M.Sc. 2nd Semester Examination, 2013

FA

PAPER-202

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their

own words as far as practicable

Illustrate the answers wherever necessary

MODULE - I

(Finite Automata)

[Marks: 25]

Answer any two questions:

10 × 2 °

- 1. (a) Construct a DFA accepting all strings w over {a, b} such that the number of b's in w is 2 mod 3.
 - (b) Construct a Moore machine equivalent to the mealy Machine given below:

(Turn Over)

Present state	Next State				
	a = 0		a = 1]
	State	Output	State	Output	
$\rightarrow q_1$	q_1	1	q_2	0	
$q_{_2}$	$q_{_4}$	1	$q_{_4}$	1	
$q_{_3}$	$q_{_2}$	1	q_3 .	. 1	
$q_{_4}$	$q_{_3}$	0	$q_{_1}$	1	

2. (a) Construct a Grammar generating

$$L = \{wCw^T | w \in \{a, b\}^*\}.$$

5

- (b) What do you mean by Regular Expressions?
 Give examples.
- (c) Construct a regular expression corresponding to the state diagram described by the following F.A.

PG/IIS/FA-202/13 (Continued)

(a) Show that the set $L = \{ a^{i^2} | i \ge 1 \}$ is not 3. regular. 5 (b) Find a reduced grammar equivalent to the grammar G whose productions are: 5 $S \rightarrow AB \mid CA, B \rightarrow BC \mid AB, A \rightarrow a, C \rightarrow aB \mid b$ (a) Construct an equivalent finite automata ba + (aa + b) a*b5 (b) Write a short note on Chomsky classification of grammars. [Internal Assessment: 5 Marks] MODULE - II (Compiler Design) [*Marks*: 25] Answer any two questions: 10×2 1. (a) Consider the following grammar:

(Turn Over)

PG/IIS/FA-202/13

$$S \to Aa \mid Bb \mid cC$$
$$C \to Ab \mid Ba$$

 $A \rightarrow D$

 $B \to D$

 $D \rightarrow \epsilon$.

Construct LL(I) parsing table. Is the grammar LL(1)? Why or why not?

(b) Consider the following grammar:

 $S \rightarrow aAb$

 $A \rightarrow Aa \in$

Design SLR(I) parser for the grammar of the grammar. If LALR(I) parser is designed for this grammar. How many states the LALR(I) parser will have?

- 2. (a) Define token, pattern and lexemes also give examples.
 - (b) Explain the meaning of handle. "If the grammer is ambiguous then there exist exactly one handle for each right sentential form". —Comment.

PG/IIS/FA-202/13

(Continued)

5

5

- 3. (a) Construct DFA for the regular expression $(a/b)^* abb \#$
 - (b) Why LR parsing is attractive? What is annotated parse free? Give one example. 2+3
- 4. (a) Generate three address code for: 5

if
$$a < b$$
 then
while $c > d$ do
 $x = x + y$
else
do $p = p + q$
while $1 <= f$

(b) What is basic block? How partitioned the basic block? What is flow graph? Give example. 1+2+2

[Internal Assessment : 5 Marks]