M.Sc. 1st Semester Examination, 2013

COMPUTER SCIENCE

PAPER - COS-104(M-1 & M-2)

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

MODULE-1

(Computer Graphics)

[Marks: 25]

Answer any two questions

1. (a) Stepwise illustrate the Generalised Bresenham's line drawing algorithm. The illustration should contain code along with precise narrative description.

5

2.

3.

PG/IS/COS-104/13

(b)	If $X_{\text{start}} = 0$, $Y_{\text{start}} = 0$, $X_{\text{end}} = -4$ and $Y_{\text{end}} = -8$ then find out using generalized Bresenham's algorithm the pixel locations approximating a line between the given points.
(a)	Define frame buffer and loop-up table. Also mention the working principle of look-up table. 2 + 3
(b)	Write the difference between raster scan and random scan display. 5
(a)	What is shear transformation? Mention the two standards of shear? $1 + (2 + 2)$
(b)	Show that a 2D reflection through X-axis followed by a 2D reflection through the line $y = -x$ is equivalent to pure rotation about the origin. (The rotation about origin by an angle of 270° is known as pure rotation).
(a)	What is projection? Define the term "Projection plane" and "Centre of Projection". $1+1+1$

(Continued)

(b) Compare (any two):

- $3\frac{1}{2} \times 2$
- (i) Shadow mask method and Beam penetration method.
- (ii) Parallel projection and Perspective projection.
- (iii) LCD and Plasma display system.

[Internal Assessment - 5 Marks]

MODULE-2

(Image Processing)

[Marks: 25]

Answer any four questions

- 1. (a) Define digital Image? How can you represent image by light intensity function. 1+2
 - (b) What is resolution? What do you mean by sampling? 1+1

- 2. Explain the Histogram equalization with suitable example.
 - 5
- 3. (a) Write the H(u, v) of any two high-pass filter and low-pass filter. 2+2
 - (b) Write the effect of low-pass filter and high -pass filter when applied to the image. 1
- 4. Show that the Fourier transform the 2 D sine function-

 $f(x, y) = A \sin(v_0 x + v_0 y)$ is the pair of conjugate impulses-

$$F(u,v) = -j\frac{A}{2} \left[\delta \left(u - \frac{u_0}{2\pi}, v - \frac{v_0}{2\pi}, \right) - \delta \left(u + \frac{u_0}{2\pi}, v + \frac{v_0}{2\pi}, \right) \right].$$
 5

- 5. Two images f(x, y) and g(x, y), have histogram hf and hg. Give the conditions under which you can determine the histogram of
 - (a) f(x, y) + g(x, y).

- (b) f(x, y) g(x, y).
- (c) $f(x, y) \times g(x, y)$.
- (d) $f(x, y) \div g(x, y)$.
- -in each terms of hf and hg. Explain how to obtain the histogram in each case.
- 6. Write short notes on any two:

 $2\frac{1}{2} \times 2$

- (i) Edge detector
- (ii) Neighbor of pixel
- (iii) Adaptive thresholding
- (iv) Bit-plane slicing.

[Internal Assessment - 5 Marks]