MCA 1st Semester Examination, 2013 BASIC ELECTRONICS AND DIGITAL LOGIC

PAPER -CS/MCA-103

Full Marks: 100

Time: 3 hours

Answer any seven questions

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1.	(a)	Define the term 'doping'.
	(b)	Explain the variation of Fermi level with temperature in extrinsic semiconductor.
	(c)	Explain - "Semiconductors behave as

insulator at OK".

(Turn Over)

	(<i>d</i>)	What are the differences between a Zener diode and an ordinary p - n junction diode.	3
2.	(a)	Explain briefly the operation of a Bridge rectifier with diagram. What are the advantages of a bridge rectifier as compared to a full wave center tapped rectifier?	5
	(b)	Define ripple factor. Calculate its value for half wave and full wave rectifier.	3
	(c)	Describe the terms capacitor input filter and inductor input filter.	2
3.	(a)	Define α and β of transistor. Find the relation between them.	4
	(b)	Explain the input and output characteristics of a transistor in CB configuration.	6
4.	(a)	Draw the block diagram of a typical op-amp.	3
-	(b)	Write the characteristics of ideal op-amp.	2
	(c)	Derive the expression for the op-amp used as a non-inverting amplifier and draw the circuit diagram.	5

MCA/IS/103/13

(Continued)

5.	(a)	Is it possible to produce a junction transistor by connecting two-diode together? Explain with proper reasoning.	2
	(b)	Why biasing is needed?	2
	(c)	A transistor in CE mode configuration the voltage drop across $5 \text{ k}\Omega$ resistance which is connected in the collector circuit is 5 volt. Find the base current. The current gain $\alpha = 0.998$.	4
	(<i>d</i>)	What are the advantages of negative feedback over positive feedback?	2
6.	(a)	Convert the following decimal number to BCD (i) 2019 ₁₀ (ii) 9701 ₁₀ .	2
	(b)	What is a Gray Code? Why it is important?	2
	(c)	Express the function $Y=A+\overline{B}C$ in canonical POS form.	3
	(<i>d</i>)	Using the K-Map method, obtain the minimum sum of product expression of the following function:	
÷		$Y = \Sigma (0, 2, 3, 6, 7, 8, 10, 11, 12, 15)$	3

MCA/IS/103/13

7.	(a)	What is BCD adder. Explain with circuit diagram.	6
	(<i>b</i>)	Explain with the help of K-map how we convert BCD to excess 3 code.	4
8.	'(a)	Convert JK flip-flop to D flip-flop.	4
	(b)	What is magnitude comparator? Draw and explain 2-bit magnitude conparator.	5
	(c)	Write the applications of comparator.	1
9.	(a)	Show how the JK flip-flop can be operated as a toggle flip-flop.	3
	(b)	Implement the following function using $8:1$ MUX $F(A, B, C, D) = [m(0, 7, 8, 9, 10, 11, 15).$	4
	(c)	Define race around condition.	3
10.	(a)	What is decoder? Implement a full subtractor using 3:8 decoder.	4
	(b)	Design 3 bit UP-down synchronous counter.	6