M.Sc. 1st Semester Examination, 2013 ELECTRONICS

(Network Analysis and Synthesis)

[Theory]

PAPER - ELC - 103

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer *all* questions:

 2×5

(a) Determine the driving-point impedance of the following Network.

(Turn Over)

(b) Find out the admittance matrix of the following circuit.

(c) Convert the following π network to an equivalent T network.

(d) Determine the number of trees possible for the following graph.

- (e) State and explain the Foster's reactance theorem.
- 2. (a) A network is shown in the following figure.

 Draw its graph.

(b) Determine the impedence matrix of the following circuit.

(Turn Over)

(c) Incidence matrix of a graph is given below.

Draw its directed graph.

	Branches>							
Nodes	1	2	3	4	5	6	7	
$\downarrow_{(1)}$	-1	0	-1	1	0	0	1	
(2)	0	-1	0	-1	0	-1	0	
(3)	1	1 .	0	. 0	-1	1	0	
(4)	0	0	1	0	1	0	-1	

- (d) Find the possible number of trees in a graph for [A] (the reduced incidence matrix) and [A'] (the transposed matrix of A).
- 3. (a) Define Laplace transformation of a function f(t).
 - (b) For $f(t) = \cos \omega t$, find F(s).
 - (c) Obtain the Laplace transform of the square wave train shown in the following figure. 2

(Continued)

4

2

2

(d) In the given figure, the battery voltage is applied for a steady state period. Obtain the complete expression for the current after closing the switch K. Assume $R_1 = 1\Omega$, $R_2 = 2\Omega$, L = 1H and E = 10 V.

4. (a) Prove that for a reciprocal network

$$AD - BC = 1$$
,

where A, B, C, D are different network parameters.

(b) For the network shown below the switch k

is closed at t = 0, determine the current i in the circuit.

- 5. (a) Show that the nominal characteristics impedance of a constant K filter is $\sqrt{\frac{1}{c}}$.
 - (b) Design a constant-K low-pass T section filter with a nominal resistance of 50 Ω to produce cut off at a frequency 1·2 kHz. Find out the attenuation at 2kHz frequency.
- 6. (a) Determine the expression for the driving point impedance of a reactive network which has poles at w = 0, 4,000 rad/s and α , zeros are to be located at w = 2,000 and 6,000 rad/s. The impedance is to be -j 700 ohm at 1000 rad/s.

5

5

(b) Find the first Foster network of the driving point impedance function derived earlier.

[Internal Assessment: 10 Marks]