M.Sc. 3rd Semester Examination, 2013

ELECTRONICS

(Control System and Instrumentation)

[Theory]

PAPER - ELC-302

Full Marks: 50

Time: 2 hours

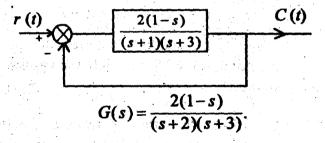
Q.No.1 and answer any three from the rest

The figures in the right hand margin indicate marks

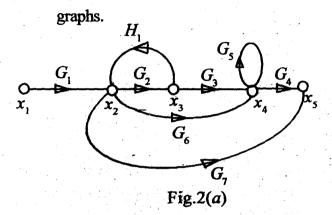
- 1. (a) What is the difference between open loop control system and closed loop control system. Give one example for each.
 - (b) Define CMRR for ideal an Op-amp.
 - (c) Why negative feedback is preferred over positive feedback in a closed loop system.

(Turn Over)

- (d) Define poles and zeros of a function of the complex variable and explain its significance in control system study.
- (e) What is the need for inserting isolation between the signal generator output and the oscillator in a simple signal generator? 2 × 5
- 2. (a) A unity feedback system is characterised by an open loop transfer function is $G(s) = \frac{k}{s(s+10)}.$ Determine k so that system will have damping ratio 0.5. For this value of k determine settling time, peak overshoot and time to peak overshoot for a unit step input.
 - (b) For the characteristic equation of feedback control system is given by


$$s^4 + 25s^3 + 15s^2 + 20s + k = 0$$

Determine the range of k for stability. Determine the value of k so that the system is marginally stable and find the frequency of sustained oscillation. 5+5 3. (a) A typical type 'O' system has transfer function given,


$$G(s) = \frac{k}{(1+ST_1)(1+ST_2)(1+ST_3)}$$

sketch its polar plot.

(b) For the system shown in figure below, sketch the Nyquist plot (roughly) for k = 2 and use the Nyquist criterion to determine whether the closed loop system is stable.

4. (a) For the signal flow graph shown in Fig.2 (a) determine the ratio x_5/x_1 . Use Mason's gain formula for signal flow /

(b) State Routh's Stability criterion. The characteristic equation of a system is given by

$$s^3 + 3ks^2 + (k+2)s + 4 = 0$$

Using Routh's stability criterion, determine the range of k for which the system is stable. 5 + (1 + 4)

5. (a) Determine the damping ratio, undamped natural frequency, delay time, rise time, peak time and maximum overshoot for the second order system whose characteristics equation is given by

$$s^2 + 2.5s + 10 = 0$$

- (b) How is the electron beam focused to a fine spot on the face of the Cathode ray tube?
- (c) How does the digital storage oscilloscope differ from the conventional storage oscilloscope using a storage Cathode ray tube.

 6+2+2
- 6. (a) Describe the basic elements of a function generator which generates square, triangular and sine waveshapes with a neat diagram.
 - (b) Find the Z-transform of the discrete sequences generated by mathematically sampling (at uniform time interval T) the continuous-time function of e^{-at} . 7+3

[Internal Assessment - 10 Marks]