2015

M.Sc.

3rd SEMESTER EXAMINATION

COMPUTER SCIENCE

PAPER-COS-302

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

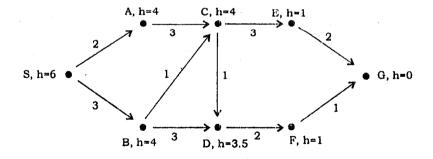
Illustrate the answers wherever necessary.

Module-I

(Artificial Intelligence)

[Marks: 25]

Answer any two questions.


1.	(a)	Write down the A* algorithm.	3
	(b)	What is fitness number? Explain.	2
	(c)	Show that:	,
		•	
		but converse in not true.	3
	(d)	Write down the difference between reasoning and non-monotonic reasoning.	monotonic 2

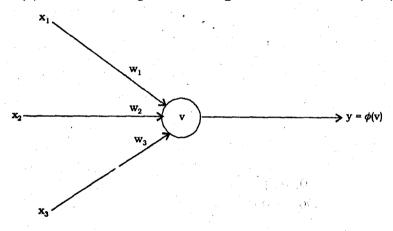
(Turn Over)

- 2. (a) Write down the basic principal of Alpha-Beta-cut off (Pruning).
 - (b) Explain the Alpha-Beta-Cut off (Pruning) in detail.

4

- (c) Write down the limitation of Minimax algorithm. 4
- (d) Prove that P(A∪B) = P(A) + P(B) P(A∩B)
 where A and B are two events.
- 3. Represent the following rules in first order logic: 5×2
 - (a) All dogs are mortal.
 - (b) No person buys an expensive policy.
 - (c) All horses, cows and pigs are mammals.
 - (d) Offspring and parent are inverse relations.
 - (e) Not all the basketball players are tall.
- 4. Consider the graph to find the shortest path from S to G using A* algorithm:

[Internal Assessment — 5 Marks]


Module-II

(Soft. Computing)

[Marks : 25]

Answer all questions.

- 1. (a) Compute the weight matrix for a Hopfield network with the two memory vectors [1, -1, 1, -1, 1] and [1, 1, 1, -1, -1, -1] stored in it.
 - (b) Below the diagram of a single artificial neuron (unit):

The node has three inputs $x = (x_1, x_2, x_3)$ that receive only binary signals (either 0 or 1). How many different input patterns this node can receive? What if the node had four inputs? Can you give a formula that computes the number of binary input patterns for a given number of inputs?

1+2+1

(c) Implement a simple genetic algorithm (GA) that solves the problem of optimizing the function y = f(x) with $f(x) = x^*x$.

- 2. (a) What is Delta learning rule? How is this applied in ANN?
 - (b) Design perceptron network that implements AND function.
- 3. (a) Two fuzzy sets A and B both defined on x as follows:

$\mu(\mathbf{x_i})$	* 1	x ₂	x ₃	X ₄	x ₅	* 6
Α	0.1	0.6	0.8	0.9	0.7	0.1
В	0.9	0.7	0.5	0.3	0.1	0

Find (i) $A \cup B$; (ii) $A \cap B$; (iii) $A \times B$.

10

4. (a) Let $X = \{a, b, c, d, e, f\}, Y = \{10, 20, 40, 60, 80, 100\}$

$$\tilde{A} = \{(a, 0.2), (b, 0.5), (c, 0.8), (d, 1), (e, 0.6), (f, 0.1)\}$$

$$\widetilde{B} = \{(10, 0.3), (20, 0.6), (40, 0.9), (60, 1), (80, 0.6), (100, 0.3)\}$$

$$\widetilde{C} = \{(10, 0.3), (20, 0.6), (40, 0.7), (60, 0.9), (80, 1), (100, 0.5)\}$$

Determine the implication relations:

- (i) IF x is \tilde{A} THEN y is \tilde{B} ;
- (ii) IF x is \tilde{A} THEN y is \tilde{B} ELSE y is \tilde{C} .
- (b) Draw the flow chart of Genetic Algorithm. Illustrate where possible.

6+4

[Internal Assessment — 5 Marks]