2019

MATHEMATICS

[Honours]

PAPER - II

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

GROUP - A

(Real Analysis)

[Marks : 35]

1. Answer any one question:

 15×1

(a) (i) State and prove Darboux theorem.

5

(ii) If a series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ converges to a

real number s, then show that the rearranged series

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \cdots$$

$$+ \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \cdots$$

converges to $\frac{s}{2}$.

5

1 + 4

(iii) State Bolzano-Weierstrass Theorem. Verify it for the set $S \subset R$ where

$$S = \left(1 + \frac{(-1)^n}{n}; n \in \mathbb{N}\right).$$

(b) (i) For a sequence $\{x_n\}$, if $\lim_{n\to\infty} x_n = l$.

prove that

$$\lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_4}{n} = l.$$

Hence prove that for a sequence

$$\{x_n\}, \quad \text{if } \lim_{n\to\infty} x_n = l.$$

where
$$x_n > 0 \quad \forall_n \in \mathbb{N}$$
, prove that
$$\lim_{n \to \infty} \sqrt[n]{x_1 \ x_2 \dots \ x_n} = l.$$

- (ii) Prove that if a set A is open set then its complement A^{C} is closed.
- (iii) State and prove density property in $\mathbb{R}-\{O\}.$ 5
- Answer any two questions:

 8×2 (i) Using Taylor's theorem prove that

$$\cos x \ge 1 - \frac{x^2}{2} \quad \text{for } -\pi < x < \pi.$$

(ii) Examine if the set S is closed in R

$$S = \bigcup_{n=1}^{\infty} I_n \text{ , Where}$$

$$I_n = \left\{ x \in R : \left(\frac{1}{3}\right)^n \le x \le 1 \right\}.$$
3

(b) State and prove Taylor's theorem when its call the Cauchy Remainder form. 6 + 2

(c) (i) Prove that the function f defined by

$$f(x) = \frac{1}{x^2 + 1}, x \in \mathbb{R}$$

is uniformly continuous on IR where IR is the set of all real numbers.

- (ii) Let I = [a, b] and a function f: I → IR be differentiable on I. Let f'(a) ≠ f'(b), If k be a real number lying between f'(a) and f'(b) then there exist a point C in (a, b) s.t f'(c) = k.
- 3. Answer any one question:

(a) If $I_n = \int_0^{\pi/2} x^n \sin x \, dx \, (n \in Z^+)$.

Then prove that

$$I_n + (n^2 - n)I_{n-2} = n(\pi/2)^{n-1}$$
.

(b) If $\lim_{x\to 0} \frac{ae^x + be^{-x} + 2\sin x}{\sin x + x\cos x} = 2$

find the values of a and b.

4

4

4

 4×1

GROUP - B

(Several Variables and Applications)

[Marks : 20]

4. Answer any two questions:

 8×2

(a) (i) Show that the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

is continuous at (0,0).

4

(ii) Prove that the equation of the tangent at the point 't' on the curve

$$x = a \frac{\phi(t)}{f(t)}$$
 and $y = a \frac{\psi(t)}{f(t)}$ may be

written as

$$\begin{vmatrix} x & y & a \\ \phi(t) & \psi(t) & f(t) \\ \phi'(t) & \psi'(t) & f'(t) \end{vmatrix} = 0.$$

(b) (i) Let

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x^2 + y^2 = 0 \end{cases}$$

Show that f(x, y) is not differentiable at (0, 0) although f(x, y) is continuous at (0,0) and f_x and f_y both exist at (0,0).

- (ii) Show that the relation u = x + y z, v = x y + z, $w = x^2 + y^2 + z^2 2yz$ are not independent. Find the relation between them.
- (c) (i) The tangents at two points P and Q on the cycloid $x = a(\theta \sin \theta) y = a(1 \cos \theta)$ are at right angles. Show that if ρ_1 and ρ_2 be the radii of curvature as these points then $\rho_1^2 + \rho_2^2 = 16a^2$.

(ii) The evolute of the parabola

$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$
 is $27a (x - y)^2$
= $(2x + 2y - 3a)^3$. 4

3

5. Answer any one question:

 4×1

(a) Find all the asymptotes of

$$x^3 - 2x^2y + xy^2 + x^2 - xy + 2 = 0.$$

(b) If ρ_1 and ρ_2 are the the radii of curvature at two extremities of any chord of the cardiode $r = a(1 + \cos\theta)$ passing through

the pole, prove that
$$\rho_1^2 + \rho_2^2 = \frac{16}{9}a^2$$
.

GROUP - C

(Analytical Geometry for two Dimensions)

[Marks: 20]

6. Answer any two questions:

 8×2

(a) If the equation $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ represents two parallel straight lines, show that the distance between them

is
$$2\sqrt{\frac{g^2-ac}{a(a+b)}}$$
.

- (b) Reduction the equation $x^2 + 4xy + y^2 - 2x + 2y + 6 = 0$ to its Canonical form and show that it represents a hyperbola. Find the latus rectum and the equation of the exist of the hyperbola.
- (c) Show that the auxiliary circle of the conic $\frac{l}{r} = 1 - e \cos\theta \text{ is } r^2 (e^2 - 1) + 2ler\cos\theta$ $+1^2=0$ 8
- Answer any one question: 4×1 (a) Show that the locus of the poles of the
 - normal chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ is $\frac{a^6}{x^2} + \frac{b^6}{v^2} = (a^2 - b^2)^2$
 - (b) Find the equation of two conjugate diameters of the hyperbola $4x^2 - 5y^2 = 20$, if one of them passes through the point (1, 8).

GROUP - D

(Differential Equation-I)

[Marks: 15]

8. Answer any one question:

 15×1

(a) (i) Solve $x^2 y dx - (x^3 + y^3) dy = 0$.

(ii) Reduce the equation

 $(px^2 + y^2)(px + y) = (p + 1)^2$ to its Clairaut's form by substitution u = xy, v = x + y and find its general and singular solutions.

(iii) Find the eigen values of eigen function of the differential equation

$$\frac{d^2y}{dx^2} + \lambda y = 0, \ (\lambda \in \mathbb{R})$$

which satisfies the boundary conditions y(0) = 0 and $y(\pi) = 0$.

(b) (i) Show that the given equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x^{2})^{2}}, 0 < x < 1$$
is exact and hence solve it.

(ii) Show that the orthogonal trajectories of

$$\frac{x^2}{a^2} + \frac{y^2}{\lambda + a^2} = 1, (\lambda \text{ being arbitrary})$$
is $x^2 + y^2 + c = 2a^2 \log x$.

(iii) Solve by the method of variation of parameters:

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{e^{-x}}{x^2}.$$