MCA 3rd Semester Examination, 2010

FORMAL LANGUAGE AND AUTOMATA

PAPER — CS/MCA/2302

Full Marks: 100

Time: 3 hours

Answer any five questions

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

- 1. (a) Define transition system.
 - (b) Find a deterministic acceptor equivalent to

$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$$

(Turn Over)

where δ is given by the following table :

State	a	/ b
$\rightarrow q_0$	q_0, q_1	q_2
q_1	q_0	$q_{_1}$
q_2		q_0, q_1

(c) Construct a Mealy machine equivalent to the Moore machine defined by the following table:

Present State	Next State		
	a = 0	a = 1	Output
$\rightarrow q_0$	q_1	q_2	1
q_1	q_3	q_1	0
q_2	q_2	q_1	1
q_3	q_0	q_3	1

K

2. (a) Construct a grammar generating

$$L = \{ a^n b^n c^n | n \ge 1 \}.$$
 7

- (b) Classify formal languages according to Chomsky. Describe each briefly with suitable examples.
- 3. (a) Construct a transition system corresponding to the regular expression: $(ab + c^*)^*b$.
 - (b) Find the regular expression representing the set of all strings over {0,1} in which the number of occurrences of 0 is divisible by 3.
 - (c) Find the regular expression corresponding to the automaton given below:

5

4. (a) Examine if the following grammar is ambiguous or not:

$$S \rightarrow aB \mid bA$$

 $A \rightarrow aS \mid bAA \mid a$
 $B \rightarrow bS \mid aBB \mid b$

if yes, derive unambiguous grammar from it.

(b) Construct a reduced grammar equivalent to the grammar:

$$S \rightarrow aAa$$

 $A \rightarrow Sb \mid bCC \mid DaA$
 $C \rightarrow abb \mid DD$
 $E \rightarrow aC$
 $D \rightarrow aDA$

5. (a) Find a grammar in CNF equivalent to the grammar:

$$S \rightarrow \sim S \mid [S \supset S] \mid p \mid q$$

[N.B.: S being the only variable]

(b) Reduce the following grammar to GNF:

$$S \rightarrow SS$$

 $S \rightarrow 0S1 | 01.$

- 6. (a) Construct a pda accepting the set of all palindromes over $\{a, b\}$.
 - (b) Construct a pda A equivalent to the following context-free grammar:

$$S \rightarrow 0BB$$

$$B \rightarrow 0S \mid 1S \mid 0$$

Test whether 010³ is in N (A).

7. (a) Define Turing machine.

(b) Consider the TM described by the following table:

Present State	Tape Symbol		
	b	0	1
$\rightarrow q_1$	$1Lq_2$	$0Rq_1$	
q_2	bRq_3	$0Lq_2$	$1Lq_2$
q_3		$0Rq_4$	bRq_5
q_4	$0Rq_5$	$0Rq_4$	$1Rq_4$
q_5	$0Lq_2$		

Draw the computation-sequence of the input string 00.

(c) Design a Turing Machine of $\{1, b\}$ which can compute a concatenation function over $\Sigma = \{1\}$. If a pair of words (w_1, w_2) is the input, the output has to be $w_1 w_2$.

7

[Internal Assessment — 30 Marks]