M.Sc. 2nd Semester Examination, 2013 **ELECTRONICS**

(Electronic Materials)

(Theory)

PAPER-ELC-203

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer all questions:

 2×5

- (a) Differentiate between a point defect and a planar defect.
- (b) What do you mean by 'Fermi Surface'?

(Turn Over)

- (c) Define 'electronic' and dipolar polarizability.
- (d) Explain the concept of solitons for conduction mechanism in polymers.
- (e) Why is silicon not used as an LED materials?
- 2. (a) Derive the equation relating the number of vacancies n found in a monoatomic crystal to the energy E_a required to remove one atom to the crystal's exterior.
 - (b) If 1 eV is required to move an atom from the monoatomic crystal's interior to the surface, what is the proportion of vacancies present in the crystal at 1000 K? At 300 K?
 - (c) State the difference between high-angle and low-angle boundary and their relative effects on materials. 4 + (1 + 1) + (2 + 2)
- 3. (a) The following data are given for Si at 300 K with the usual symbols:

$$n_i = 1.45 \times 10^{10} \text{ cm}^{-3}$$

 $\mu_e = 1500 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$
and $\mu_h = 450 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$.

It is doped with 10¹¹ donor atoms per cm³. Assuming that the donors are all ionized, calculate the percentage increase in conductivity of the doped material over the intrinsic value.

- (b) Derive the Hall coefficient for an intrinsic semiconductor. When is the Hall coefficient zero in a semiconductor? 4 + (4 + 2)
- 4. (a) Derive an expression for the local field in a dielectric.
 - (b) Find the expression for the energy loss in a dielectric placed under a high frequency electric field.
- 5. (a) Describe the structure of ferrites. How is the magnetic moment of ferrite molecule calculated?
 - (b) Give reason why in Fe₃O₄, some of the magnetic Fe²⁺ ions are replaced by non-magnetic ions such Zn²⁺ or Cd²⁺, the magnetization increases.
 - (c) How are ferrites superior to magnetic metals? 3+3+(3+1)

- 6. (a) To be considered solar cell materials, semiconductors of what bandgaps are critical? Give reason on which side you will illuminate a p-n junction solar cell to get a better performance.
 - (b) Derive the expressions for open-circuit voltage (V_{oc}) , maximum output power (P_m) and power conversion efficiency (η) of a p-n junction solar cell. (1+2)+(2+3+2)

[Internal Assessment: 10 Marks]