2019

MATHEMATICS

[Honours]

PAPER -I

Full Marks: 90

Time: 4 hours

The figures in the right-hand margin indicate marks

GROUP - A

(Classical Algebra)

[Marks : 30]

1. Answer any one question:

 15×1

(a) (i) If α , β , γ , ... be the roots of the equation $x^{n} + p_{1}x^{n-1} + p_{2}x^{n-2} + ... + p_{n} = 0$, then prove that

$$(1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2) \dots = (1 - p_2 + p_4 - \dots)^2 + (p_1 - p_3 + p_5 - \dots)^2 = 5$$

(ii) If
$$\alpha = \cos \frac{2r\pi}{n} + i \sin \frac{2r\pi}{n}$$
 and if r and p
be prime to n, then prove that

$$1 + \alpha^p + \alpha^{2p} + \dots + \alpha^{(n-1)p} = 0.$$

(iii) If each of a, b, c, d be greater than 1 then show that

$$8(abcd+1) > (a+1)(b+1)(c+1)(d+1).$$

(b) (i) If $(1+x)^n = a_0 + a_1x + a_2x^2 + \cdots$, then show that

$$a_0 - a_2 + a_4 - \dots = 2^{n/2} \cos \frac{n\pi}{4}$$
 and
 $a_1 - a_3 + a_5 - a_7 + \dots = 2^{n/2} \sin \frac{n\pi}{4}$ 5

(ii) If α , β , γ be roots of the equation $x^3 - px^2 + ax - r = 0.$

then form the equation whose roots are

$$\beta \gamma + \frac{1}{\alpha}, \ \gamma \alpha + \frac{1}{\beta}, \ \alpha \beta + \frac{1}{\gamma}$$

5

(iii) If a, b, c be three positive numbers any two of which are together greater than the third, then show that

$$\frac{1}{b+c-a} + \frac{1}{c+a-b} + \frac{1}{a+b-c} > \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$
 5

Answer any one question:

 8×1

(a) (i) If z be a complex number and $\frac{z+1}{z-i}$ be purely imaginary, then show that z lies on the circle whose centre is at

on the circle whose centre is at
$$\frac{1}{2}(-1+i)$$
 and the radius is $\frac{1}{\sqrt{2}}$.

- (ii) Find the condition that the cubic $x^3 - px^2 + qx - r = 0$ should have its roots in GP.
- (b) (i) If one of the roots of the equation

$$x^{3} + px^{2} + qx + r = 0$$
equals the sum of the other two, then

prove that $p^3 + 8r = 4pq$

(ii) Find the least value of
$$(x^{-2} + y^{-2} + z^{-2})$$
, when $x^2 + y^2 + z^2 = 9$.

3. Answer any one question:

 4×1

(a) Solve the equation by Cardan's method

$$x^3 + 3x^2 + 6x + 4 = 0$$

4

(b) Define special roots of an equation. Find the special roots of the equation $x^{12} - 1 = 0$.

4. Answer any one question:

3 × 1

(a) If n be a positive integer, then prove that

$$(1+i)^n + (1-i)^n = 2^{\frac{n+2}{2}} \cos \frac{n\pi}{4}.$$

3

(b) If α , β , γ be the roots of the equation $x^3 + x + 1 = 0$, then prove that

$$(\alpha^2 + 1)(\beta^2 + 1)(\gamma^2 + 1) = 1$$

GROUP - B

(Abstract Algebra)

[Marks: 35]

5. Answer any three questions:

 8×3

- (a) (i) Write the second principle of mathematical induction. Hence prove that the sum of the cubes of 3 consecutive positive integers is divisible by 9.
 - (ii) Let $f: A \to B$ and $g: B \to C$ be two bijective functions. Prove that composite function $gof: A \to C$ is a bijective function.
- (b) (i) If $a, b, c \in \mathbb{Z}$ such that a|bc and gcd(a, b) = 1 then prove that a|c.
 - (ii) Prove that every group of prime order is cyclic.

4

(c)	(<i>i</i>)	Define integral domain. Prove that a
		commutative ring R with unity is an
		integral domain if and only if cancella-
		tion law holds in R.

- (ii) Prove that intersection of two subgroups is a subgroup of a group. Give an example to show that union of two subgroups may not be a subgroup.
- (d) (i) Prove that order of each subgroup of a finite group G is a divisor of the order of the Group G.
 - (ii) Define order of an element in a group G. Prove that $0(a) = 0(xax^{-1})$ for any $a, x \in G$.
- (e) (i) Prove that the number of positive primes is infinite.
 - (ii) Let G be a cyclic group generated by a of order 15. Compute the order of a^3 , a^6 , a^8 and a^{10} .

4

6. Answer any two questions:

- 4×2
- (a) Define commutative ring. Prove that a ring R is commutative, iff $(a + b)^2 = a^2 + 2ab + b^2$ for every $a, b \in R$.
- (b) Prove that a finite integral domain is a field. 4
 - (c) Prove that any two cycles in S_n are conjugate if they are of the same length.
- 7. Answer any one question:

 3×1

(a) A binary relation on R^2 defined by

$$R = \left\{ ((a,b),(c,d)) \in R^2 \times R^2 \mid a^2 + b^2 = c^2 + d^2 \right\}.$$

Prove that R is an equivalence relation.

(b) Express the permutation

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 2 & 6 & 1 & 3
\end{pmatrix}$$

as a product of transpositions and hence find whether it is odd or even.

GROUP - C

(Linear Algebra)

[Marks : 25]

8. Answer any one question:

 15×1

(a) (i) Find the basis and dimension of the subspace S of \mathbb{R}^3 , where

$$S = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0, 2x + y + 3z = 0\}$$

(ii) If $\Delta (\neq 0)$ be a determinant of order n and Δ' be its adjoint, then $\Delta' = \Delta^{n-1}$.

(iii) Find third column, so that the matrix

$$Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} & * \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} & * \\ \frac{1}{\sqrt{3}} & -\frac{3}{\sqrt{14}} & * \end{bmatrix}$$

is orthogonal.

(b) (i) Investigate for what values of λ and μ the following equations

$$x + y + z = 6$$

$$x + 2y + 3z = 10$$

$$x + 2y + \lambda z = \mu$$

have (I) no solution (II) a unique solution and (III) an infinite number of solutions. 5

(ii) If α and β be vectors in an inner product space, then show that

$$\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2\|\alpha\|^2 + 2\|\beta\|^2$$

- (iii) Prove that eigen values of a real symmetric matrix are real.
- 9. Answer any one question:

 8×1

5

(a) (i) Find the eigen values and eigen vectors of the matrix

$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

(ii) Reduce the following quadratic form to normal form and examine whether the quadratic form is positive definite or not.

$$6x^2 + y^2 + 18z^2 - 4yz - 12zx$$
 4

- (b) (i) Prove that any orthonormal set of vectors in an inner product space is linearly independent.
 - (ii) Examine the linear dependence of the set of vectors $\alpha = (1, 2, -3), \beta = (2, -3, 1), \gamma = (-3, 1, 1)$. Hence find the rank of

$$\begin{bmatrix} 1 & 2 & -3 \\ 2 & -3 & 1 \\ -3 & 1 & 1 \end{bmatrix}$$

4

4

10. Answer any one question:

 2×1

(a) State Cayley-Hamilton theorem and verify

the theorem for the matrix
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$$
.

(b) If A and B are two square matrices of order n, prove that trace(AB) = trace(BA). 2