(a), infb∈u◦v ζM(b)}, for all u, v, w ∈ V .

Definition 6.4.2. An IFS M of a Hyp BE-algebra V is called a DIF PI Hyp-filter in

Hyp BE-algebra V if

(1) αM(1) ≤ αM(u), ζM(1) ≥ ζM(u);

(2) αM(v) ≤ max{supv3∈u◦((v◦w)◦v) αM(v3), αM(u)};

(3) ζM(v) ≥ min{infv3∈u◦((v◦w)◦v) ζM(v3), ζM(u)}, for all u, v, w ∈ V .
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Example 30. Consider a Hyp BE-algebra (V ; o, 1) that was given in Example 29 with

the table below:

o 1 r
′

s
′

1 {1} {r′ , s′} {s′}

r
′ {1} {1, r′} {1, s′}

s
′ {1} {1, r′ , s′} {1}

Let M = (αM , ζM) be an IFS of V as defined by

V 1 r
′

s
′

αM 0.3 0.3 0.4

ζM 0.7 0.6 0.6

Then M = (αM , ζM) is DIFI Hyp-filter in Hyp BE-algebra V .

Theorem 6.4.1. Every DIFI Hyp-filter in R-Hyp BE-algebra V is a DIF Hyp-filter

in V .

Proof. In Hyp BE-algebra V let M be a DIFI Hyp-filter. So,

(1) αM(1) ≤ αM(u), ζM(1) ≥ ζM(u);

(2) αM(u ◦ w) ≤ max{supa∈u◦(v◦w) αM(a), supb∈u◦v αM(b)};

(3) ζM(u ◦ w) ≥ min{infa∈u◦(v◦w) ζM(a), infb∈u◦v ζM(b)},

for all u, v, w ∈ V . Putting u = 1 in (2) we obtain that αM(1◦w) ≤ max{supa∈1◦(v◦w) αM(a), supb∈1◦v αM(b)},

which implies that

αM(w) ≤ max{supa∈(v◦w) αM(a), αM(v)}.

Similarly, we get

ζM(w) ≤ min{infa∈(v◦w) ζM(a), ζM(v)}.

Hence the proof of the theorem ends.

Now a required condition is given such that a DIF Hyp-filter in V becomes a DIFI

Hyp-filter in V .
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Theorem 6.4.2. Let (V ; ◦, 1) be a transitive Hyp BE-algebra and M be a DIF Hyp-

filter of V such that

αM(u ◦ v) ≤ max{supa∈w◦(u◦(u◦v)), αM(w)};

ζM(u ◦ v) ≥ min{infa∈w◦(u◦(u◦v)), ζM(w)}.

Then, M is a DIFI Hyp-filter of V .

Proof. Let M is a DIF Hyp-filter of a transitive Hyp BE-algebra V satisfying the

given condition. So, u ◦ (v ◦ w) = v ◦ (u ◦ w) << ((u ◦ v) ◦ (u ◦ (u ◦ w))). Thus,

αM((u ◦ v) ◦ (u ◦ (u ◦ w))) ≤ αM(u ◦ (v ◦ w)). Hence by the given condition we get

αM(u ◦ w) ≤ max{supa∈((u◦v)◦(u◦(u◦w))) αM(a), supb∈u◦v αM(b)}

= max{supa∈u◦(v◦w) αM(a), supb∈u◦v αM(b)}.

Therefore, M is a DIFI Hyp-filter of V .

6.5 Summary

The notion of intuitionistic fuzzification of Hyp-filters and implicative Hyp-filters of

HypBE-algebras are introduced in this chapter as a further study of IF-hyperstructures.

To develope the theory of algebraic hyperstructures IF Hyp-filters play a pivotal role.

Applying some important conditions on Hyp BE-filters, here, we have formed DIF

Hyp-filters in Hyp BE-algebras and have presented characterizations of DIF Hyp-

filters in Hyp BE-algebras. We give characteristics of DIF Hyp-filters in commutative

Hyp BE-algebras. At the same time we deal with the doubt intuitionistic fuzzification

of the notion of implicative Hyp-filters in Hyp BE-algebras. We show that every DIFI

Hyp-filters in Row-Hyp BE-algebras are DIF Hyp-filters in Hyp BE-algebras and give

the condition such that a DIF Hyp-filters in Hyp BE-algebras to be a DIFI Hyp-filters

in Hyp BE-algebras.


