NEW

Part-III 3-Tier

2019

CHEMISTRY

(Honours)

PAPER-VII

Full Marks: 45

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group-A

Answer any one question.

1×15

- 1. (a) What do you understand by partition function. 2
 - (b) Find the ratio of population of two states such that $E_2 E_1 = KT$. Degeneracy of corresponding energy levels are 5 and 1.
 - (c) Show that a diatomic molecule dissociates into atoms if it is present in the vibration state of a vibrational quantum number.

$$v = \frac{1}{2x_e} - \frac{1}{2}$$

 x_e = anharmonicity constant of the anharmonic oscillator.

- (d) Ag is known to crystallise in fcc form and the distance between the nearest neighbour atoms is 2.87 Å. Calculate the density of Ag. (Atomic weight of Ag = 108).
- (e) "Zero point energy of a harmonic oscillator is a consequence of uncertainty principle."—Explain. 2
- (f) The reaction $2A \rightleftharpoons A_2$ occurs both thermally and photo chemically. The photo chemical reaction takes place with the following steps.

(i)
$$A \xrightarrow{hv(I_a)} A^*$$
 (ii) $A^* + A \xrightarrow{K_2} A_2$

(iii)
$$A_2 \xrightarrow{K_3} 2A$$
 (iv) $A \star \xrightarrow{K_4} A + hy'$

Applying the steady state approximation to A*, show

that
$$[A_2] = \frac{I_a}{K_3[1 + \frac{K_4}{(K_2[A])}]}$$
 at photostationary

equilibrium. Also show that $[A_2]$ in independent of [A],

when A is present in large excess. Compare the result with that in the thermal equilibrium case.

2. (a) The wave function for a 1 s orbited for a hydrogen atom is $\psi_{1s} = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$ (where a_0 = Bohr radius).

Depict graphically the plots of (i) ψ_{1s} against r and (ii) $4\pi r^2 \psi_{1s}^2$ again r. Explain the graph. Find the most probable value of r in the 1s state. 1+1+2

- (b) Define 'consolute temperature'. Explain its existance with the help of a labelled diagram for water triethyl amine system.
- (b) State the third law of thermodynamics relating entropy of a perfectly crystalline solid at zero Kelvin. Show that the statement is consistent with the statistical definition of entropy(s). Comment on the value of s at T = 0 for CO.
- (d) Define quantum yield. The quantum-yield of a photochemical reaction may different from unity'—comment.

Group-B

Answer any two questions.

 2×10

3. (a) The distance between two successive parallel planes in a cubic crystal can not be $\frac{a}{\sqrt{7}}$. comment (a = length of the edge of the cube).

(b) Heat capacity of a solid is given by Einstein's equation as follows:

$$C_V = 3R \left(\frac{hv}{kT}\right)^2 \frac{e^{hv/kT}}{\left(e^{hv/kT} - 1\right)^2}$$

Hence,

- (i) Obtain Dulong Petit's law
- (ii) Give definition and significance of Einstein characteristic temperature.
- (iii) Explain why Einstein's theory of heat capacity of solid fails to explain the experimental temperature variation of heat capacity. 2+2+2
- (c) Sodium crystallizes in b.c.c. structure with a = 4.24Å. Calculate (i) theoretical density and (ii) radius of 'Na' atom.
- **4.** (a) Point out the characteristics of a first order phase transition. Plot 'G' versus 'T' and $\left(\frac{dG}{dT}\right)_P$ versus 'T' for such a transition, with proper reasoning.

2+11/2+11/2

- (b) State Raoult's law and Henry's law. Show that in a non-ideal solution, if one component obeys Raoult's law over a certain range of composition, the other components obeys Henray's law over the same range. 1+1+3
- 5. (a) The rotational spectrum of $^{79}Br^{19}F$ shows a series of euqidistant lines spaces 0.714333 cm⁻¹ apart. Calculate the rotational constant B, the moment of inertia and bond length of the molecule.
 - (b) How does 'molar polarization' vary with temperature?

 Explain using proper equation.
 - (c) Draw Schematically the energy levels of an anharmonic oscillator and hence explain the following for a diatomic molecule
 - (i) Existence of overtones and hot bands in the IR spectrum and
 - (ii) Dissociation.
- 6. (a) Show that the functions of simple harmonic oscillator $\psi_0(x) = \frac{1}{\pi^{1/4}} e^{-x^2/2} \quad \text{and} \quad \psi_1(x) = \left(\frac{1}{4\pi}\right)^{1/4} 2xe^{-x^2/2} \quad \text{are orthogonal.}$

4

- (b) Write down time independent Schrödinger equation of a one-dimensional harmomic oscillator. 2
- (c) Draw the sketches of ψ and $|\psi|^2$ for a particle in onedimensional box for the first three energy levels. 3
- (d) Define thermodynamic probability. Derive the relation: $S = k \ln w$.

Group-C

Answer any five questions:

- 2×5
- (a) Calculate the number of components, number of phases and degrees of freedom of a binary azeotrope system.
 - (b) Draw planes with Millar indices (111) and (210)).
 - (c) The wave number of vibration of H³⁵Cl molecule is 2991 cm⁻¹. Calculate the force constant of H-Cl bond.
 - (d) Express mathematically the potential energy of Morse oscillator and state the significance of the terms.
 - (c) For the ground state of the one dimensional harmonic oscillator, find the average value of the kinetic energy and of the potential energy.

- (f) Evaluate the commutator $[\hat{L}^2, \hat{L}_x]$.
- (g) What is meant by singlet excited state and triplet excited state?
- (h) What are the assumptions made for deriving Maxwell-Boltzmann distribution law?