BSc/Part-II/Sts-III/(H)

Total No. of pages: 8

2019
Part – II
STATISTICS
(Honours)
Paper – III

Full Marks - 90 Time: 4 Hours

Write the answers to Questions of each / Half / Part /Group in separate books wherever necessary. The figures in the right-hand margin indicate marks. Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

GROUP - A

1. Answer any five questiono : 5×5=25(a) Show that the sequence of random variables

 $Xn \xrightarrow{L} X$ where $Xn \sim N$ $(O, \frac{1}{n})$ and X is a random variable having distribution function

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ 1 & ; & x \ge 0 \end{cases}$$

(b) Examine if Weak Law of Large Numbers (WLLN) holds for the sequence of mutually independent random variables $\{x_n\}_p$ where

$$P\left\{X_{k} = \frac{1}{2k}\right\} = P\left\{X_{k} = -\frac{1}{2k}\right\} = \frac{1}{2}$$
 5

(c) Derive the mean and variance of χ^2 distribution with n degres of freedom. 5

(d) If random variables
$$\chi_2$$
 be independently distributed as uniform (0,1), then show that $Z_1 = \sqrt{-2 \ln x_1} S \ln 2 \Pi X_2$ and $Z_2 = \sqrt{-2 \ln x_1} C \cos 2 \Pi X_2$

are independently distributed as N(0,1).

(e) Let $X_1, X_2, ..., X_n$ be a random sample of size n from Rec (0,0). Obtain the probability density functions of the distribution of the longest order statistic $X(n) = \max\{x_1, x_2, ..., x_n\}$ and the smallest order statistic $X(1) = \min\{x_1, x_2, ..., x_n\}$.

- (i) any population unit is drawn at any draw.
- (ii) a particular population unit is included in the sample.
- (g) State De-Moivers Laplace Limit theorem.Show that Binomial distribution follows the theorem.2+3
- 2. Answer any one question :- 10×1=10
 - (a) Let X_1, X_2, \dots, X_n be a sample of size n drawn from an exponential distribution with p.d.f $f(x) = \lambda_e^{-\lambda x}$. Derive the sampling distribution of the sample range.
 - (b) (i) State Chebyshev's inequality.2(ii) Use the above inequality to show that

$$P(T^2 \ge 25) \le \frac{1}{3}$$
 where

$$T = X_1 + X_2 + ... X_{100}$$

and $X_1, X_2,..., X_{100}$ are i,i,d uniform (-0.5,0.5) random variables.

GROUP-B

3. Answer any **four** questions:

- 5×4=20
- (a) (i) State Neyman Fisher's factorization Theorem. 2
 - (ii) Use this theorem to find a sufficient statistic for a when X_1, X_2, X_3 are independent random variables with $X_k(k=1,2,3)$ have the probability density function

$$f_k(x) = \begin{cases} K\theta^{-k\theta x} & ; 0 < x < \infty \\ 0 & 0.w. \end{cases}$$

- (b) Describe the exact test procedure for testing the equality of two independent Binomial proportions Ho: P₁= p₂ against all possible alternatives.
- (c) (i) State and prove the sufficient conditions for consistency of an estimator. 3
 - (ii) Let $X_1, X_2,..., X_n$ be i,i,d B(1, θ) random variobles, $0 < \theta < 1$. Check

whether T(
$$X_1, X_2, ..., X_n$$
) =
is a consistent estimator of θ .
$$\frac{\sum_{i=1}^{n} x_i + \sqrt{\frac{n}{2}}}{n + \sqrt{n}}$$

(d) Discuss the test procedure for testing the equality of the variances of two independent normal populations when the means are unknown, Ho!
$$\frac{2}{1} = \sigma \frac{2}{2}$$
 against all possible alternatives.

(e) (i) Let X~Bin(n,p) where n is known. Show that the only estimable parametric function of p is a polynomial in p of degree at most n.

(ii) Let $X_1, X_2, ..., X_n$ be i.i.d random variables with the probability density function

$$f(x/\theta) = \frac{2\theta^2}{X^3}; X \ge 0$$
$$= 0 \text{ 0.W}$$

where θ (>0) is unknown. Find the maximum likelihood estimator of θ . 2.5

(b) Let $\bar{x} = 9$, $Sx^2 = 6$ be the sample mean and variance, respectively, based on a random sample of size 3 from N (μ_1 , δ^2) . Also let \bar{y} = 7, s^2y = 4 be the sample mean and vari ance respectively based on a random sample. of size 3 from N($\mu_2, 2\sigma_6^2$)where $\mu_1, \mu_2 \varepsilon R$ and $\sigma^2 > 0$ are unknown. Find a 95% confidence interval for Given : $P(t_4 \le 2.78) = 0.975, P(t_4 \le 2.13) = 0.95$ $P(t_5 \le 2.57) = 0.975, P(t_5 \le 2.01) = 0.95$ where t_n denotes t₋ random variable with n degrees of freedom. 10

GROUP - C

Answer any three questions: 5×3=15 Obtain the characteristic function of (a)

5

multivariate normal distribution. 5 BSc/Part-II/Sts-III/(H) 6 Contd.

(d) What do you mean by partial correlation coefficient? Express the partial correlation coefficient in terms of the elements of the correlation matri. Explain concentration ellipsoid for two vari-(e) ables and extend the same the case of p-variables. 6. Answer any one question :-Show that $X \sim NP(\mu, \Sigma)$ iff for any non (a)

BSc/Part-II/Sts-III/(H)

this result.

(c)

Show that the multiple correlation co-efficient

of X_1 on $X_2, X_3, ..., X_p$ that is π 1.23... p lies

between o and 1. Write the implication of

If the random variables $(X_1, X_2, ... X_k)$ follows

multinomial distribution with parameters n, p,

 p_2 ..., p_k Obtain the mean vector μ and the

dispersion matrix \sum of $\underline{X} = (X_1, X_2, X_k)$. 5

5

5

5

10

P.T.O.

10×1=10

random vector
$$\int_{-\infty}^{bx1} \int_{-\infty}^{\infty} \sim \int_{-\infty}^{1} \frac{x}{x} \sim N(\int_{-\infty}^{1} \frac{\mu}{x}, \int_{-\infty}^{1} \sum_{i=1}^{n} \frac{1}{x})$$

(b) Show that the multiple correlation co-efficient is the maximum value of the correlation coefficient between variable X₁ and any linear function of (p-1) variables X₂, X₃,...X_p.

10